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Abstract

This thesis describes new tools for front end analog designers, starting with global variation-
aware sizing, and extending to novel variation-aware topology design. The tools aid de-
sign through automation, but more importantly, they also aid designer insightthrough
automation. We now describe four design tasks, each more general than the previous, and
how this thesis contributes design aids and insight aids to each.

The first designer task targeted is global robust sizing. This task is supported by a
design tool that does automated, globally-reliable, variation-aware sizing (SANGRIA),
and an insight-aiding tool that extracts designer-interpretable whitebox models that re-
late sizings to circuit performance (CAFFEINE). SANGRIA searches on several levels
of problem difficulty simultaneously, from lower cheap-to-evaluate “exploration” layers
to higher full-evaluation “exploitation” layers (structural homotopy). SANGRIA makes
maximal use of circuit simulations by performing scalable data mining on simulation re-
sults to choose new candidate designs. CAFFEINE accomplishes its task by treating func-
tion induction as a tree-search problem. It constrains its tree search space via a canonical-
functional-formgrammar, and searches the space with grammatically-constrained genetic
programming.

The second designer task is topology selection / topology design. Topologyselection
tools must consider a broad variety of topologies such that an appropriate topology is
selected, must easily adapt to new semiconductor process nodes, and readily incorporate
new topologies. Topologydesigntools must allow for designers to creatively explore new
topology ideas as rapidly as possible. Such tools should notimpose new, untrusted topolo-
gies that have no logical basis. MOJITO supports both topologyo selection and design.
It takes in a pre-specified library of about 30 hierarchically-organized analog building
blocks. This library definesthousandsof possible different circuit opamp topologies from
different combinations of the building blocks. The libraryis independent of process, and
does not require input of behavioral models. Therefore, it only has to be specified once.
However, designers can readily add new building block ideasto it. MOJITO efficiently
globally searches this library’s possible topologies and sizings by leveraging the hierarchi-
cal nature of the blocks. MOJITO returns (“synthesizes”) topologies that aretrustworthy
by construction. MOJITO is multi-objective, i.e. it returns a set of sized topologies that
collectively approximate an optimal performance tradeoffcurve. Once a single MOJITO
run is done at a process node, the results are stored as a database for future queries by
other designers. Therefore MOJITO supports a “specs-in sized-topology-out” workflow
with immediate turnaround.



This thesis also demonstratesinsightaids for topology selection and design. By taking
a data-mining perspective on this database, it (a) extractsa specs-to-topology decision
tree, (b) does global nonlinear sensitivity analysis on topology and sizing variables, and
(c) determines analytical expressions of performance tradeoffs.

The third design task combines the previous two: variation-aware topology selection
and design. Thedesigntool is MOJITO-R, which extends MOJITO with structural homo-
topy to efficiently handle variation-awareness and returnrobust topologies. Theinsight
tools take a data-mining perspective on MOJITO-R’s resulting database, so that the de-
signer can explore the relation among topologies, sizings,performances, andyield.

The final designer task is about novelty. This thesis explores two tools that can sup-
port designers to create designs with novelfunctionalityand/or noveltopologies. The first
tool is MOJITO-N. It is targeted towards finding novel topologies for classes of circuits
that typically have existing reference designs (i.e. non-novel functionality). Using “trust-
worthiness tradeoffs”, MOJITO-N only adds novelty to knowntopologies when there
is payoff. The other tool is ISCLEs. It finds novel topologiesfor classes of circuits
without recourse to existing reference designs (i.e. novelfunctionality). ISCLEsboosts
digitally-sized “weak learner” circuits to create an overall ensemble of circuits. ISCLEs
has promise to benaturally robust to process variation, and an area footprint that scales
with shrinking process geometries.

This thesis had several aims. The first was to bring the role ofthe designer back into
computer-aided design (CAD) tool design, to provide more opportunities for designer-
computer interaction such that the strengths of each can be exploited. This drove the
work in knowledge extraction tools, and was the key to a trustworthy topology design
tool. The second aim was to chart out a possible roadmap that could guide industrial
CAD tool rollout, starting with the near term goal of global variation-aware sizing, then
hitting successively farther-out goals such as topology design and novel topology design.
Each tool was designed to have inputs and outputs as close as possible to industry, and
to use off-the-shelf simulators for flexibility and accuracy. The third aim was to bridge
fields of analog CAD and genetic programming / evolvable hardware: both fields aimed
for topology synthesis, but the jargon and the algorithmic tools were different, and the
specific problems in topology synthesis needed clarification and better designer / indus-
trial context. The final aim was to make contributions that generalize beyond analog CAD.
It turns out that the roadmap and algorithms developed are general, and can be applied to
many of other fields from automotive design to bio-informatics.
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Notation

General Notation
a, A scalars are non-bold lowercase and non-bold uppercase
a vectors are bold lowercase
A matrices are bold uppercase
i, j, k, l i, j, k, l are reserved for indices; e.g.•i is theith component of•
I(condition) indicator function that returns 1 ifcondition is True, and 0 otherwise
[a, b] range of continuous values froma to b; a ≤ b
ℜa real-valued space of dimensiona
pdf(a) probability density function for random variablesa

E(•) expected value of quantity•
∆a a small (“infinitesimal”) value ofa
•∗ •∗ is an “optimized” version of•
•′ •′ is an “updated” version of•

Circuit / Problem Notation
V, I voltage, current
R,C,W,L,M resistance, capacitance, transistor width, transistor length, multiplier
Rmin, Cmin, ... minimum value forR,C, ...
Rmax, Cmax, ... maximum value forR,C, ...
T temperature
Vdd, Vss power supply voltage, voltage rail
Φ “general” space of possible topologies and sizings
φ “general” design point;φ ∈ Φ
d design point as a vector;d = {d1, d2, ..., dNd

}
θ environmental point (corner);θ = {θ1, θ2, ..., θNθ

}
s process point (corner);s = {s1, s2, ..., sNs

}
Nd, Nθ, Ns number of design variables, environmental variables, and process variables
D,Θ, S space of possible design points, environmental points, andprocess points
Ξi combined environmental and process corneri; i.e. Ξi = {θi, si}
Ξ set of combined corners; i.e.Ξ = {Ξ1,Ξ2, . . .}
λi circuit performance specificationi; e.g.gain ≥ 60dB
λ list of performance specifications;λ = {λ1, λ2, . . . , λNg

}
ξi testbenchi
Nξ number of testbenches
ξ list of testbenches;ξ = {ξ1, ξ2, . . . , ξNξ

}



fi, gj, hk objectivei, inequality constraintj, equality constraintk
Nf , Ng, Nh number of objectives, inequality constraints, equality constraints
fj list of objective function values for design pointφj; fj = f(φj)

Notation in Sizing and SANGRIA
Y (φ) yield of design pointφ
δ(φ, ...) feasibility
σ standard deviation
ŶMC yield estimate from Monte Carlo sampling
NMC number of Monte Carlo samples
Θ̂ set of environmental corners to approximateΘ
Nc number of environmental corners
Cpk(φ) process capability of design pointφ
u(x) uncertainty at pointx (of model)
Λ(x) infill criterion at pointx (in model-building optimization)
ψ, ψ(i), ψ(j) SGB ensemble, SGB model, and CART regression model, respectively
ι in CART, maximum allowed recursion depth
ιmin, ιmax in SGB, minimum and maximumpossibleCART depth, respectively
µ in SGB, the fraction of overall training samples to use in building a single CART
ǫtarg in SGB, target training error
H in homotopy, the homotopy map
η in homotopy, the degree to whichH reflects the true objective function
Pall all individuals from whole SANGRIA run
B in LHS, the bin selections, whereBi,j is the bin chosen for variablei in samplej
Pcand in tournament selection, the candidate parents
Nens number of models in ensemble-based regressor
Ninner the number of new designs from an inner optimization
χ in DHC, the state of the search. Holdsρ,x, etc.
ρ in DHC, the next action
v,u in DHC, velocity vector and ridge-walking vector
x,xv,xuv in DHC, design points: center, center+v, center+u + v

Vlist in DHC, the list of nextv’s
vinit, vmin in DHC, initial and minimum stepsize
NMC,cand number of Monte Carlo samples from which to choose SANGRIA corners
NMC,chosen number of Monte Carlo samples chosen as SANGRIA (process) corners

Notation in Synthesis and MOJITO
Z Pareto-optimal set of “general” design points;Z = {φ∗

1, φ
∗
2, . . . , φ

∗
NZ

}
φ∗

i Pareto-optimal “general” design point; an entry inZ
NZ number of points inZ; i.e.NM = |Z|
NT number of unique topologies inZ

Notation in Regression and CAFFEINE
N number of data samples



n model’s number of input variables
1 model’s number of output variables
X all input data;X ∈ ℜnxN ; each column is a sample; one row per variable
y all output data;y ∈ ℜN ; each entry is a sample
xj a single input samplej; xj ∈ ℜn

yj a single output sample;yj ∈ ℜ1

Ψ search space of possible regression models
ψ CAFFEINE regression model mappingx to y, i.e. ŷ = ψ(x); ψ ∈ Ψ
M Pareto-optimal set of models;M = {ψ∗

1, ψ
∗
2, . . . , ψ

∗
NM

}
ψ∗

i Pareto-optimal design point; an entry inM
NM number of points inM ; i.e.NM = |M |
NB number of basis functions inψ (not counting offset)
a linear weights on basis functions (including offset)
Bi basis functioni
wb in CAFFEINE, minimum complexity cost of a basis function
wvc in CAFFEINE, complexity cost scaling factor of a “variable combo”
ιi in CAFFEINE, influence of a basis functionBi

ιthr in CAFFEINE, target total influence for “useful” expressions
κ in CAFFEINE, percentage of time that “useful” expressions are chosen
τ in GDR, target degree of pruning
ν in GDR,a-updating step vector
gr in GDR, gradient of squared-error loss function
hr in GDR, “selective” gradient of squared-error loss function
γi in GDR, indicates if a coefficient is to be selected
Nscr number of scrambles in global sensitivity analysis
Xscr like X except one variable’s row has been permuted (scrambled)
yscr output of modelψ when simulatingXscr

Notation in CART / Decision Trees
Υ set of possible class labels, one per unique topology;Υ = {1, 2, ..., NT}
υj topology class label corresponding to individualφ∗

j ; υj ∈ Υ
ω decision tree mappingf to t, i.e. υ̂ = ω(f); ω ∈ Ω
NR number of disjoint regions created by treeω
Ri subregioni created by treeω

Notation on EA State
Ngen current number of generations
Psel selected parent individuals (design points)
Pch children individuals
Pi in ALPS, the population of individuals in age layeri
Pi,j in ALPS, individualj in populationPi

P in ALPS, all the age layers so far
|P | in ALPS, the number of age layers currently inP
|Pi| in ALPS, the number of individuals currently in layerPi



Fi in NSGA-II, the individuals in nondomination layeri
NND in NSGA-II, the number of nondomination layers

Notation on EA Settings
Nsim,max maximum number of circuit simulations
Nind,max maximum number of individuals to explore (design points)
Ngen,max maximum number of generations
Npop in CAFFEINE and NSGA-II, the number of individuals in the population
NL in ALPS, the number of individuals per age layer
K in ALPS, the maximum number of age layers
Na in ALPS, the “age gap” - the number of generations interval for creating a new age layer 0

Notation in ISCLEs
α boosting learning rate
yoverall,target target output of whole ensemble
ycurrent,target current output of whole ensemble
rtarget target correlation between ensemble’s output and target output
rcurrent current correlation between ensemble’s output and target output
WLcand candidate weak learner
ELcand candidate ensemble of weak learners
ycand output of candidate ensemble of weak learners
ELchosen chosen ensemble of weak learners



Chapter 1

Introduction

No sensible decision can be made any longer without taking into account not only the
world as it is, but the world as it will be.
–Isaac Asimov

1.1 Motivation

The progress of the last half-century can be characterized by the exponential improve-
ments in information technology (IT), due to consistently shrinking transistors (Moore’s
Law) [Moo1965, Itrs2007] combined with ever-improving algorithms and software
[Bro2004]. IT has brought us mainframes, personal computers, video games, cell phones,
the internet, smartphones, and cloud computing. It plays a role in almost every aspect
of our lives: we snap photos with cell phones and immediatelysend them to loved ones,
rediscover friends on Facebook, call distant relatives forfree over the internet, and start
a company with headquarters a continent away and customers two continents away. IT
is touching every field, from decoding the genome, to brain scanning, to developing al-
ternative fuels. Unsurprisingly, the IT / semiconductor industry has grown into a huge
industry, with $255 billion revenue in 2007 [Sia2008]. The accelerating convergence of
IT with nanotechnology, bioscience, and cognitive sciencemay have far-reaching benefits
[Bai2006, Kur2005].

An IT-enhanced future promises to be bright if such progresscontinues. However,
such progress in IT is far from guaranteed, because the exponential improvement of the
computational substrateor of the algorithmscould stop or slow dramatically. Let us
examine potential showstoppers for each.

Exponential improvement of computational substrate couldstop or slow.Uncontrol-
lable factors in semiconductor manufacturing - process variations - have always existed.
Up until recently, the effects would cancel out across the billions or more atoms in a
given transistor. But now that transistors have shrunk to atomic scale, Avogadro-size atom
counts no longer apply. Even a single atom out of place can affect a transistor’s behavior,
leading to worsened circuit behavior and even circuit failure. As of 2008, the variation is
already large, and as Figure 1.1 shows, it will continue to get worse with future process
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technologies. Such variation is particularly problematicfor analog circuits, which do not
have the abstraction of binary digits to hide small variations. Process variations are not the
only problem. Layout parasitics, aging/reliability, electromagnetic compatibility, proxim-
ity [Dre2006], and other phenomena can affect circuit behavior. But because of their
direct impact on circuit yields, addressing process variations is the most urgent. Design
of robustly-behaving analog circuits is difficult and time-consuming. This has caused the
analog portion of chips to become the design bottleneck [Itrs2007]. Yet we cannot ignore
or bypass analog circuits, since they are crucial for digital circuits to interface with the
real world. As of 2006, 70% of systems-on-chips (SoCs) or systems-in-packages (SiPs)
have some analog functionality, up from 50% in 2005 and 10% in1999 [Rat2008]. We
need a means to design analog circuits which meet performance goals, have high yield,
and with an area that shrink as minimum device lengths shrink. And we need do it fast
enough to succeed in tight time-to-market schedules [Gie2005b].

