http://trent.st/content/pycon.pdf

http://trent.st/content/pycon.pdf

Overview

Who this talk is for:
- Py / ML developers
- Who are blockchain-curious
- Who could quickly become blockchain ninjas but don't know it yet!

Outline

Ninja strategy #1: a useful cheat

- Smart contracts background
Ninja strategy #2: for rest of talk

Py skills —Brownie
ML algs — blockchain algs
Py + ML skills —TokenSPICE

Py + ML without Solidity dev, for ML use cases
Tokenize data & algorithms, share it, sell it (Ocean)

github.com/oceanprotocol/ocean.py
Publish datatokens

In the Python console:
market.oceanprotocol.com

import os

from ocean_lib.example_config import ExampleConfig Hiseressmsn LA S s
from ocean_lib.ocean.ocean import Ocean Product Pages of 1'044'709 Products on
from ocean_1lib.web3_internal.wallet import Wallet Amazon.com (processed data)

o e —
private_key = os.getenv('TEST_PRIVATE_KEY1') o | oamser s I ;j EEl o e
config = ExampleConfig.get_config() ;;: i By 8 G AR g 7o
ocean = Ocean(config) / Resutof srai

sed to extract the main components of the product offering

ct page.

print(“create wallet: begin") e oo e s vt
wallet = Wallet(ocean.web3, private_key, config.block_confirmations, config.transaction_timeout)

print(f"create wallet: done. Its address is {wallet.address}")

categories/se
= Notall folde

= Picture of product main picture thumbnail (JPG files in Image folders)

print("create datatoken: begin.") product category:
datatoken = ocean.create_data_token("Dataset name", "dtsymbol", from_wallet=wallet)
print(f"created datatoken: done. Its address is {datatoken.address}")

Congrats, you've created your first Ocean datatoken! « ::
e ©®

https://www.github.com/oceanprotocol.com/ocean.py
https://www.market.oceanprotocol.com

Develop &
deploy webapp

Develop smart
contract

Web
Verify smart Write tx: call to App Get insight, take

contract smart contract action

Deploy smart Sign & submit Read chain
contract (as tx) 194 state

EVM on chain,
runs smart contracts to update state

Storage on chain,
holds state

function createToken(

string memory blob,
string memory name,
string memory symbol,
uint256 cap

public
returns (address token)

require(
cap != 0,
'DTFactory: zero cap is not allowed'

)i
token = deploy(tokenTemplate);

require(
token != address(0),
'DTFactory: Failed to perform minimal deploy of a new token'
):
IERC20Template tokenInstance = IERC20Template(token);
require(
tokenInstance.initialize(
name,
symbol,
msg.sender,
cap,
blob,
communityFeeCollector
)
'DTFactory: Unable to initialize token instance’
)H

emit TokenCreated(token, tokenTemplate, name);

What a smart contract looks like (Solidity code

function mint(
address account,
uint256 value

)
external
onlyMinter
{
require(
totalSupply().add(value) <= _cap,
'DataTokenTemplate: cap exceeded'
)i
_mint(account, value);
}

https://github.com/oceanprotocol/contracts

minting T

to be minted

e

©)
(@)
)
Q
D)

https://github.com/oceanprotocol/contracts

Solidity, :
JS, web3)./.js, Develop & JS, web3.js,

Truffle, Ganache deploy webapp

Develop smart
contract

JS libs

Web
Verify smart Reuse code, Write tx: callto = ppy Getinsight, take

contract Slither, auditors smart contract action

Deploy smart Truffle, Sign & submit Read chain
contract (as tx) [Ciimainnet 1 state

EVM on chain,
runs smart contracts to update state

Storage on chain,
holds state

Solidity,

Develop smart [95/ WebSJS;
Truffle, Ganache deploy webapp

Develop & JS, web3js, 5o
JS libs
contract

Web
Verify smart Reuse code, Write tx: callto = ppy Getinsight, take

contract Slither, auditors smart contract action

Deploy smart Truffle, Sign & submit Read chain
contract (as tx) [Ciimainnet 1 state

EVM on chain,
runs smart contracts to update state

Storage on chain,
holds state

Motivation

Why blockchain could look daunting to MLers:
- Different languages: Solidity, JS
- Different tools: Web3.js, Truffle, Ganache, ..
- Different building blocks: ERC20, ERC721, AMMSs, multisig, DAOs, ..