Figure 1.1:Predicted process variations per year [Itrs2007] (CD is chemical
decomposition,Vth is threshold voltage).

Exponential improvement in algorithms / software could stop or slow. Advancements
in software design have an odd tendency to originate in the field of artificial intelligence
(AI)(e.g. [Rus2003]): a computational problem starts out as a mystery, then some “AI”
algorithm to solve it is invented and refined, the solution becomes ubiquitous, and in
hindsight the problem and eventual solution looks so simplethat it loses the label “AI”
(section 12.11 in [Poli2008]). This exact flow was the case for: symbolic manipulation,
scheduling, compilers, spreadsheets (!), optimization, regression, and many more modern
computer science fields, for problems ranging from stock picking to facial recognition
[Kur2005]. Perhaps AI’s greatest success is in its ability to spin out new computer-science
subfields, once they are sufficiently non-mysterious to fit the label “AI”. But one of the
big problems that AI has aimed to tackle – design of complex structures – has only seen
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limited success so far. The greatest illustration of the failure is to review what’s still done
almost wholly manually: design of an internal combustion engine, design of an airport,
design of music, design of any software with even a modest degree of complexity, and
design of analog integrated circuit topologies.1 But there is hope in some well-defined
problems, such as software compilers and digital circuit synthesis leading to millions of
lines of code or billions of transistors. Can we go beyond boolean / digital in breaking
this apparent complexity wall?

Clearly, progress in semiconductors and in AI face issues. Meeting those challenges
is crucial for the progress of both electronics IT and software IT, and the future benefits of
IT. This thesis aims to play a role in addressing both issues.From the perspective of circuit
design, it presents a suite of techniques to deal with progressively more challenging ana-
log design problems: globally reliable variation-aware sizing, variation-aware structural
synthesis, and variation-aware structural synthesis withnovelty. In each problem, both
automateddesign toolsand knowledge extraction toolsare developed, to leverage the
strengths of both the computerand the user. From an AI perspective, this thesis presents
an approach for automated design of complex structures: it reconciles designer creativity
with automated design in a computationally feasible fashion, by usingfield-specific, hier-
archical building blocks. This technique is general enough to be applied to other problem
domains.

The rest of this chapter is organized as follows. Section 1.2gives background on
analog CAD, and outlines this thesis’ contributions from the perspective of analog CAD.
Similarly, section 1.3 gives background on AI, and this thesis’ contribution to AI. Section
1.4 describes how analog CAD and AI relate. Finally, section1.5 sketches out the content
of the rest of the thesis.

1.2 Background and Contributions to Analog CAD

1.2.1 Analog CAD’s Context

As Figure 1.2 shows, the semiconductor industry plays a rolein many of the world’s
largest other industries, from consumer products to automotive. The $300B semiconduc-
tor industry can be segregated by type of circuit: wholly digital (25% of market), wholly
analog (10%), or mixed-signal which is a combination of both(60%). The $5B Electronic
Design Automation (EDA) industry is part of the semiconductor industry, with revenue
breakdown of 85% for digital and 15% for analog. EDA is devoted to building computer-
aided design (CAD) tools for electrical engineers. Becauseof the massive size of the
semiconductor industry and the constant changes in design constraints due to Moore’s
Law, EDA is an active industry, with billions in revenue [Edac2006].

Analog computer-aided design (CAD) [Gie2002a, Rut2007] isthe subfield of EDA
which is devoted to tools for analog circuit designers. Whereas general CAD is crucial
for delivering good designs in a timely fashion,analogCAD is crucial for delivering good

1To be clear, parameter optimization plays a helpful role, but the design of the structure remains mostly
manual.
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Figure 1.2:Context of the Analog CAD Industry

analog designs in a timely fashion. We will review the tool types which are considered
part of the standard industrial analog design flows.

1.2.2 Basic Analog Design Flow

For context, we first describe the basic flow that analog circuit designers follow, according
to Figure 1.3.

Figure 1.3:Basic flow for analog circuit design (at a node in the hierarchy).

The designer (or team) is given a set of design goals such as: “design an opamp with
gain > 60 dB, power < 1mW, and minimizing area” on a target fabrication process such
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as 65 nm TSMC. In a general sense, the transistor models of thespecified process will
be used in conjunction with tools to provide estimates of circuit performance. The design
proceeds through a series of stages.

First, a topology design is determined, either by selectingan initial topology, or de-
signing a new topology. Then in sizing, the topology’s device sizes, such as transistor
width, length and biasing, are chosen in a fashion to meet specifications. Then, a lay-
out for the design is created. A layout is basically a set of overlapping polygons, where
specific shapes represent specific types of “placed” components and “routed” intercon-
nects and give precise specifications of how to fabricate thedesign. Layout is labeled
“back-end” design, and the steps preceding are “front-end”design. Layout used to be
done by manually spreading out polygons on a large surface, and taping down shapes
until completion of the layout – “tapeout”. That’s not practical modern, complex designs,
so computers used instead, outputting the industry-standard “GDS-II” format of mask in-
structions. Those instructions are sent for fabrication. Fabricated chips are tested, then
shipped as products, where they are typically integrated aspart of an overall system such
as a cell phone.

Of course, things can go wrong, which causes re-loops to earlier steps in the flow.
For example, if a designer cannot meet the target specifications in the sizing step, a new
topology will be considered. If issues are caught at the detailed layout stage (e.g. par-
asitics), then backtracking to sizing is needed. If the fabricated chips fail the key tests,
then a costly “re-spin” is required which involves re-entering the design loop at the front
or back end. Sometimes goals are even changed, if the original specifications are too
aggressive. Models can change often, as they are refined withincreasing knowledge of a
given process node.

Design of highly complex chips can fit into variants of this flow, where the front- and
back-end design steps are organized into ahierarchical design methodology.

1.2.3 Handling Complex Chips via Hierarchical Design

In a hierarchical design methodology, the overall design isdecomposed into design of sub-
blocks, and those are further decomposed. Then the blocks are designed according to a
hierarchical traversal scheme such as bottom-up or top-down constraint driven [Gie2005].

Figure 1.4: The multi-objective bottom-up (MOBU) hierarchical design
methodology.
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In the multi-objective bottom-up approach (MOBU) [Eec2005], a Pareto-optimal per-
formance surface for each lowest-level block is determinedusing multi-objective opti-
mization. The Pareto-optimal surfaces are used to constrain the design space for the
blocks one level up, where more multi-objective optimization is performed to generate
Pareto-optimal performance surfaces at that level. This continues until the top level, as
Figure 1.4 illustrates.

In a top-down constraint-driven methodology (TDCD) [Cha1997]x, the top level is
designed first, which results in specifications for each of its sub-block. Then, each sub-
block is designed to meet those specifications, and results in specifications for sub-sub-
blocks. The process repeats until lowest-level blocks are designed, as Figure 1.5 illus-
trates. Finally, the circuit is verified in a bottom-up fashion. The challenge in TDCD is
how to model the feasibility regions going downwards. It could be with manually-created
models, bottom-up generation of models, use the Pareto-optimal surfaces of MOBU, or
otherwise [Gie2005, Gra2007].

Many variants of hierarchical design methodologies exist,as [Gie2005] surveys. With
the knowledge that an appropriate hierarchical methodology can be deployed, we can once
again focus on how to design at an arbitrary node within the hierarchy (Figure 1.3).

Figure 1.5: The top-down step of the top-down constraint-driven (TDCD)
hierarchical design methodology.

Figure 1.6:The final verification step step of the TDCD hierarchical design
methodology.
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1.2.4 Systematic Analog Design

The sizing step in Figure 1.3 can be handled in a methodical flow that emphasizes the
designer’s experience [Gie1990, Lak1994]. The approach isto write down equations, set
reasonable/safe values for some parameters, then systematically set constraint values until
all degrees of freedom are removed (therefore setting device sizes and biases).

The equations include first- and second-order transistor models, Kirchoff’s laws, and
equations that roughly estimate circuit performance as a function of transistor parameters.
Places to set reasonable values without overly constraining the design include: values for
gate overdrive voltagevod for each transistor, relative allocation of currents to each current
branch according to the overall current (power) budget, andsetting device lengths to the
process minimum.

Constraint-setting starts with the known specifications; for example if gain is specified
> 60dB then the “gain” variable is set to 60 dB, which reduces the degrees of freedom in
the overall set of equations. Goals to minimize / maximize are left until last. If just one
goal is left, the goal can be maximized analytically (assuming convex). If> 1 goal is left,
a manual tradeoff analysis can be performed. SPICE is used for verification of the design,
which we now discuss.

1.2.5 SPICE in the Design Flow

The SPICE circuit simulator was introduced the 1970s [Nag1973, Nag1975]. SPICE takes
in a “netlist” describing the design’s topology, device sizes, bias sources, and device mod-
els, and outputs a computational result according to the analysis type. Common analysis
types are dc, ac, and transient. Dc analysis reports the dc bias conditions of each de-
vice. Ac analysis reports the frequency behavior of the circuit according to small changes
in the signal. Transient analysis reports the dynamic, possibly nonlinear behavior over
time. The device models allow SPICE simulation to accurately capture the differences in
behavior from different circuit fabrication processes.

SPICE is crucial in the design flow for engineers to verify their sized topologies. It
also opened the opportunity for a new design style for sizing: an iterative loop in which
designers tweak device sizes then re-run SPICE to see the change in performance. Finally,
computers have become fast enough that automatic calls to SPICE from an automated
design engine, “in the loop”, is feasible.

SPICE has proven to be so important that development of improved SPICE simulators
continues to this day. Improvements can be in terms of (a) higher speed or greater capac-
ity, such as [Snps2008a, Cdn2008d, Men2008a]), or in terms of (b) enhanced functional-
ity such as RF/noise analyses [Snps2008b, Cdn2008d] or supporting behavioral models /
mixed-signal design [Cdn2008e].

1.2.6 Beyond SPICE: Other Industrial Analog CAD Tools

Other tools besides SPICE are key to analog design. Waveform-viewing tools such as
[Snps2008c] allow designers to visually examine SPICE outputs, i.e. the simulated dy-
namic behavior of circuits’ voltages and currents, or the results of sweeps over different
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parameter values. Schematic editors such as [Cdn2008f, Snps2008f, Men2008e] allow
designers to enter circuit topology and sizing informationin a visual, intuitive fashion;
with automatic translation to netlists to simulate the circuit in SPICE.

Layout editors such as [Cdn2008f, Snps2008e, Men2008f] allow engineers to man-
ually convert a “front-end” design (sized schematic or netlist) into a “back-end” design,
a layout. Layout-versus-schematic (LVS) tools like [Cdn2008h, Men2008c, Snps2008g]
allow the engineer to cross-reference the front-end designand back-end design to catch
discrepancies. Design rule check (DRC) tools like [Cdn2008h, Men2008b, Snps2008g]
report if a layout violates any foundry-defined layout constraints. Resistor-capacitor
extraction (RCX) tools like [Cdn2008j, Men2008d, Snps2008h] close the front-to-back
loop: they extract a netlist back from layout. They are useful because a pre-layout front
end design does not have accurate information about unwanted “parasitic” resistances,
capacitances, and inductances that occur naturally among wires, devices, and ground.

After layout, a designer can tune an RCX-extracted netlist to soften the negative per-
formance effects of parasitics. Some designers use schematic-driven layout (SDL) tools,
where the schematic and the layout are designed simultaneously. This is especially useful
when the relative effect of parasitics is large, such as in RFdesign, low-noise design, or
ultra deep submicron design.

Data about the semiconductor process that is relevant to design is stored in a process
design kit (PDK). A PDK includes the SPICE model files as well as the layout rules.
All these tools, plus PDKs, are typically organized into a “design environment” tool like
[Cdn2008g, Snps2008d, Men2008e], which facilitates switching among tools and sharing
data among tools. More recently, data-sharing has been simplified by industry-standard
databases like OpenAccess [Si22008].

1.2.7 Tool Categories and Design Automation

Over the years, these tools have gained broad usage in the designer community because
of their almost universally-accepted utility. They can be placed into the following cate-
gories:

• Analysis tools(e.g. SPICE, DRC, LVS, RCX)

• Insight tools(e.g. waveform viewer, schematic viewer)

• Design-altering tools(e.g. schematic editor, layout editor, SDL)

There is a fourth category.Design automationtools directly change a design to meet
design goals. Design automation tools can be further decomposed intofront-end design
automationtools (for automated topology selection, topology design,sizing), andback-
end design automationtools (for automated device generation, placement, and routing)
[Rut2002]. These tools are arguably the hardest to develop,yet have potentially high po-
tential payoff in terms of reduced time-to-market, lower power, lower area, higher yield,
and greater performance in general. Digital EDA tools have successfully deployed au-
tomation since the late 1980’s. Their success is best illustrated by the vendors’ revenues
[Edac2006].
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Because of the challenge and potential payoff, automated analog design tools have
attracted the bulk of analog CAD research [Gie2002a, Rut2007]. The popularity of de-
sign automation tools in the literature probably explains why the label “analog design
automation” (only fourth category) is sometimes used to describe all tools in “analog
computer-aided design” (all four tool categories).

1.2.8 Design Automation Tools: Adoption Criteria

Adoption of analog design automation tools has been varied.It is a function of how
much pain the designer / customer has with the status quo (i.e. if the problem matters),
how much improvement the design automation technology brings, and, importantly, how
designer-friendly the tool is. The tool’s “friendliness” does not only mean a good GUI
and low setup time. It also means that the tool acknowledges the designer’s creativity and
experience [Wil1991]. The tool should allow the designer toleverage those strengths, to
remove the tedious work, while explicitlynot removing the designer’s control.

The axes of problem pain, improvement to status quo, and designer-friendliness can
guide where certain design automation tool proposals have worked, and others have not.
For example, modern automated layout device-generation tools solve their target problem
in a fast and reliable fashion, automating a task that was considered tedious and unchal-
lenging. The same is true for point-to-point automated routers. Many designers (or layout
engineers) have actually beenwilling to defer all the layout work to automated tools,
but traditionally the tools have never solved the problem well enough: automatically-
generated layouts were often worse than hand-crafted layouts, or the time to set up the
tool was unacceptably long. Perhaps the most recent batch ofautomated layout tools will
finally meet this target.

1.2.9 Front-End Design Automation Tools in Industry

As for front-end design, there have been many failures and some mild successes, as re-
viewed in [Gie2002a, Rut2007, Mar2008]. Tools that did not use SPICE in the loop or
SPICE calibration were too inflexible, and research using them waned (e.g. [Har1992])1.
Topology selection tools have always had too much setup effort and covered too few topol-
ogy choices (e.g. [Koh1990]). In general, the “knowledge-based” research approaches of
the 1980s waned because of the painfully long setup times (weeks or more) which needed
repeating with each new process node.

Research proposals for open-ended structural synthesis tools (e.g. [Koza2003]) take
in possible components and automatically “invent” the connectivity and sizings to meet
the design goals. These tools fail the adoption criteria on multiple counts. First, exist-
ing technology is nowhere near solving the problem well enough because the tools are
too slow, and the non-standard results are not trustworthy.Also, “friendliness” gets a
zero because the tools aim to be “creative” in topology design which designers justifiably
perceive as a direct threat. We will discuss these tools morein chapter 5.

1One exception is the posynomial-template flow of Magma Design Automation [Mag2008], formerly
of Sabio Labs and Barcelona Design, based on [Her1998]. However, it remains unclear whether this will
become more widespread.
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Figure 1.7:Evolution of front-end analog design automation tools: current
state.

Figure 1.7 describes the evolution of front-end analog design automation tools which
have had some degree of adoption in industry, and promise to have further adoption.
The common threads are (a) SPICE-in-loop, and (b) for the sizing task. SPICE-in-loop
means that the tools can be applied to whatever circuits thatcan be simulated, which
enhances flexibility. The application to sizing is reasonable, as designers do not consider
the automation of sizing to be a major creative threat. A challenge is to make the tools fast
enough, and so the bulk of research in SPICE-in-the-loop sizers is on designing efficient
algorithms.

Of the industrial sizers, first were local optimizers, on nominal or process-voltage-
temperature (PVT) corners. They were packaged within simulators like EldoTM [Men2008g]
and HSPICETM [Snps2008a] from the late 1980s onwards. However, their payoff was of-
ten too small to justify the up-front setup effort needed.

The global nominal optimizers followed around 2000, including Analog Design Au-
tomation’s Creative GeniusTM (now Synopsys Circuit ExplorerTM [Snps2005]), and Ne-
olinear’s NeoCircuitTM (now Cadence Virtuoso NeoCircuitTM [Cdn2005b]). These had
better GUIs for shorter setup time, and had higher potentialpayoff because the global
exploration could avoid the need for initial sizings and circuit performance could be im-
proved more. However, one cannot underestimate how quicklyexperienced analog de-
signers can size circuits; so while there has been a degree ofadoption, demand has not
been strong.

We have already discussed the issue of process variations [Nas2001]. Analog design-
ers have actually been handling process variations in various ways for a long time. For
example, differential topologies are a direct response to avoid the effect of global pro-
cess variations. Local process variations cause mismatch between differential devices
that are intended to have symmetrical behavior. Mismatch has been a limiting factor in
many designs for a long time, but recently local process variation has become signifi-
cantly larger and it is getting worse, as Figure 1.1 showed. Accordingly, performance of
analog circuits is threatened. Analog designers have a choice: live with the performance
degradation, design more directly for mismatch, or increase area. Performance degrada-
tion is unacceptable when there are fixed specifications. Some designers do design for
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mismatch, e.g. with architectures that do compensation, orusing calibration. But many
analog designers do not want to spend their precious time fixing the mismatch nuisance,
so they simply make device areas larger. This of course recovers performance, but hurts
area and chip cost – sometimes significantly when mismatch ishigh. While excessive
mismatch is a nuisance for designers, it is anopportunityfor analog CAD tool develop-
ers: here is a problem that designers do not want to worry about (or have time to worry
about!), and if a tool allows them to bypass those concerns, they might adopt it.

Accordingly, as shown in Figure 1.7, there are recent commercial offerings for local
yield optimization [Mun2008, Ext2008].

For a baseline of tool inputs, outputs, setup times, runtimes, computational require-
ments that are acceptable by designers, these industrial sizers can serve as a useful refer-
ence.

1.2.10 Motivation for Knowledge Extraction

While adoption of automated design tools is slowly increasing over the years, the vast
majority of designers continue to do front-end design manually, to the chagrin of hopeful
CAD researchers and managers. If research in automated design is to have a larger impact,
the tools need to be adopted more broadly.

Figure 1.8:Unforeseen issues mean that tools are perenially behind theissues
that designers need to solve (from [Mcc2006b]).

So, it is important to understand why manual design persists. Key earlier impediments
to adoption were the long setup times, hard-to-use GUIs, andlong turnaround times for
getting results. But with recent tools, those issues have been at least partially mitigated.
However, a more fundamental issue remains: risk exposure. When designers use auto-
mated design tools, they risk losing control and insight into their designs. If the automated
tool cannot solve the problem, the designer needs to have theinsight to know how to fix
it. Key tasks do not even have industrial tools yet, such as designing or selecting topolo-
gies. And even if every task had an automation alternative, some issues are not noticed
until one has to design around them, such as with the recent issue of well proximity ef-
fects [Dre2006]. Therefore, there are always gaps between what tools can do and what
is needed, as Figure 1.8 shows. The key way for designers to manage this persistent tool
shortcoming is to maintaininsight.

The next question is: how well can designers maintain their insights? The challenge
is that the design problem keeps changing: every 18 months there is a new process node
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Figure 1.9:Current mirror mismatch in a 0.13µm technology, as a function
of length and width (from [Dre2003]).

[Itrs2007], where device and therefore circuit behavior isdifferent. Or, there are demands
for new types of circuit functionality in which past insights can help little. Robustness
issues in particular can kill designer insights. For example, the traditional rule of thumb
for mismatch is that mismatch is proportional to 1/WL, so increasing W or L will give
proportionate decrease in mismatch. However, the relationship is more complex than that.
Figure 1.9 shows a current mirror and its associated mappingfrom W and L to mismatch.
For a large W and L mismatch is low. But note how decreasing W toa tiny value will
barely hurt mismatch; and decreasing L only starts to have aneffect when the smallest
values are hit. Once in the region of small L and very small W, then the mismatch response
takes off dramatically. So, the traditional mismatch-WL insight is less valid for modern
processes.

Figure 1.10:There is an “insight gap” between the time when a robustness
issue becomes significant, and when the necessary insights to resolve it are
developed (from [Mcc2006b]).

The general trend is shown in Figure 1.10: the number of robustness-related issues is
increasing, and keeping insights up to date is an ever-increasing challenge.

CAD tools can help. Conceptually simple tools to visualize raw data, such as wave-
form viewers and schematic viewers, are a start. However, wecan go much further: we
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Figure 1.11:The aim of knowledge extraction is to accelerate insight in order
to close the “insight gap” (from [Mcc2006b]).

can use automation to extract knowledge from analog circuitdata, such as SPICE sim-
ulation databases. Suchknowledge extractiontools can help to catalyze the designer’s
insight-gathering process, leaving him better equipped tosolve unforeseen issues. As
Figure 1.11 shows, accelerated insight via knowledge extraction can close the insight
gap.

1.2.11 Contributions to Analog CAD

Figure 1.7 outlined the evolution of the first three front-end design automation tools: lo-
cal sizing, global sizing, and local variation-aware sizing (local yield optimization). This
thesis proposes and implements four new steps in the evolution of front-end analog design
automation, as illustrated in Figure 1.12. The previous three and four new steps collec-
tively cover a range of use cases. Each case is defined by the task’s inputs and outputs,
and the scope and difficulty of the task. In each case there is not only an optimization
component, but also aknowledge extractioncomponent. Knowledge extraction helps the
designer tobridge manual techniques with automation-aided techniques. Furthermore, it
helps him to build insight and maintain control over increasingly challenging designs.

A first future step of the roadmap is “Globally Reliable Variation-Aware Sizing”. The
automated sizing component, SANGRIA, addresses the cases of: (a) when an initial sizing
may be in a local optima, (b) there is no decent initial sizingavailable, and (c) when the
best possible yield or performance margin is needed / desired. The knowledge extraction
tool, CAFFEINE, generateswhiteboxmodels which map design variables to performance
or Cpk [Nist2006], with near-SPICE accuracy.

A second future step in the roadmap is “Trustworthy Structural Synthesis,” using a
tool called MOJITO. This approach is to do topology selection across a set ofthousands
of possible topologies – a set so massive that the label “structural synthesis” is appropri-
ate. These topologies remaintrustworthyso that designers can feel safe when committing
them to silicon. The massive topology count, trustworthiness, and computational fea-
sibility are accomplished by the use of pre-specified hierarchical analog circuit building
blocks. Because the blocks are structural-only, they only need to be specified once ever (at
relatively low cost), and are portable across process nodes. When a multi-objective algo-
rithm searches through this library, it generates a database of sized topologies that collec-
tively approximate the Pareto-optimal tradeoff among performances. Once generated for



14 Introduction

Figure 1.12:Proposed roadmap in evolution of front-end analog design au-
tomation tools (and thesis contributions).

a given process, the database supports an immediate-turnaround “specifications-in, sized-
topology out” flow. This is particularly useful for jellybean IP – simple, non-aggressive,
off-the-shelf designs where just a solution is needed, nothing fancy. This tool also sup-
ports a flow where the designer wants to try out some new building block ideas within
the context of a larger circuit (or one of many larger circuits). The insight portion of the
“Trustworthy Structural Synthesis” task the opportunities opened up by this new type of
database, which relates topologies, sizings, and performances. It extracts (a) a decision
tree for navigating from specs to topology, (b) global nonlinear sensitivities on topology
and sizing variables, and (c) analytical performance-tradeoff models across the whole set
of topologies.

The next future step in the roadmap is “Variation-Aware, Trustworthy Structural Syn-
thesis.” The use cases from Trustworthy Structural Synthesis carry over, but with an addi-
tional dimension of havingyield as an objective. MOJITO-R and the revised knowledge
extraction approaches perform accordingly.

The final step in the proposed roadmap is “Novel, Variation-Aware, Trustworthy Struc-
tural Synthesis.” MOJITO-N starts with trustworthy structural synthesis, but adds novelty
in a trackable fashion. It is useful when a designer / team have exhausted topology ideas,
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are willing to take a chance, and are open to topology suggestions from a computer.
MOJITO-N is also potentially useful for an young, ambitioussemiconductor company
(or grad student) that is willing to take some risks to try potentially odd new topologies
in order to build up IP or new circuit functionality. ISCLEs takes a different approach: it
uses recent advances from machine learning in a novel circuit design technique where the
circuits actuallyexploitvariation. It has promise to return circuits with area that shrinks
as minimum device sizes shrink (i.e. area that scales with Moore’s Law).

1.3 Background and Contributions to AI

Whereas the previous section described the thesis’ background and the thesis’ contri-
butions from the perspective of analog CAD, this section describes the background and
contributions from the perspective of artificial intelligence (AI).

1.3.1 Challenges in AI

Sometimes an approach to solve a problem can be overly restrictive, limiting its ability to
generalize to other domains. the idea of usingcomputer programsto generalize from
previous approaches. For example, Kolmogorov proposed to use computer programs
as a general way to measure complexity, with the notion of “algorithmic complexity”
[Cov2007].

Closer to our interests here, Arthur Samuel proposed using computer programs as a
way to describe the goals of AI: “How can computers learn to solve problems without
being explicitly programmed? In other words, how can computers be made to do what
is needed to be done, without being told exactly how to do it?”. Later, Samuel re-posed
these questions, giving a criterion for success: “The aim [is] ... to get machines to exhibit
behavior, which if done by humans, would be assumed to involve the use of intelligence.”

John Koza used these aims as a basis for his work on genetic programming (GP)
[Koza1992, Koza2004c]: “Genetic programming (GP) is an evolutionary computation
(EC) technique that automatically solves problems withoutrequiring the user to know
or specify the form or structure of the solution in advance. At the most abstract level
GP is a systematic, domain-independent method for getting computers to solve problems
automatically starting from a high-level statement of whatneeds to be done.” [Poli2008].

Unlike traditional optimization programs which traverse avector-valued search space,
GP traverses a space ofcomputer programsor structures (e.g. trees, graphs, etc). Thus,
GP is perhaps the most generalized approach to AI. It is certainly very powerful: even
in his original 1992 book, John Koza systematically went throughdozensof different AI
sub-problems, and solved each with GP [Koza1992] with smallsetup effort and virtually
no hints on “how” to solve the problem.

1.3.2 GP and Complex Design

GP has emerged as a vibrant research field and many researchers have enjoyed signifi-
cant success, especially on problems that can be posed asstructural synthesisproblems.
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For example, [Lohn2005] evolved an antenna design for NASA which was successfully
deployed in space, [Spe2004] evolved novel quantum circuitdesigns, and [Kor2007]
evolved stock market models which are in daily use for trading. These comprise a few of
the 60human-competitiveresults that genetic programming has achieved since the early
2000s ([Poli2008], ch. 12).

Despite this success, there is still a broad range of structural synthesis problems that
GP has not solved successfully enough for widespread industrial use. This is illustrated
by what’s still done almost wholly manually: design of automobiles, engines, airports,
music of appreciable complexity, software with even a modest degree of complexity, and
trustworthy analog circuit topologies.

1.3.3 Building Block Reuse in GP

GP researchers have long held the view thatreusemight be important in approaching
challenging problems: “Reuse can accelerate automated learning by avoiding ’reinventing
the wheel’ on each occasion requiring a particular sequenceof already-learned steps. We
believe that reuse is the cornerstone of meaningful machineintelligence” [Koza2004a].
There have been a variety of GP approaches for achieving reuse, which we now briefly
review.

Figure 1.13:GP reuse: “vanilla” GP implicitly has flat BBs, and no special
BB-handling steps.

First is “plain vanilla” GP; i.e. GP systems based on [Koza1992]. In vanilla GP,
the leaf nodes in the tree search (“terminals”) are, in fact,building blocks (BBs). They
are field-specific, pre-specified by the user, and are flat (i.e. there is no pre-specified
hierarchical relationship). GP “functions” are field-specific BBs too, but they too are flat
since they do not define a hierarchy of connections. The flow isshown in Figure 1.13.
The inputs are “field-specific, predefined, flat BBs” (terminals and functions), objectives
and constraints, and a test harness used in conjunction withthe evaluator to measure
performance of a given design candidate (individual). GP search uses feedback from
the evaluator to evolve its design candidates, and eventually returns the resulting design
candidate(s).