Extra Worries:
- Is it start from zero? It looks like a long / steep learning curve

- Is it worth it? It looks like building webapps, not ML algorithms. Different
style.

What if...

- Solidity, JS — Mostly Py, some Solidity
+ Web3.js, Truffle, Ganache — Brownie (Py), Ganache (but hidden)

- ERC20, ERC721, AMMSs, multisig, DAOs — treat as Py classes/objects:
Brownie

- Start from zero — Py & ML ninja skills are your big lever
« Webapps, not ML-like algs — ML-like algs via TokenSPICE (Py)

Solidity,

Develop &
Ganache deploy for CLI

Develop smart
contract

Reuse code, : ..
Verify smart : Write tx: call to Get insight, take

contract Slither, auditors smart contract action

Deploy smart
contract (as tx)

Sign & submit Read chain

Eth mainnet tx state

EVM on chain,
runs smart contracts to update state

Storage on chain,
holds state

Learning Solidity

Mastering

Ethereu'

IMPLEMENTING DIGITAL CONTRACTS

e\
; 2~ Andreas M. Antonopoulos
Dr. Gavin Wood

You still need Eth & Solidity basics.

This is the best path to a solid foundation.
amazon.com/Mastering-Ethereum-Building-Smart-C

ontracts/dp/1491971940/

And, JS not needed :

OocCean

https://www.amazon.com/Mastering-Ethereum-Building-Smart-Contracts/dp/1491971940/
https://www.amazon.com/Mastering-Ethereum-Building-Smart-Contracts/dp/1491971940/

Recall: what if...

- Solidity, JS — Mostly Py, some Solidity
+ Web3.js, Truffle, Ganache — Brownie (Py), Ganache (but hidden)

- ERC20, ERC721, AMMSs, multisig, DAOs — treat as Py classes/objects:
Brownie

Brownie Quickstart

Let’'s walk through “Getting Started With Brownie”

Part 1 - Install
Part 2 - Brownie projects

Part 3 - Basic functionality

1: https://iamdefinitelyahuman.medium.com/getting-started-with-brownie-part-1-9b2181f4cb99

2: https://betterprogramming.pub/qgetting-started-with-brownie-part-2-615aleec167f

3: https://betterprogramming.pub/getting-started-with-brownie-part-2-615aleec167f

https://iamdefinitelyahuman.medium.com/getting-started-with-brownie-part-1-9b2181f4cb99
https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f
https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f

Recall: what if...

- Webapps, not ML-like algs — ML-like algs

Incentives & Blockchains

“Show me the incentive, and | will show you the outcome”
-- Charlie Munger

Incentives are conceptually easy in blockchain:
Get people to do stuff, by paying them in tokens.

How to implement incentives in blockchains:
Develop, verify, and deploy Solidity code

OCean

From ML Algorithm Design To Incentive Design

How do we design the incentives?

This problem is a lot like ML algorithm design:
It's an optimization problem formulation!
Minimize fi(x)
S.t. gj(x) <=0
And hk(x) =0

This is design of analog / continuous-valued systems, vs digital / discrete.

In blockchain land, incentive design = Token Engineering.

OCean

Verification

How do we verify the incentives?

Three ways:

1. Manual — human feedback
2. Economic — deploy live, ratchet up risk
3. Software-based — need appropriate SW

Verifying Continuous-Valued Systems: Analog Circuits

|
GBw=—ml g - B

2n Cy Ves1Vr

i 1
Vas1-Vr 21 C

GBW, ..« =

Design analog
circuit

Vour- 0.2V
lg=10uA C_=1pF GBW, = 10 MHz
[8]
GBW.C,

FOM = — = 1000 [800]
Ig MHzpF/mA

Verify with SPICE
SlmUIator SPICE sample circuit - diode clamp

*independent voltage source with DC value, AC value, and
*transient square wave. -10V to +20V extent, with 2ms period
vVl 10 1AC 1 pulse -10 20 0 1.e-8 1.e-8 le-3 2e-3

*capacitor for clamping
Cl 1 2 le-6

*diode for clamp - model name is dclamp

(Manufacture

D1 2 0 dclamp 154 I(ldeal_4kv) |(Simulated)
. .
CI rCUIt) *load resistor - large enought t::::l