Some GP approaches do automatic discovery of hierarchical BBs prior to the main
GP search, as shown in Figure 1.14. In the first step of the flow,some routine uses
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Figure 1.14:GP reuse: seeding GP witha priori auto-discovered BBs.

lightweight heuristics to automatically extract potentially-useful BBs. For example, in
[Kor2006] which does symbolic regression, the first step is to evolve functions with just
1 input variable at a time, and save the best results as BBs. In[Au2003], the authors
enumerate through all combinations of tiny sub-functions and keep the most promising
ones as BBs. “Cultural algorithms” [Rey2008] automatically discover decision trees in
this first step. Once the BBs are discovered, they are input tothe GP system.

Figure 1.15:GP reuse: automatically discover and re-use hierarchical BBs
during the GP run.

Figure 1.15 shows a flow where hierarchical BBs are discovered and used within GP
search, but not output. This has been a much-explored research theme within GP, with the
main aim of speeding up GP search. Approaches include: automatically defined functions
(ADFs) [Koza1994], automatically defined macros (ADMs) [Spe1995], generative repre-
sentations such as GENRE [Hor2003], and stack-based GP likePush [Spe2005]. Several
of these approaches illustrated orders-of-magnitude speedup and/or improvement in final
objective function value.

Of course, if hierarchical BBs are discovered during a run, it is conceivable that they
might be helpful to give future runs a head start, i.e. closing the loop by using past
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Figure 1.16: GP reuse: closing the loop with Run Transferable Libraries
(RTLs) of BBs.

problem-solving knowledge to bias future GP searches. Thisidea was demonstrated with
the approach of Run-Transferable Libaries (RTLs) [Ryan2005], as shown in Figure 1.16.
After 50 iterative GP runs, the effort needed to solve a problem would be reduced by
2-3 orders of magnitude. The libraries demonstrated an ability to generalize as well.
Using a library from simpler problems as input, similar larger problems were attacked
and demonstrated similar performance improvements.

1.3.4 Contribution to AI: Complex Design

Despite this ample research into reuse within GP, the designof complex structuresfrom
automobiles to trustworthy analog circuit topologies remains elusive. Scientific discovery
[Kei2001], in which the aim is to identify equations to describe behavior of unknown sys-
tems, has a similar “complexity wall.” Upon closer inspection, we see that these problems
are different from the GP successes in several key ways:

• Designs have >5-10 sub-components (e.g. 20, 100, 500).

• The designs may have modularity, regularity, and symmetry,but they also have sub-
stantial heterogeneity.

• Crucially, most of the design’s components, sub-components, sub-sub-components,
etc have been long established in the design’s respective field.

For example, in automotive design there are nuts, bolts, wheels, rubber, tires, axles, cylin-
ders, pistons, camshafts, engines, chassis, handles, windows, doors, steering wheel, seats,
hood, body, and so on all leading up to the top level of a car. Inbiology / bioinformatics
there is DNA, nuclei, mitochondria, ribosomes, cells, tissues, organs, and so on all leading
up to an animal. In analog circuit design there are resistors, capacitors, transistors, current
mirrors, differential pairs, cascode stages, input stages, output stages, loads, and so on all
leading up to a top-level circuit such as an operational amplifier or data converter.

In fact, it is this collection ofhierarchically-composedBBs which partiallydefines
each respective field. First, it is standard knowledge and terminology shared by prac-
titioners in the field. Second,development of new BBs, improvements on existing BB
functionality, and gaining further understanding of existing BBs, are all consideredcon-
tributionsto each respective field.
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Figure 1.17:GP reuse: enabling complex design via field-specific, hierarchi-
cal, pre-specified BBs.

We have seen that GP research acknowledges the importance ofreuse, and has pro-
posed several reuse-oriented flows. Yet when it comes to applying GP to a particular
problem domain, the field’s standard, shared domain-specific knowledge is beingignored.
The result is that GP runs often produce odd-looking designswith unrecognizable sub-
blocks, using an excessive amount of computer effort. We argue that this knowledge does
not need to be left on the table:

If we use domain knowledgeaggressively spending the up-front effort to specify the
field’s known structural building blocks, then we can synthesize complex designs
that are trustworthy by construction, using dramatically lower computational effort.

The proposed flow is shown in Figure 1.18. Note how the human-input BBs have
the required characteristics of:field-specific, pre-defined, andhierarchical. This thesis
will describe in detail how such a flow is applied to analog topology synthesis in the
MOJITO tool. Systems of even greater complexity are possible by combining MOJITO
with hierarchical design methodologies (section 1.2.3).

Figure 1.18:GP reuse: closing the complex design loop via knowledge extrac-
tion to give the user new insights for improving the field-specific, hierarchical,
pre-specified BB library.
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Finally, we ask how we mightclose the loop for field-specific, hierarchical, pre-
specified BBs. Since BBs have to be specified by the user, this means that the user needs
to be in the feedback loop. Therefore, the user must gaininsightinto therelation between
structure and performance. This thesis emphasizes the use ofknowledge extractionfrom
GP run results. Knowledge extraction returns information in forms that are immediately
recognizable by the user, and are transferable to other problems. This adds to the user’s
knowledge of the field, and closes the loop because it is guidance for trying new BBs.
Figure 1.18 illustrates this. This flow can be useful even forthe automation-averse de-
signers: the designers who embrace automation can perform the synthesis and extraction,
and provide or publish the outputs for their automation-averse colleagues.

1.3.5 Other Contributions to AI

The previous section discussed how this thesis contributesto the AI problems of (a) struc-
tural synthesis of complex systems, and (b) how users can useknowledge extraction from
synthesis runs to make progress in their field. Besides that,this thesis makes two other
contributions of interest to AI: (c) SANGRIA, an efficient approach to global statisti-
cal optimization (stochastic programming) which gracefully handles high-dimensionality
search spaces, and (d) CAFFEINE, an approach for whitebox regression that gives human-
interpretable models and outperforms several other state-of-the-art regression algorithms.

1.4 Analog CAD Is a Fruitfly for AI

This chapter has discussed how the semiconductor industry is important for the progress
of IT, and how variation-aware analog design is important for the progress of semicon-
ductors. It has also been discussed how AI is also important for the progress of IT, and
how GP is important for the progress of AI. In fact, analog CADand AI are related more
directly: if a fruitfly is considered to be a convenient, representative test problem playing
surrogate for a grander goal, then we believe that analog CADmakes an excellent fruitfly
for AI. This is because:

• Analog circuit design has current and future industrial relevance, being a field within
the massive semiconductor industry and having a continuousstream of design chal-
lenges due to changing semiconductor processes [Itrs2007]and performance require-
ments.

• Candidate designs can be evaluated (to an extent) using off-the-shelf circuit simula-
tors.

• There can be multiple constraints and multiple objectives.

• There are robustness issues such as process variations, environmental variations, and
there is an industrial incentive to address them.

• Analog circuit topology design is considered acreativeendeavor [Wil1991]: design-
ers refer to themselves as "artists", and new topologies areoften published in the
scientific literature and/or patented.
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The combination of these characteristics makes analog circuit design a relevant, challeng-
ing application domain for testing AI approaches in general. This is especially true when
simultaneously considering the issues of variation-awaredesign, designer-trustworthy re-
sults, and aiding the creative design process. Evenven subsets of those challenges are
interesting because of their notable industrial relevance.

Recall the analog design flow of Figure 1.3. This can actuallybe generalized to a
broad set of problem domains, as shown in Figure 1.19. Designing an analog topology
generalizes to designing a structure. Sizing and biasing generalizes to designing param-
eters. Doing layout translates to specifying the implementation, and circuit fabrication
generalizes to manufacturing. Just like in analog circuit design, errors can occur in the
flow, at which point backtracking is needed.

Figure 1.19: Generalization of circuit design flow of figure1.3 to include
many AI / engineering design domains.

1.5 Conclusion

This introductory chapter has discussed the importance of information technology (IT),
the role that variation-aware analog CAD and GP can play for IT, and has discussed how
this thesis contributes to each. The rest of this thesis willelaborate in several ways.

This thesis is broken into three groups of chapters which cover increasing problem
scope. Chapters 2-4 coverrobust sizing & insight: background, a proposed globally-
reliable yield optimizer (SANGRIA), and knowledge extraction for robust sizing (CAFFEINE).
The second group, chapters 5-8, coversstructural synthesis & insight: background, a
proposed trustworthy synthesis search space and algorithm(MOJITO), and knowledge
extraction for the topology-performance-sizings relationship. The third group, chapters
9-10, covernovel, robust structural synthesis extensions & insight: robust structural
synthesis (MOJITO-R), knowledge extraction from MOJITO-Rresults, novel structural
synthesis (MOJITO-N), and finally novel, robust structuralsynthesis (ISCLEs) which is
also a promising approach for analog designs to scale with Moore’s Law .
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Chapter 2

Variation-Aware Sizing: Background

A small leak will sink a great ship.
–Benjamin Franklin

2.1 Introduction and Problem Formulation

2.1.1 Introduction

Chapter 1 discussed how the progress of Moore’s Law leads to increased process varia-
tion, which leads to significantly reduced circuit yields [Itrs2007]. Yield optimization /
design centering can play a useful role within a statisticaldesign toolset, to speed a de-
signer’s overall robust-design effort. Accordingly, there has been much research effort
aimed at building analog circuit yield optimizers. This chapter examines the problem,
and reviews past approaches.

This chapter is organized as follows. Section 2.1.2 gives the problem formulation,
followed by industrial-level specifications in section 2.1.3. Section 2.2 reviews past ap-
proaches, starting with a baseline direct Monte Carlo and proceeding through several
more advanced algorithms. Section 2.3 concludes.

2.1.2 Problem Formulation

The aim of yield/robustness optimization is to find a circuitdesignd∗ that meets perfor-
mance requirements, despite manufacturing and environmental variations. One is given a
design spaceD, process parameter spaceS with distributionpdf(s), environmental space
Θ and measurable performances with associated specificationsλ.

We now elaborate. The aim is to find a vector-valued design point d∗ that maximizes
the objectivef , which here is a statistical robustness estimator:

d∗ = argmax
d∈D

{f(d)} (2.1)

where design spaceD = ⊗Nd

i=1{Di}. Each variable’s design spaceDi can be continuous-
valued or discrete-valued, i.e.Di,cont = {ℜ1|di,min ≤ di ≤ di,max} orDi,disc = {di,1, di,2, . . . }.
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Design variables include transistor widthsW , transistor lengthsL, resistancesR, capac-
itancesC, biases, and multipliersM1. The range for each variable is determined by
technology process constraints and the user’s setup.

The objectivef is typically yield, Y , the percentage of manufactured circuits that
meet all performance constraints across all environmentalconditions. Specifically,Y at
design pointd is the expected proportionE of feasible circuitsδ across the distribution
of manufacturing variationspdf(s):

Y (d) = E{δ(d, s)|pdf(s)} =

∫

s∈S

Ng∏

i=1

δi(d, s) ∗ pdf(s)ds (2.2)

where possible manufacturing variationsS = ℜNs include variations in oxide thickness
tox, substrate doping concentrationNsub, etc. These can be on a per-device level (local),
and / or across the circuit or wafer (global). For an accuratemodel, both local and global
variations must be modeled. Section 5.5.3.2 describes manufacturing variations further.s
describes the variations in a single manufactured design, i.e. “process corner”. Therefore
the tuple{d, s} is an instance of a manufactured design.

δi is the feasibility of instance{d, s} at constrainti. It has a value 1 if feasible and 0
if infeasible:

δi(d, s) = I(gwc,i(d, s) ≤ 0) (2.3)

whereI(condition) is an indicator function which 1 ifcondition is True, and 0 other-
wise. The quantitygwc,i is the worst-case constraint value across possible environmental
conditionsΘ:

gwc,i(d, s) = min
θ∈Θ

{gi(d, s, θ)} (2.4)

whereΘ = {ℜNθ |θj,min ≤ θj ≤ θj,max; j = 1..Nθ}. Environmental variables include
temperatureT , power supply voltageVdd, and load resistanceRload. θ describes a partic-
ular set of environmental conditions, i.e. “environmentalcorner”.

For a wholistic view of the yield optimization problem, we merge equations (2.1) to
(2.4):

d∗ = argmax
d∈D

{∫

s∈S

Ng∏

i=1

I(min
θ∈Θ

{gi(d, s, θ)} ≤ 0) ∗ pdf(s)ds

}
(2.5)

Note how this is a min-max optimization formulation, where the outer objective is a
stochastic quantity.

Each constraintgi corresponds to a performance specificationλi which has an aim
and a threshold, and can be directly translated into an inequality constraint. For example,
λ1 = {power ≤ (1e − 3)W} 7→ {g1 ≤ 0; g1 = power − (1e − 3)}, andλ2 = {gain ≥
60dB} 7→ {g2 ≤ 0; g2 = −gain+ 60}. λ = {λ1, λ2, ..., λNg

}.

1These are variables at cell level in a sizing-driven variable formulation. Variables will be different at
system level, or another formulation such as operating-point driven in section 6.4.
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Performances can be measured by industry-standard SPICE-style circuit simulation,
equations, or other means. SPICE simulates a text-based “netlist”, which can be gen-
erated from a “testbench”, design, process point, and environmental point. A testbench
ξ specifies how to extract≥ 1 performance measures at a given circuit design, process
point, and environmental point. It includes current / voltage generator circuitry as stimuli
into the design, load circuitry,≥ 1 analysis instructions (e.g. ac, dc, transient with asso-
ciated parameters) which return scalars or waveforms, and “.measure” statements which
extract scalar performance values from the waveforms and other scalars. Testbenches are
typically specified by the tool provider’s “template” testbenches or the designer. All test-
benches taken together areξ = {ξ1, ξ2, . . . , ξj, . . . , ξNξ

}, and measure all performances
λ.

The environental space is actually testbench-dependent:Θj = F (ξj). For exam-
ple, some testbenches may have loads that other testbenchesdo not have. Each test-
benchξj often has a representative set of environmental cornersΘ̂j ≈ Θ(ξj) where
Θ̂j = {θj,k}, k = 1..Nc(j). Θ̂ is usually seta priori, either by the designer (typical)
or via computation.

Each testbenchξj measures a subset of all circuit performances:λj = λ(ξj) =
{λj,1, λj,2, . . . } ∈ λ. On process pointi, testbenchj, with the testbench’skth environ-
mental corner andlth constraint, we have scalar performanceλi,j,k,l and corresponding
scalar constraintgi,j,k,l.

“Process capability” (Cpk) [Nist2006] is alternative to yield as a statistical robustness
estimator to optimize (objectivef ). Cpk simultaneously captures the worst performance’s
spread and margin above/below its specification. Therefore, Unlike yield,Cpk can distin-
guish between two designs having yield of 0%, or between two designs having (estimated)
yield of 100%.

Cpk is defined as the worst caseCpi across all constraints:

Cpk(d) = min
i∈1,2,...,Ng

{Cpi(d)} (2.6)

whereCpi is:

Cpi(d) = (E(gi,wc(d)) − 0)/(3 ∗ σ(gi,wc(d)) (2.7)

whereE is the expected value ofgi,wc acrosss, andσ is the corresponding standard
deviation. The numerator captures how the design compares to the specification (= 0
here), on average; and the denominator captures spread.

2.1.3 Yield Optimization Tool Requirements

To be appropriate for industrial use, a yield optimizer mustbe accurate, efficient, scalable,
flexible, and globally reliable. We now elaborate.

Accuracy: For dependable results, the optimizer must not make any oversimplifying
assumptions that can lead to large error margins. That is, the model of the yield problem
must be correct:
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• Results (evaluation of objective) must be SPICE-accurate.

• Uses an accurate statistical modeling approach, such as [Dre1999], even if that means
having10x more process variables.

• Handles environmental variations (changes in temperature, load, etc). If treated as
corners, there are typicallyNc(j) = 5− 10 corners per testbenchξj, though there can
be 50 or more.

• Given that circuit performancesλ are random variables themselves, the shape of
pdf(λ) is unknown. We cannot assume a Gaussian distribution, or make assumptions
about the correlation structure among performance variablesλi.

• The objective functionf(d) can be nonconvex or discontinuous. There is no free
access to derivatives.

• We cannot make assumptions about the nature of the feasibility region{d|δ(d, s) >
0}. For example, it may be disjoint.

Efficiency: The optimizer must run fast enough to be useful in an industrial context.

• Return good results overnight, or over a weekend for biggestproblems. And of course,
faster is even better.

• Exploits parallel computing if available.

• Can refine results; i.e. can make small incremental improvements tof(d) via typically
small changes tod.

Scalability: The optimizer must be effective for circuits that have onlya few devices, up
to circuits with hundreds of devices. It should also allow extension to support system-
level design, in the context of a hierarchical design methodology, to extend to thousands
of devices or more.

• It must handleNd = 10 − 200 or more design variables

• It must handleNg = 5 − 50 general performance constraints, plus up to hundreds of
device operating constraints; thereforeNg can be≥ 100.

Flexibility :

• Design variables may be any combination of continuous and discrete / integer / binary

• The optimizer must readily adapt to new types of circuits, e.g. going from opamps to
bias generators to system-level designs.

• The optimizer must painlessly adapt to changes in SPICE models, including statistical
models. Therefore, as models improve the accuracy of the results can improve without
significant new setup time each time. This also allows for easy process migration.

• Continues to do meaningful optimization once yield of≈ 100% is reached

Global / Reliability :
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• The user should not need to worry about whether or not the optimizer needs “restart-
ing”.

• The optimizer should not get stuck in local optima.

• The user should not need to supply a starting point. However,if the user does supply
one, the optimizer can use it as a hint.

• If the supplied initial design point has yield of 0%, the toolwill still optimize.

• In a given run, the optimizer will eventually converge to thebest solution1. (And,
practically speaking, in less than infinite time.)

2.1.3.1 Local vs. Global Optimization

This section highlights the importance ofglobalstatistical optimization.
Many approaches assume a flow of (a) get initial sizing by searching across global

design space, evaluating on nominal, then (b) starting at aninitial sizing, perform yield
optimization with a local optimizer, i.e. “yield tuning”.

Unfortunately, this approach misses out on yield / performance opportunities. Figure
2.1 shows a simple yield optimization problem setup, where the nominal performance is a
multimodal function of W1. Process variations are modeled by simply adding a Gaussian-
distributed random variable to W1, leading to a mapping of W1to yield as shown in Figure
2.2 bottom.

Figure 2.1:A simple yield optimization problem setup.

If a local yield optimizer is given the nominal optimum pointas the starting point, it
will return that as the optimum yield point as well, rather than the true optimum point
which is at a very different value of W1. The problem can actually be far worse, when
design variables and process variables do not have such a simple additive relationship
towards performance.

1With a caveat: there is still a chance that “eventually” takes an impractically long time.
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Figure 2.2:Multimodality in performance space can lead to multimodality in
yield space and / or disjoint feasible regions. In this conceptual example, the
global nominal optimum will lead to a local optimum for yield.

This example also illustrates the sensitivity of the problem to the actual value of the
performance specification: at some values the problem is unimodal, and at other values
the problem is multimodal. In practice it will be very difficult to determine beforehand
what the nature of the search space is like.

In sum, constraint sensitivity makes it surprisingly easy to create local optima in a
yield optimization problem. More importantly, we saw that aglobal nominal optimum
could readily lead to alocal yield optimum. If we do not want to compromise optimality,
i.e. we want to hit theglobal yield optimum, then the search algorithm cannot merely do
global nominal followed by local yield optimization.

2.2 Review of Yield Optimization Approaches

2.2.1 Direct Monte Carlo on SPICE

This can be considered a “baseline” approach, because MonteCarlo (MC) sampling is
understood by both designers and CAD engineers, and typicalcommercial optimizers use
SPICE in the loop [Cdn2005b, Snps2005]. The general idea is to to evaluate a candidate
design pointd by doing a full MC sampling onpdf(s), invoke SPICE simulation on each
s (and environmental corner), compute performances from thesimulation results, then to
estimate yield ̂YMC,sim.

An outer-loop yield optimization algorithm explores the design spaceD:
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d∗ = argmax
d∈D

( ̂YMC,sim(d)) (2.8)

where ̂YMC,sim is estimated with MC sampling and simulation.
In MC sampling,NMC process pointsi are drawn from the process distributionsi ∼

pdf(s). Simulation is done at design pointd, for each process pointsi, for each testbench
ξj, for each environmental pointθj,k, giving performance vectorsλi,j,k and correspond-
ing constraint-value vectorsgi,j,k.

From the simulation data, ̂YMC,sim is the average estimated feasibilityδ̂i across sam-
ples:

̂YMC,sim(d) =
1

NMC
∗

NMC∑

i=1

δ̂i (2.9)

whereδ̂i is the feasibility of samplesi. It is computed across testbenches{ξj}∀j, j =
1..Nξ:

δ̂i = δ̂(d, si) =

Nξ∏

k=1

δ̂i,j (2.10)

whereδ̂i,j is the feasibility of samplesi on testbenchξj. It is computed acrossξj ’s envi-
ronmental corners and constraints:

δ̂i,j = δ̂(d, si, ξj) =

Ng(j)∏

l=1

I(min
k

{gi,j,k,l} ≤ 0) (2.11)

Let us examine a typical runtime for direct MC on SPICE:

• Assume that simulation time takes 1 minute for one random instance of one circuit on
all testbenches at one environmental corner.

• Assume that on average, there areNc = 8 environmental corners per testbench.

• There areNMC = 50 samples of process points.

• There are 5 simulators, each running on a different CPU.

• Therefore, the total simulation time to evaluate 1 design = (1 minute) * 8 * 50 / 5 =
80 minutes.

• It is typical for a relatively well-performing optimization algorithm to explore 1,000 -
10,000 or more designs. Let us say it examines 1,000 designs.

• Then, if we apply direct MC sampling, total optimization time is (80 min / design *
1,000 designs) = 80,000 min = 1,333 h = 55 days.

The advantage of direct MC on SPICE is simplicity and accuracy of results. The major
disadvantage is runtime, which makes the approach infeasible to use in practice. Another
disadvantage is the inability to refine results because of the limited number of samples
possible.
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There are really two versions of direct MC on SPICE, which differ with respect to
whether blocking is used. In the blocking version, the 30-50process points are only
drawn once. After that, just these process points are used for the whole run. The non-
blocking version draws new process points for each new design candidate. The advantage
of the blocking version is that there is a better chance to refine designs because there
is no noise between design candidates’ objective function values. Also, if the mapping
from {d, θ, s} to performance is differentiable, then the statistical mapping, fromd to the
statistical estimatorf , remains differentiable. The disadvantage is that the finaldesign
getstunedto those 30-50 points, such that the yield estimate on them could be overly
optimistic. The non-blocking version has opposite virtues: the yield estimate stays unbi-
ased, but it is difficult to refine design candidates because the noise caused by different
process points overwhelms neighbors’ differences in objective function values – it breaks
differentiability.

2.2.2 Direct Monte Carlo on Symbolic Models

One might consider direct MC if something faster than SPICE is used to evaluate circuit
performance. In the AMGIE system [Plas2002] for example, fast-evaluating symbolic
expressions were used in combination with direct MC sampling to directly optimize for
the symbolic-model estimate of yield̂YMC,sym:

d∗ = argmax
d∈D

( ̂YMC,sym(d)) (2.12)

Because circuit evaluation is cheap,NMC >> 50 process points can be drawn. The
non-blocking (unbiased) choice of points can be used, because the noise is reduced by
such a largeNMC .

The runtime for direct MC on symbolic models is reasonable. Unfortunately, symbolic
models are quite inaccurate which means that the final designis probably not optimal. Ex-
tracting the symbolic model is not always easy [Gie2002b]. Also, the final yield estimate
is not accurate, though that can be mitigated by doing a post-optimization MC sampling
on SPICE.

2.2.3 Direct Monte Carlo on Precomputed Regression Models

In this approach, the first step is to compute performance regression models using SPICE
simulation data. In the second step, direct MC on the models is performed, to returnd∗:

d∗ = argmax
d∈D

( ̂YMC,reg(d)) (2.13)

In detail, the flow is:

1. Do space-filling sampling across the design, process, andenvironmental variable
spacexi ∈ (D ∪ S ∪ Θ).

2. Do SPICE simulation at each sample pointxi to measure performancesλi.
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3. For each performance, build a regression modelψi mapping the{d.s, θ} variables
to performance value:̂λi = ψi(x).

4. Optimize for yield using the models{ψi}∀i as “cheap” statistical simulators.

5. Validate the final designd∗ with MC sampling on SPICE.

Space-filling sampling can be done by uniform sampling, Latin Hypercube Sampling
[Mck2000], or another Design of Experiments (DOE) [Mon2004] approach.

The flow owes its origins to the DOE literature, in which it is called the Response Sur-
face Method (RSM) and assumes use of polynomials for the regression models [Mon2004].
Based on the analog CAD literature on building regressors with inputd, one can imag-
ine variants using linear models [Gra2007, Mcc2005c, Li2008c], posynomials [Dae2002,
Dae2003, Dae2005, Agg2007], polynomials [Li2007b, Mcc2005c], splines [Wol2004,
Mcc2005c], neural networks [Van2001, Wol2003, Mcc2005c],boosted neural networks
[Liu2002, Mcc2005c], support vector machines [Ber2003, Kie2004, Ding2005, Ding2005b,
Mcc2005c], latent variable regression [Sin2007, Li2008b], kriging [Mcc2005c, Yu2007b],
and CAFFEINE template-free functions [Mcc2005a][chapter4]. One could even com-
bine regression models of performance with classification models of feasibility, as in
[Ding2005b, Dae2005].

The major challenge of this approach is the large number of input variables,n =
Ns + Nd + Nθ, which the regressor needs to handle. Accurate models of process varia-
tions can need 8 or more random variables per device [Dre1999]. Thus, in a 100-device
circuit, there can beNs = 8 ∗ 100 = 800 process variables plus theNd ≈ 100 design
variables and a few environmental variables; i.e.n ≈ 1000 input variables. This poses a
giant problem for scaling in most regression approaches. One recent quadratic-modeling
approach [Li2007b] has better scaling: it can build a model in O(k ∗ n) time wherek is
the rank of the matrix approximating theO(n2) coefficients of the quadratic model. How-
ever, because the quadratic’s functional form is severely restricted, it cannot handle many
types of nonlinearities, such as discontinuities (e.g. when a transistor switches operat-
ing regions). Section 4.5.4 will show how inaccurate quadratic-based prediction can be.
There are potential alternative regression approaches which scale inO(n) build timeand
handle arbitrary nonlinearities (e.g. [Fri2002]), but it is extremely difficult foranymodel
to build a sufficiently predictive model in justO(n) with n ≈ 1000 variables without an
unreasonable number of SPICE circuit simulations.

2.2.4 Adaptively Updated Regression Models

To overcome the issues of precomputed regression models, one idea is to do anitera-
tive loopof sampling, simulation, and model building. New samples inmodel the input
space are chosen based on maximizing the model’s uncertainty1. This approach has var-
ious labels, including “evolutionary DOE”, “active learning”, and “adaptive sampling”
[Wol2004, Ber2003, Ding2006]. Unfortunately, none of the approaches demonstrated an

1Not minimizing uncertainty. The aim is to find where the model is weakest, i.e. high-uncertainty
regions.
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ability to scale to significantly larger problems; they onlygave proportional improvement
compared to a non-active sampling approach.

Another approach [Dae2005, Yu2007b] is similar, except thealgorithm chooses new
samples by maximizing the predicted performance(s) of the circuit. The issue here is that
one can readily get stuck in a local optimum, due to the model’s blind spots, as section 3.2
elaborates. Furthermore, [Yu2007b] used kriging, which has poor scalability properties.
A related set of approaches is density estimation from regression models, as section 2.2.12
will discuss.

Even better is an approach that accounts for both model uncertainty and predicted
performance, as section 3.2 also discusses. Unfortunately, even that may not scale well to
the 50, 100, or 1000 input variables that such an approach would need for our application.

2.2.5 FF/SS Corners

The core idea of all corners-based approaches is: if cornersare “representative” of process
and environmental variations, and all corners can be “solved”, then the final design’s yield
will be near-100%:

d∗ = argmax
d∈D

(
∏

Ξi∈Ξ

δ(d,Ξi)) 7→ Y (d∗) ≈ 100% (2.14)

where to “solve at a corner” means to find a designd ∈ D which is feasible across all
constraints at the cornerΞi, i.e. δ(d,Ξi) = 1. To “solve at corners” means to find a design
that is feasible at all those corners{δ(d,Ξ1) = 1, δ(d,Ξ2) = 1, . . . }.