*model for diode

.model dclamp D(IS=le-14) 124
114

*DC transfer function generated {104

.DC V1 -20 20 .1 94
8A=

*AC frequency sweep - assumes Cii 7A-
6A=
5A=
4a-
3A=
24
1A=
04 L T L L 1] T T

Ons 20ns 40ns 60ns 80ns 100ns 120ns 140ns

©)
D
Q

erifying Continuous-Valued Systems: Incentives

Develop smart
contract

Verify with
TokenSPICE
simulator

Deploy smart
contract (as tx)

Block diagram: Ocean Market ecosystem,
with 1SS + Dutch:Pool + Vested Premine (+ soft cap on vol:consume ratio)

sep1L/ $OTL S
Init: SO, uniimited SDTL, ATET}
unimited datal ﬁ‘L el S

stake
o give datal access

Staker 1
For each DTx pool. Each dodecagon s an agent.Line tickness is expected volume. it $0
b 1, create poo Wants: more SO
PR i ~ Value-Creating Actons:
$DTTVESTng 1g N o stake (eams

Bl
/" with 1SS + Dutch:Pool fees, gets $DTL

Publisher 1 \nit: unlimited SBPT1. exposure)

'Wants: more $O
Value-Creating Actions: SDTL|

o pubishDTIpoola SHEHL

Value-Creating Actions: $O
o sell SDT1for $O in /
\ Dutch auction
_* sellSBPT for $O
“e-_charge txfees_—

[1N\$DTL
" speculator1
3 Init: O

onsumeDT(): send
§SDT1, lag, get SO

‘Wants: $DT1 and more $O

Value-Creating Actions:

o buySDT1forSOin
Dutch auction

o trade SDT1/50in

AN gqumhnum /

Dataconsumer 1 N\
nit: SO N
Wants: more $O |
Value-Creating Actions:

\ o use datal to create SO

new_agents.add(

uint spotPriceBefore = calcSpotPrice(
inRecord.balance,
inRecord.denorm,
outRecord.balance,
outRecord.denorm,
_swapFee

):

require(spotPriceBefore <= maxPrice, 'ERR_BAD_LIMIT_PRICE');

tokenAmountOut = calcoOutGivenIn(
inRecord.balance,
inRecord.denorm,
outRecord.balance,
outRecord.denorm,

tnkenAmniintTn

OCEAN Token Count (linear)

PublisherAgent(
name="publisher",
USD=0.0,
OCEAN=self.ss.publisher_init_OCEAN, 1.4e+03
pub_ss=pub_ss,
) % 1.2e+03
(=
) S
E 1e+03
&
new_agents.add(o
c
DataconsumerAgent (3 8e+02
o
name="consumer", B
c
USD=0.0, 3 6e+02 A
(o]
OCEAN=self.ss.consumer_init_OCEAN, s
s_between_buys=self.ss.consumer_s_be é 4e+02
profit_margin_on_consume=self.ss.cor E
) O 2e+024
(o]
)
04

—— Total supply
—— Tot # Minted
—— Tot # Burned

©)
(@)
)
Q
)

Recall: what if...

- Start from zero — Py & ML ninja skills are your big lever
« Webapps, not ML-like algs — ML-like algs via TokenSPICE (Py)

TokenSPICE Quickstart

Let's walk through TokenSPICE's README

qithub.com/tokenspice/tokenspice

https://github.com/tokenspice/tokenspice

ol

Conclusion

* You know Py + ML, and you want to do cool stuff in blockchain
- Ninja strategy #1: skip Solidity, use ocean.py to tokenize data & algs
 Ninja strategy #2: dev on Solidity, use Brownie & TokenSPICE

Solidity, &%) S
Develop & =
Develop smart Ganach deploy for CLI
contract S d

: R de, &4 : .
Verify smart G Write tx: call to Get insight, take

contract Slither, auditors smart contract action

Deploy smart
contract (as tx)

Sign & submit Read chain
tx state

Eth mainnet

EVM on chain,
runs smart contracts to update state @trentmcO
Storage on chain, @oceanprotocol
holds state
(]
s

OocCean

Solidity,

Develop &
Ganache deploy for CLI

Develop smart
contract

Reuse code, : ..
Verify smart : Write tx: call to Get insight, take

contract Slither, auditors smart contract action

Deploy smart
contract (as tx)

Sign & submit Read chain

Eth mainnet tx state

EVM on chain,
runs smart contracts to update state

Storage on chain,
holds state