A corner-based problem formulation is more familiar to designers (“solve at corners”),
rather than a statistical formulation, which many designers do not have deep experience
with. A corner-based formulation usually means a simpler optimizer design. One can
actually view direct Monte Carlo optimization (with blocking) as a corner-based approach
in which a very large number of corners is naively picked, compared to other corners-
based flows which try to find a smaller number of representative corners. There are many
possible interpretations of “representative”; one for example is “well-spaced along on the
3-σ contours of performance space”.

Typical commercial performance optimizers (e.g. [Cdn2005b, Snps2005]) as well as
early-2000’s academic research such as ANACONDA [Phe2000]handle both environ-
mental and process variations as corners. Environmental variations are pre-specified as
cornersΘ̂, as described in section 2.1.2. More dimensions are added tothe corners to
handle manufacturing variations as “FF/SS” corners of SPICE models. FF/SS process
corners (F = “fast”, S = “slow” for NMOS/PMOS) are typically supplied by the foundries
as part of process design kits. However, FF/SS corners are designed for digital circuits’
key performances, not for analog. The SS cornersSS aims to bracket worst-case circuit
speed (i.e. slow speed), and the FF cornersFF brackets worst-case power consumption
(because fast circuits consume more power). However, analog circuits have a greater va-
riety of performance goals, which are dependent on circuit type (e.g. opamp vs. ADC).
Therefore FF/SS corners do not properly bracket analog performance variations.
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The runtime of FF/SS corners is reasonable, because the number of corners is reason-
able. But the optimization is not accurate because the corners are not representative of the
yield optimization problem.

2.2.6 3-σ Hypercube Corners

Rather than having FF/SS corners, one could instead use the extreme±3-σ value of each
process variable to construct corners. The total number of corners, if just extreme values
are used, is2(Nθ+Ns). Such an approach might be considered if there were few random
variables. For example,Nθ = 3 environmental variables andNs = 3 random variables
would lead to26 = 64 corners. But accurate randomness models may have 8 or more
random variablesper device[Dre1999], which would mean a 40-device circuit would
haveNs = 320 random variables and therefore about2320 corners. Furthermore, the
corners are extremely pessimistic because the probabilityof each corner is far lower than
the probabilities of most random points from a typical MC sampling. To reduce the
corner count, one could do fractional factorial sampling [Mon2004], but this will remain
pessimistic and may not give adequate coverage of the process spaceS.

2.2.7 Inner-Loop Corners

Another approach is to auto-discover some of the “meanest” corners on-the-fly for each
performance, keeping the corner count low and keeping corners representative. The ap-
proach [Och1999] performs a semi-infinite programming problem: an outer optimization
loop traverses the design spaceD on the current set of{s, θ} corners to maximize perfor-
mance; periodically, it is paused and an inner optimizationtraverses{S ∪ Θ} on a fixed
d, minimizingperformance to find a new{s, θ} corner, which is then added to the outer
loop’s problem. This can be viewed as “outer approximation”of worst-case performance.

This approach is actually extremely pessimistic, because the inner optimization can
find process points that are highly improbable, due to the inner objective being worst-case
(as opposed to statistical). Also, the inner optimization process to discover “mean” cor-
ners is computationally expensive. This is probably why theapproach was never demon-
strated beyond circuits with a few transistors.

2.2.8 Inner-Sampling Corners

This approach, present in [Cdn2005c], also auto-discoversthe “meanest” corners on the
fly for each performance, during temporary pauses of an outer-loop optimization. But
instead of a periodic inner-loop optimization, a MC sampling is performed on the best
design point so far. Then, more corners are extracted from the new MC results: for each
performance, the{s, θ} giving the worst performance value is added to the overall set of
corners.

This is an improvement compared to Inner-Loop Corners because the inner corner-
discovery is more efficient and less pessimistic. A bonus is that intermediate MC-sampled
designs are returned, so that progress can be ratcheted upwards. A disadvantage is thatNg
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corners are added with each inner invokation, andNg is typically≥ 10 so the approach
quickly slows down after even just 1 iteration.

2.2.9 Device Operating Constraints

Device operating constraints (DOCs) are topology-specificconstraints to ensure that de-
vices are operating in the intended region (e.g. transistormust be in saturation), and
building block behavior is as expected (e.g. currents in current mirrors must match).
While this is obvious to an analog designer, it is not obviousto an optimization algorithm
unless explicitly measured and enforced. DOCs have been documented in many places,
most notably [Gra2001] and also described in [Plas2002, Ber2005, Ding2005b, Das2005,
Mcc2006d, Gra2007], under various labels including “feasibility guidance”, “operating
point constraints” and “structural constraints.”

DOCs by themselves are not used for yield optimizationper se, but rather as a step
to take prior to yield optimization, to get a starting designthat has a higher chance of
being robust. Unsurprisingly, [Gra2001] found that yield using DOCs in optimization is
significantly better than yield not using DOCs. [Sch2001] shows that using them within
the context of a yield optimizer will improve the optimizer’s convergence. In [Ste2003,
Ste2007] a faster variant of optimization under DOCs was presented: the optimal design
is the maximum-volume ellipsoid bounded by linearly-modeled DOCs in design variable
space.

2.2.10 Device Operating Constraints Plus Safety Margins

The authors of [Phe2000] suggested putting safety margins on DOCs, because transistors
would stay in their target operating region even under slight perturbations in their operat-
ing point due to manufacturing variations. The upside is that decent yield is maintained,
runtime is the same as nominal. The downside is that there is apossible reduction in
circuit performance, because high-performing analog circuits often perform on the edge
of their operating envelopes, and safety margins would prevent that. Also, because DOCs
with safety margins are not directly optimizing on yield, yield analysis can only be done
as a post-processing step; there is no clear relationship between yield and safety margins.
Finally, an open issue is how to choose the size of the safety margins.

2.2.11 Density Estimation from SPICE Monte Carlo

The idea in this approach is to speed up yield estimation and/or improve accuracy at a
given design pointd using density estimation. The steps are: (a) take a relatively small
number of Monte Carlo samples atd via SPICE simulation, (b) estimate the probability
density function across the performances space,p̂df(λ), then (c) estimate yield̂YDE by
computing the volume of the pdf that is within the performance feasibility region:

ŶDE(d) = E{δ(d,λ)|p̂df(λ)} =

∫

λ∈ℜNg

Ng∏

i=1

δi(λi(d)) ∗ p̂df(λ,d)dλ (2.15)
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whereδi(λi(d)) is 1 if λi is feasible, and 0 otherwise. If the pdf construction works
well, then the yield estimateŝYDE can be more accurate than yield estimation based on
counting the number of feasible sampleŝYMC . Intuitively, this works because it uses the
information at a finer degree of granularity. The upper/lower confidence intervals for a
density estimator’s yield estimate can theoretically converge more rapidly than confidence
intervals using a binomial distribution that merely countsfeasibility.

There is a tradeoff based on the number of simulations: too many simulations is too
computationally expensive, and too few simulations gives an inaccurate yield estimate.
Unfortunately, with more performance metrics, more simulations are needed for an ac-
curate estimate; and if we include DOCs there can behundredsof performance metrics.
Furthermore, estimates ofpdf(λ) make strong assumptions about the nature of the distri-
bution. For example, the approach [Tiw2006] finds 10 random points “which make the
distribution the most Gaussian”. This is clearly not representative of the true distribution.
Or, the approach [Li2007a] models the frequency distribution as a linear-time-invariant
(LTI) system, which makes it subject to oscillation (ringing) at sharp drop-offs in den-
sity. Also, [Li2007a] could not handle multivariate distributions, though that now has a
workaround in [Li2008].

2.2.12 Density Estimation from Regression Models

This approach builds regression modelsψi mapping{d, s} to each performanceλi. Then,
on a candidate design pointd, it does Monte Carlo sampling on those performances,
simulates each modelψi to get performance estimateλi, and finally estimates yield using
density estimation rather than counting feasibility. The regression models can be built
beforehand, or on-the-fly (which gives this approach similar to the approaches of sections
2.2.3 and 2.2.4.

An example of this approach in practice is [Li2007b] where the regression models are
quadratics built on-the-fly, and the density estimator is based on an LTI system [Li2007a].

The key problem is building accurate regression models in the {d, s} input space,
as discussed in section 2.2.3. Approach [Li2007b] aims to bypass the problem by re-
stricting the search to be highly local, which has the optimality-compromising problem
discussed in section 2.1.3.1. We actually have difficulty understanding the motivation of
using density estimation on cheap models, because the bottleneck is in SPICE simulation,
not in doing Monte Carlo sampling on regression models. Using density estimation adds
complexity, and introduces the additional issues of section 2.2.11.

2.2.13 Spec-Wise Linearization and Sensitivity Updates

In this approach [Ant2000, Sch2001, Gra2007], the optimizer has a different perception
of the yield optimization problem. As shown in Figure 2.3, the optimizer’s goal is to find
a design pointd that shifts the performance contours in process spaceS (and therefore
feasible region) to align favorably with the fixed distribution pdf(s).

“Favorable” can be:
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• “Maximum worst-case-distance” (WCD) [Ant2000]: maximum distance from center
of the pdf to the closest feasibility boundary. This can be viewed as a design centering
formulation.

• “Maximum yield” [Sch2001]: maximum volume under the pdf that is in the feasible
region.

The spec-wise linearized approach models each performance’s feasibility δi as a linear
classifierψi: δ̂i = ψi(d, s, θ). Each classifier is built from a sensitivity analysis and
SPICE simulations. The linear models are concatenated to form an approximation of the
overall feasibility region̂δ =

⋂
i{ψi(d, s, θ)}. By definition,δ̂ is a convex polytope. Us-

ing δ̂, the algorithm finds a sizing that shifts the polytope approximation to align “favor-
ably” with the fixed pdf(s). The algorithm then repeats with further sensitivity analyses,
etc. Figure 2.3 illustrates.

Figure 2.3:A spec-wise linearized approach to yield optimization, in an ideal
case.

One issue is that the approach can only do local optimizationdue to its sensitivity-
analysis nature. The assumption of linearity has some discomforting ramifications. The
authors justify the linear feasibility classifiers with (toparaphrase) “in a DOC-compliant
space, circuits are either linear or weakly nonlinear” [Ant2000] which draws on their re-
sults from 1994 [Ant1994]. 1994 is certainlyseveralprocess generations ago. To test the
assumption’s validity onmodernprocesses, we performed an experiment using TSMC
0.18µm models. We used two circuits shown in Figures 3.7 and 3.21 – a10-transistor
amplifier and a 50-transistor amplifier, respectively. For each circuit, we picked “reason-
able” sizings that met the DOC constraints. We took 2 *Nd latin hypercube samples
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[Mck1979, Mck2000] in a union of the{d, s, θ} space, whereNd is the number of in-
put variables, eachdi could vary by 2% of its total range, and eachsi was within±3σ.
On each point, we simulated across 3 testbenches spanning 16performances. For each
performanceλi of each circuit, we built both a linear model and a nonlinear model (SGB
[Fri2002]; see also section 3.3). We used 75% of the data as training data, and the re-
maining 25% of the data for testing.

Table 2.4 shows the results, which shows the normalized rootmean squared error on
the testing data (see equation 3.7). We see that the linear models have average predic-
tion errors of 19.0% for the 10-transistor design, and 18.8%for the 50-transistor design.
On several performances, the linear models have errors exceeding 40%. In contrast, the
nonlinear SGB models have an average error than is about halfthat of the linear models;
and a maximum error that is also half. Section 4.5.4 has additional experiments that show
how poorly linear models capture the mapping from design variables to performance.

Figure 2.4: Experimental results to test validity of linear versus nonlinear
modeling.

A final concern is that we have only seen the algorithms of [Gra2007] demonstrated
on a process variation model in which threshold voltageVth is assumed to be a varying
process parameter. As [Dre1999] elaborates, that means that variation in the parameter
β is accounted for twice. We have not seen the approach demonstrated on more accu-
rate models of process variations, which have >10x more random variables and would
therefore slow down this sensitivity-analysis-based approach by >10x.
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2.2.14 Maximum Volume Ellipsoid

The maximum volume ellipsoid (MVE) approach [Xu2005] has a high-level perspective
of the optimization problem similar to that of spec-wise linearization, in which the aim is
to shift the performance contours to fit within an approximation of the feasibility region,
δ̂(s).

Whereas the spec-wise linearization approach of section 2.2.13 modeled̂δ as a con-
vex polytope, MVE models it as an ellipsoid. The approach aims to maximize the volume
of the ellipsoid. The optimization is performed as follows:(a) different design points
are sampled, each returning a different ellipsoid volume, (b) a posynomial mapping from
design point to ellipsoid volume,d 7→ V , is automatically constructed, and (c) the opti-
mal designd∗ is found via geometric programming in a convex optimizationformulation
[Boyd2004], usingd 7→ V for feedback.

A related approach from the process control literature is polynomial chaos expansion
[Nagy2006]. Here, the spec-wise linearization is generalized to higher order via either
power series or polynomimal chaos. We refer the reader to [Nagy2006] for details.

The main issues with this approach are its modeling assumptions. First, an ellipsoid
can be a poor approximation of the feasibility region. For example, it assumes convexity,
which cannot handle disjoint feasibility regions. Second,posynomials can have poor
accuracy in modeling analog circuits, as section 4.5.3 examines in depth.

2.2.15 Tradeoff Response Surface

In HOLMES [Sme2003b], the authors first generate a set of nondominated candidate
designs via multiobjective optimization, ignoring statistical variations. Then, they au-
tomatically build a polynomial model mapping design variables to performances, using
the nondominated designs as samples. Then, a robust optimization is done, using the
polynomial models in place of simulations, and incorporating randomness. The problem
with this approach is that the polynomial performance models are unaware of random
variations; there is no way that the robust optimization step can reconcile this because it
continues to use those performance models. In other words, the approach assumes, and
relies upon, a tight correlation between nominal and robustdesigns. [Tiw2006] has a
similar approach, with similar issues.

2.3 Conclusion

In this chapter, we have reviewed the problem formulation for yield optimization, and
identified a set of requirements for an industrially useful yield optimizer. Then we re-
viewed the existing approaches to yield optimization.

None of the optimization approaches that we reviewed had both accuracy and reason-
able efficiency. The approaches either (a) sped up the yield simulation via faster but less
accurate approximations, (b) optimized on a goal that somewhat correlated with yield
(e.g. worst-case distances) or (c) most commonly, made potentially dangerous simpli-
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fying assumptions. Additionally, some of the optimizationapproaches only worked for
small problems, or imposed constraints on the way circuits could be designed or modeled.

Finally, none of the approaches gave reliable global convergence in yield optimization.
The next chapter proposes our approach, which overcomes these issues to meet the

target tool requirements.
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Chapter 3

Globally Reliable, Variation-Aware
Sizing: SANGRIA

Monte Carlo? I don’t know how you design, but my workflow doesn’t involve gambling.
–Anonymous

3.1 Introduction

In this chapter, we present SANGRIA: Statistical, accurate, and globally reliable sizing
algorithm [Mcc2008e]. SANGRIA was designed with industrialuse in mind, to achieve
the yield optimizer tool requirements of chapter 2: accuracy, efficiency, scalability, flexi-
bility, and global reliability.

To be accurate and flexible, SANGRIA uses SPICE in the loop, and an accurate model
of manufacturing variation [Dre1999]. To be efficient in light of expensive circuit simula-
tions, SANGRIA follows the mantra “every simulation is golden”. The mantra is carried
out with a combination ofmodel building optimization(MBO) andstructural homotopy.
We now elaborate on each.

In MBO [Jon1998], regression models are built on-the-fly during each iteration of the
optimization and used to propose new designs. However, as wewill see, MBO algorithms
in the literature have issues that need to be overcome in order to work for industrial-
strength yield optimization. Part of the solution lies in the choice of regressor, which
needs to have excellent scalability properties without being constained to a pre-set func-
tional form. A recently-developed approach called stochastic gradient boosting (SGB)
[Fri2002] meets these goals.

Homotopy algorithms [Noc1999] work by starting with an easyproblem with an ob-
vious solution, then gradually transforming it into the true problem while simultaneously
maintaining the solution to the problem. Whereas typical homotopy algorithms tighten
dynamicallytowards the true objective function, SANGRIA’s “structural homotopy” em-
beds problem loosening into the datastructureof the search state, in which searches at var-
ious problem difficulty levels are conducted simultaneously and linked via a recent devel-
opment in evolutionary algorithms (ALPS: age-layered population structure [Hor2006]).
For SANGRIA, a “full” problem does full simulation across all testbenches and {process,
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environmental} corners; and loosened problems have fewer testbenches and / or corners.
Therefore SANGRIA can do exploration cheaply, while promising design regions get
evaluated more thoroughly. ALPS has the characteristic of periodically exploring wholly
new regions of the search space, in a fashion that shelters new regions from more opti-
mized designs; it is this characteristic that gives SANGRIAglobal reliability.

For shorter runtimes, SANGRIA leverages parallel processing.
In order to handle infeasible designs, and to perform meaningful optimization beyond

≈ 100% yield, SANGRIA optimizes on Cpk (equation (2.6)) rather than yield.
SANGRIA is benchmarked on a suite of circuit yield optimization problems, to demon-

strate its accuracy, efficiency, scalability, flexibility,and global reliability.
The rest of this chapter is organized as follows. Sections 3.2, 3.3, and 3.4 review

SANGRIA’s foundations: model-building optimization, stochastic gradient boosting, and
homotopy, respectively. Section 3.5 describes the SANGRIAalgorithm in detail. Section
3.6 shows experimental results on a variety of circuits, where some circuits have hundreds
of variables. Section 3.7 discusses how system-level circuits would be handled. Section
3.8 concludes.

3.2 Foundations: Model-Building Optimization (MBO)

3.2.1 Introduction to MBO

MBO [Jon1998] is an approach to optimization, in which regression models are built on-
the-fly during each iteration of optimization, and used to propose new designs. MBO is a
suitable choice for optimization when the cost of evaluating a design is expensive (e.g. >
10 s, and definitely when > 1 min or 1 h), so that the cost of modelbuilding and model
simulation does not dominate the optimizer runtime. A typical MBO problem formulation
is:

d∗ = argmax{f(d)}
s.t. d ∈ D

(3.1)

wheref is the objective function to be maximized, andD is the bounded design space,
e.g. D = {ℜNd|di,min ≤ di ≤ di,max; i = 1..Nd}. While not shown here, MBO can
also apply to optimization problems with other types of constraints and with multiple
objectives. MBO is similar to what we termed “adaptively updated regression models” in
section 2.2.4, except in we take MBO formulation to be more rigorous, especially in its
accounting for uncertainty.

3.2.2 MBO Description

The general MBO algorithm is given in Table 3.1. In line 1, design points are generated
to “fill out” the design space, e.g. with uniform sampling, Latin Hypercube Sampling
[Mck2000], or another Design of Experiments (DOE) [Mon2004] approach. Typically,
the number of initial samples is a linear function ofNd, with a lower bound. For example,
ninit(Nd) = max(20, 2 ∗ Nd). In line 2, each initial pointdj is simulated:fj = f(dj).
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Table 3.1:Procedure ModelBuildingOptimization()

Inputs: f ,D
Outputs: d∗

1. D = generateninit(Nd) space-filling points inD
2. f = simulate(D)
3. while stop()6= True:
4. ψ = build model with{D,f} training data;f̂ = ψ(d)
5. dnew = optimize onψ according to an infill criterionΛ(ψ(d), u(d))
6. fnew = simulate(dnew)
7. adddnew to D; addfnew to f

8. d∗ = dj in D with highestf
9. returnd∗

Line 3 begins the iterative loop. At each iteration, a new design dnew is proposed with
the help of regression and an inner optimization (lines 4-6). In line 4, a regressor is built
(e.g. a neural network). In line 5, an inner optimization is performed by simulating on the
regressor at candidate design points. The inner optimization aims to find ad to balance
the overall MBO’s exploitation with exploration, by using an “infill criterion” objective,
Λ. Specifically,Λ combines maximizinĝf(d) with reducing the model’s blind spots, i.e.
maximizing model uncertaintyu(d):

dnew = argmax
d∈D

{Λ(ψ(d), u(d))} (3.2)

where problem (3.2) is solved with an off-the-shelf single-objective optimizer such as
[Yao1999]. The efficiency of this inner optimization is not of great concern here, because
the cost of simulating the regressorψ(d) = f̂(d) is typically at least a few orders of
magnitude cheaper than evaluating the objective functionf(d) through simulations.

Step 7 updates the best design so far,d∗. MBO returnsd∗ once a stopping criterion
is hit, such as the maximum number of simulations being exceeded, maximum runtime
being exceeded, the target objective being hit, or convergence having stagnated.

A conceptual illustration of MBO in action is given in Figures 3.1 and 3.2. There
is a single design variabled, which is the x-axis. Each diamond is a training datapoint
{dj, fj} from steps 1-2. The smooth curve interpolating the trainingpoints is the regressor
ψ’s predicted values acrossd. Here, the regressor is a feedforward neural network with
one hidden layer [Amp2002]. The infill criterionΛ is the curve of “mountains” sitting on
top of the regressor’s curve. Here, uncertainty is computedas merely the distance to the
closest training point:u(d) = min{abs(d − d1), abs(d − d2), . . . }1.

The infill value is a weighted sum of regressor value and uncertainty:

Λ(d) = (1 − wexplore) ∗ ψ(d) + wexplore ∗ u(d) (3.3)

1Note that using distance is justoneway to compute uncertainty; as we will see later there are better
ways.
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Figure 3.1:MBO at first iteration.

Figure 3.2:MBO at second iteration.
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wherewexplore is the relative weight for exploration compared to exploitation;wexplore ∈
[0, 1] and a reasonable choice is in[0.2, 0.8]. Therefore at each training point, uncertainty
is 0 and the infill curve intersects with the regressor’s curve (bottom of each mountain
valley). As one movesd away from a training pointdj, the uncertaintyu(d) grows, and
with it the infill curveΛ(d), until a mountain peak where the closest training point tod

changes.
Line 5 of Table 3.1 chooses a newd-value to maximizeΛ. In Figure 3.1, this newd-

value is indicated by the vertical bar atdnew ≈ 1.6. Notably,dnew is not at the maximal
value of merelyψ, but instead a combination ofψ andu to account for the model’s blind
spots (high-uncertainty regions). Once chosen,dnew is simulated onf , the training data
is updated, the best point is updated, and a new model is builtwhich incorporates the new
data. That updated model is shown in Figure 3.2. Note how atd ≈ 1.6, the simulated
value is much higher than the first model (Fig. 3.1) had predicted. This demonstrates
how accounting for model blind spots viau is crucial. Now, the nextd is chosen at
dnew ≈ 2.6, and the loop repeats.

Many variants of MBO algorithms exist in the literature. Classical quasi-Newton-
style optimization algorithms [Noc1999] can be consideredas MBO algorithms, in which
the regressor at each iteration is a quadratic model, the infill criterion only considers
model optimality (ignoring model uncertainty), and the inner optimization has extra trust-
region bounds. More recent quadratic-modeling approaches, which have less reliance on
a cheaply-measured derivative (e.g. NEWUOA [Pow2006]), can also be viewed as an
MBO algorithm. But one does not need to restrict the regressor to quadratics, nor the
infill criterion to solely exploitation. Furthermore, without trust-region restrictions on the
inner optimization, the optimizer gains the property of global search.

The paper [Jon1998] gives a particularly good account of MBO: it uses a kriging re-
gression model which naturally reports prediction uncertainty, and an “expected improve-
ment” (EI) infill criterion that balances exploration and exploitation. The dissertation
[Sas2002] analyzes kriging-based MBO more thoroughly, testing various infill criteria ap-
proaches combininĝf(d) optimality with model uncertaintyu(d). An important lesson
was that EI constructed ad 7→ Λ mapping characterized by large plateaus with periodic
spikes. This mapping is very difficult for the (inner) optimizer to search across.

In contrast, the “least-constrained bounds” (LCB) criterion gave better-shaped map-
pings, which directly led to more reliable convergence of the MBO algorithm [Sas2002].
The LCB criterion was, in fact, already presented as our example, in equation (3.3).

3.2.3 MBO Shortcomings

MBO algorithms are promising because they make maximum use of available data. How-
ever, the versions in the literature have several issues, especially in light of the yield
optimizer requirements (section 2.1.3):

• Inadequate regressors.The typical regressor used, kriging, has terrible scaling prop-
erties: the model build time is exponential in the number of dimensions, limiting it to
fewer than≈ 10-15 dimensions. The regressor needs to scale well with increasing in-
put dimension and increasing number of samples. While quadratic-based MBOs like
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[Pow2006] can scale to more dimensions, they only manage to circumvent the non-
flexible structure of quadratics by limiting their application to local search, whereas
we want to do global search for reasons discussed in section 2.1.3.1.

• Issues in uncertainty. Most regressors do not have a natural way to compute uncer-
tainty. Linear models do, but we need to account for nonlinear mappings. Kriging also
does, but it scales poorly with input dimension. Density estimation reframed into re-
gression also reports uncertainty, but density estimationalgorithms scale poorly with
input dimensionality. Aregressor-independentfashion is to make uncertainty a func-
tion of the Euclidian distance from the closest training point(s), as the example in
section 3.2.2 had described, leading to the triangle-shaped “mountains.” This is fine
for a few dimensions, but past 10-15 dimensions, each point is essentially far away
from each other point [Has2001] which renders the Euclideanmeasure ineffective.
Furthermore, it is unclear whatdistance 7→ uncertainty mapping works best.

• Sensitivity of infill criterion. While LCB is relatively robust compared to EI and
other criteria, it still shows sensitivity to itswexplore setting [Sas2002]. We do not
want a poorwexplore to constrain the ability to achieve the global optimum.

• Too few samples for high-dimensional prediction.Even if we overcome the other
issues, ifNd ≥ 100 dimensions, and the number of simulations is limited, there is
simply too little data to make any meaningful prediction at all. In such cases, MBO
will degenerate to random search.

3.3 Foundations: Stochastic Gradient Boosting

3.3.1 Introduction

The choice of regressor makes a crucial difference in MBO performance, as section 3.2.3
found. The regressor must be able to handle arbitrary nonlinearities, be constructed
quickly, simulate quickly, scale well with high input dimension, perform well with few as
well as with many training samples, and provide an uncertainty measure.

After considering several modeling approaches, we found a recent technique called
stochastic gradient boosting (SGB) [Fri2002] because it hits all the criteria (except one).
SGB handles arbitrary nonlinearities because it is a composed of piecewise-constant func-
tions – an ensemble ofboostedClassification and Regression Trees (CARTs) [Bre1984].
CARTs are recursively-constructed piecewise constant models, that divide the input space
in hypercubes along variable axes. SGB constructs and simulates quickly because CARTs
construct and simulate extremely quickly, and the CART-joining part of SGB (a sum) is
computationally-cheap. SGB handles high input dimensionality, and fewor many train-
ing samples because the successive-decomposition approach of CART quickly prunes
dimensions and training data.

SGB hits all the criteria but one: it does not directly reportprediction uncertainty.
Therefore, abootstrapped ensembleof SGB models,ψ, is used. The predicted output
from the whole ensemble,cost(ψ,d), is merely the average value across the SGB models’
outputs. Uncertaintyu(ψ,d) is the standard deviation across the models’ outputs.Nens
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does not need to be large, because the uncertainty only needsenough fidelity to roughly
distinguish regions of uncertainty (e.g.Nens = 5 is reasonable).

Due to its desirable properties, SGB is also used elsewhere in this thesis: section 8.4
uses it for global nonlinear sensitivity analysis, and the ISCLEs algorithm of section 10.4
can be viewed as an adaptation of SGB that replaces CARTs withactual circuits.

The rest of this section is organized as follows. Section 3.3.2 describes the form
of SGB ensembles, SGBs, and CARTs. The remaining sections describe how to build
each: section 3.3.3 describes SGB ensemble (group of SGBs) construction. Section 3.3.4
describes a single SGB model (group of CARTs) construction.Finally, section 3.3.5
describes single-CART construction.

Following that, we return to the more general discussion of SANGRIA foundations,
and then SANGRIA itself.

3.3.2 Form of SGB Ensemble Model

An SGB ensembleφ takes the form:

ψ(x) =
1

Nens
∗

Nens∑

i=1

ψ(i)(x) (3.4)

wherex is an input vector,ψ(i) is theith SGB model in the SGB ensemble, andNens is
the number of SGB models.

A single SGB modelψ(i) takes the form:

ψ(i)(x) =

N
(i)
ens∑

j=1

α ∗ ψ(j)(x) (3.5)

whereψ(j) is thejth CART model in the SGB model,N (i)
ens is the number of CART models

in SGB ensemblei, andα is the weight per CART (becauseαwas the learning rate during
SGB construction).

A single CART regression modelψ(j) is apiecewise constantfunction, where a dif-
ferent constant valuev is output depending on the regionR that input vectorx is in:

ψ(j)(x) =





v
(j)
1 if x ∈ R

(j)
1

v
(j)
2 if x ∈ R

(j)
2

...
...

v
(j)
NR

if x ∈ R
(j)
NR





(3.6)

where the regions{R(j)
1 , R

(j)
2 , · · · } are each defined by a hypercube in input space accord-

ing to the CART construction algorithm. The regions are disjoint and collectively cover
the whole input space.
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3.3.3 SGB Ensemble Construction

An SGB ensemble is constructed bybootstrappingSGB models. We now give details.
Table 3.2 describes construction of SGB ensembleψ : X 7→ y, whereX = {xj}, j =

1..N are the training inputs, andy = {yj}, j = 1..N are the training outputs.
Line 1 is the outer loop of ensemble construction, encompassing choosing training

data (line 2), building an SGB model (3), and updating the SGBensemble (line 4). It
repeatsNens times, resulting in an ensemble holdingNens SGB models.

One can draw sample lists from an unseen distribution of lists, despitebeing only
givenonelist as input. This rather surprising ability is due to the technique ofbootstrap-
ping [Efr1979]. The implementation of bootstrapping is merely sampling with replace-
ment. Accordingly, line 3 generates a “sample list”{X(i),y(i)} from the list{X,y} via
bootstrapping.

Bootstrapping has another useful property: with each sample list{X(i),y(i)}, higher-
order computations can be performed to get higher-order “samples”. Here, our computa-
tion is to build an SGB model from the MC sample list, thereby getting an “SGB sample”
ψ(i) (line 4; details in section 3.3.4). The final modelψ is merely a collection of SGB
samples (line 5). Simulating the SGB ensemble can be viewed as further higher-order
computations on the original bootstrapped data.

Table 3.2:Procedure BuildSgbEnsemble()

Inputs: X,y
Outputs: ψ
1. ψ = ∅
2. for i = 1..Nens

3. {X(i),y(i)} = N samples with replacement from{X,y}
4. ψ(i) = BuildSgb(X(i),y(i))
5. ψ = ψ ∪ ψ(i)

6. returnψ

The simulation and construction of Random Forests [Bre2001] is similar to SGB en-
sembles, except Random Forests bootstrap-sample CARTs instead of SGB models.

3.3.4 SGB Construction

An SGB model is constructed byboostingCARTs in a stochastic fashion. We now elab-
orate.

Table 3.3 describes construction of a single SGB model. The training inputs and
outputs are{X(i),y(i)}, as called fromBuildSgbEnsemble(). (For use elsewhere, the
inputs can be any{X,y}.)

In line 1, the SGB model is initialized as an empty set. In line2, the current target
outputy(i)

cur
is initialized to the overall target outputy(i). y(i)

cur
can be regarded as the

portion ofy(i) which still needs to be learned (residual) . Lines 3-7 are theSGB boosting
loop. At each iteration, training data is selected (line 4),a CARTψ(j) is built (lines 5-6,
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Table 3.3:Procedure BuildSgb()

Inputs: X(i),y(i)

Outputs: ψ(i)

1. ψ(i) = ∅
2. y(i)

cur
= y(i)

3. repeat
4. {X(j),y(j)

cur
} = ⌊µ ∗N (i)⌋ samples without replacement from{X(i),ycur(i)}

5. ι ∼ U({ιmin, ιmin + 1, · · · , ιmax})
6. ψ(j) = BuildCart(X(j),y(j)

cur
, ι)

7. ψ(i) = ψ(i) ∪ {α, ψ(j)}
8. y(i)

cur
= ψ(X(i)) = y(i)

cur
− α ∗ ψ(j)(X(i))

9. until ǫ(ψ(i)) ≤ ǫtarg

10. returnψ(i)

details in section 3.3.5) and added to the ensemble (line 7),andy(i)
cur

is updated (line 8).
Line 10 returns the final model. Unless stated otherwise, SGBsettings are:ǫtarg = 0.01,
ιmin = 2, ιmax = 7, andα = 0.1.

The loop stops (line 9) when measured errorǫ(ψ(i) hits target training errorǫtarg.
ǫ(ψ(i) is measured as normalized root mean squared error:

ǫ(ψ(i)) =

√√√√ 1

N (i)
∗

N(i)∑

l=1

(
ψ(i)(x

(i)
l ) − y

(i)
l

max(y(i)) −min(y(i))

)2

(3.7)

whereN (i) is the number of samples, and{x(i)
l , y

(i)
l } is a given {input, output} samplel

from the sample data{X(i),y(i)}.
SGB converges robustly because it takes an importance sampling (IS) [Hes2003] per-

spective of modeling space. In typical (Metropolis) Monte Carlo sampling, the sampling
distribution is identical to the target distribution. In IS, the sampling distribution isbiased
towards the regions which will give (approximately) the most information for the statisti-
cal estimator. Many boosting algorithms do IS implicitly inmodel space [Fri2003]; SGB
is designed to do itexplicitly. The sampling bias is exactly the difference betweeny and
ytarget, since an unbiased sampler would simply always targety.

With this IS perspective, the SGB algorithm takes measures to enhance the effective-
ness of the sampling (model building):

• SGB mitigates unwanted biases due to greedily-built CARTs by injecting randomness,
via choosing a different fractionµ of training data to train each CART (line 4).

• SGB injects further randomness by randomly choosing the maximimum CART depth
ι at each iteration (line 5), so that sometimes shallow CARTs are built, and sometimes
deep CARTs are built. These so-called “weak learners” are useful because theyonly
need to be better than random– the iterative loop “boosts” them into one overall
“strong learner” (hence the label “boosting” for the iterative loop).
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• SGB follows an IS tactic to avoid premature convergence to a suboptimal model: have
a slowupdate of the sampling bias. Specifically, it updatesytarget by a factorα (e.g.
0.1) rather than a full 1.0 factor (lines 8,9).

Because SGB does IS, it inherits the dimensionality independence of Monte Carlo algo-
rithms, which is the core of the theory showing why SGB has such excellent scalability
properties [Fri2002].

3.3.5 CART Construction

This section describes the construction of a single CART model.
CART construction is performed by recursive partitioning of hypercubes in input

space [Bre1984, Fri1991]. The starting region is the whole input space. At each par-
tioning iteration, all existing eligible subregions are split into two child subregions. The
split of a regionR into two child regionsRleft andRright takes the form:

if x ∈ R then
if xsplitvar ≤ splitval then x ∈ Rleft

else x ∈ Rright

(3.8)

wherexsplitvar is one of the input variables, andsplitval is its split value. This split
is generated by considering all possible variables and their corresponding split values,
and choosing the best according to a “splitting criterion” -in this case minimizing root
mean squared errorǫ. Partitioning continues until there are no eligible subregions left.
A subregion is eligible to split if it has not hit stopping criteria. Stopping criteria are:
maximum number of recursionsι, and no samples left in subregion to split.

A CART takes the form of a binary decision tree. Accordingly,they have a visual
interpretation. Section 8.3 exploits this property of CARTs in a classification setting, as
an insight aid for designers.

3.3.6 SGB Construction Example

This section illustrates SGB construction in action on the problem of learning a mapping
of a sinusoidal function. In the first boosting iteration of SGB (lines 1-9 of Table 3.3),
one CART is built to the current targety(i)

cur
. At at this point,y(i)

cur
is still equivalent to

the overall targety(i). The SGB’s output is equal toα multiplied by the initial CART’s
output. Figure 3.3 (a) illustrates. Note how the energy of the SGB response is only about
α = 10% of the overall target sinusoid. Also not the piecewise-constant nature of the
mapping.

Figure 3.3 (b) illustrates the outcome of the next step. Notehow the SGB response
moved closer to the target, but nottoo quickly. Figures (c) to (g) illustrate further con-
vergence, at boosting iterations 2, 5, 10, 20, 40, and 77. At iteration 77, the target error
ǫ=0.01 was achieved, so SGB stopped.

Figure 3.3 (h) illustrates convergence of SGB errorǫ(φ(i)) versus boosting iteration.
Note the smooth convergence over time. The convergence rateis sharper in earlier itera-
tions, and slows in later iterations; this can be confirmed byinspections of figures (a) to
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Figure 3.3:SGB sinusoid learning response; bottom right is convergence of
nmse vs. boosting iteration.
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(g) where the difference between the curves is more dramaticfor earlier curves such as
(a) to (b), and less dramatic for later curves such as (f) to (g).

Interestingly, the ideas behind SGB can apply tocircuitsas well, where small circuits
replace CARTs. Section 10.4 explores this in detail. As a sneak peek, note how simi-
larly the sinusoidal mapping is learned, in Figure 3.3 for CARTs, versus Figure 10.8 for
circuits.

3.4 Foundations: Homotopy

Homotopy / continuation methods (sec. 11.3 of [Noc1999]) are an optimization strategy
in which the original optimization problem of solvingf(d) = 0 is not solved directly.
Instead, an easy problem with an obvious solution is set up. This easy problem is grad-
ually transformed to the true problem, and during the transformation, the solution to the
problem is continuously tracked. Eventually, the problem has become the true problem,
and therefore its solution is the true solution.

Specifically, thehomotopy mapH(d, η) is defined as:

H(d, η) = η ∗ f(d) + (1 − η) ∗ (d − a) (3.9)

whereη is a scalar parameter anda ∈ ℜNd . Whenη = 0, equation (3.9) becomes the
easy initial problemH(d, η) = d − a, having the obvious solution ofd = a. H(d, η)
becomes the original problem whenη = 1. The steps in between, i.e. the path in the
space ofd ∪ η whereH(d, η) = 0 for various values ofη, is called thezero path.

There are various strategies for shifting from the easy problem atη = 0 to the true
problem atη = 1. The most obvious is to gradually changeη from 0 to 1, and solve at
each step along the way. However, this may not always work because the zero path may
not always follow monotonically increasing values ofη. More successful strategies track
the zero path itself, rather than theη value.

3.5 SANGRIA Algorithm

Now that we have described some foundations of SANGRIA – model building optimiza-
tion (MBO), stochastic gradient boosting (SGB), and homotopy – we are prepared to
describe the SANGRIA global yield optimization algorithm itself [Mcc2008e]. We start
by describing how MBO can be improved, then discuss how that leads into SANGRIA
and its other core elements. After that, we will be ready to show the results of SANGRIA
doing yield optimization of analog circuits, in section 3.6.

3.5.1 The Beginnings: Improving MBO

MBO is promising because it makes maximal use of simulation information. However,
traditional MBO approaches have major issues as section 3.2.3 discussed. This restricts a
straighforward application of MBO to yield optimization.
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However, we can systematically fix these issues. Table 3.4 summarizes how. To
have a regressor with good scaling properties and without a fixed functional template, we
start with SGB regressors. But to handle uncertainty too, weuse anensembleof SGB
regressors, where uncertainty at an inputd is the standard deviation across the SGBs’
outputs atd.

Table 3.4:Overcoming MBO Issues for SANGRIA.

MBO Shortcoming Solution

Inadequate regressors Use stochastic gradient boosting (SGB)
Issues in uncertainty Useensemblesof SGB models
Sensitivity of infill criterion Make inner optimizationtruly multi-

objective
Too few samples for high-
dimensional prediction

Combine MBO with a gracefully-
scaling optimizer

The sensitivity of the infill criterion’s exploration vs. exploitation tuning parameter is
resolved byremovingthe tuning parameter, and instead a truly multi-objective optimiza-
tion is used. The multi-objective optimizer minimizes costand maximizing uncertainty.
The single criterion becomes two objectives. The specific algorithm used is NSGA-II
[Deb2002].

Finally, for the high-dimensional cases when there are too few samples to predict
meaningfully, MBO is always run in parallel with another algorithm that scales grace-
fully with a large number of search dimensions. Here, the choice is an evolutionary
algorithm (EA) with several specific tactics that we will discuss shortly. The EA and
MBO parts share each other’s design candidates and simulation information. Therefore,
behavior in many dimensions is graceful, because the overall SANGRIA algorithm does
not needMBO, but takes advantage of it when the regressor has enough data to make
good predictions.

3.5.1.1 Structure of SANGRIA

The structure of SANGRIA is shown in Figure 3.4.

SANGRIA has the following key elements:

• High-dimensional model-building optimization. MBO works with SGB to make
maximum use of simulation information. An EA in parallel ensures that search is
graceful when there is not sufficient data for good models.

• Structural homotopy. Exploration is performed on a loosened objective function
(that happens to be cheaper), and exploitation is done on thefull objective function
(which is more expensive).

• Local-optimization search operator. This operator accelerates the EA’s convergence
by de-randomizing the EA’s search steps.
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Figure 3.4:SANGRIA Structure.

We now discuss structural homotopy and the local search operator further. Then, section
3.5.2 will give a highly detailed description of SANGRIA.

3.5.1.2 Structural Homotopy

SANGRIA has a set of search “layers”, where each layer is optimizing a population of
candidate designs (“individuals”), as shown in Figure 3.4 middle column. The layers are
organized according to the degree to which the candidate designs have been optimized
(“age”): randomly-drawn designs enter the lowest layer as zero-age designs, and if they
do well they get promoted to ever-higher layers while being further optimized (and aging
+1 unit per generation). Each layer has a maximum age: 20 for layer 0, 40 for layer 1, and
so on. If a design gets too old for a given layer, then it is ejected from that layer, thereby
preventing wasted search effort on a stagnated design. The above concept is called an
age-layered population structure (ALPS) [Hor2006].

To enable yield optimization, only design candidates at thehighest age layer are fully
simulated (across all analyses, process points, and environmental corners). Designs at
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lower-age layers have fewer simulations. We call this “structural homotopy.” Other ho-
motopy algorithms work by starting with an easier-to-solveloosened version of the prob-
lem, then tightening the problemdynamically. In contrast,structuralhomotopy embeds
the loosening into the algorithm’s data structure (state).The solution to each layer can
be regarded as a point on the homotopy “zero path”. Therefore, we can view structural
homotopy as a new approach to traverse the zero path: learn itcoarsely to begin with, and
refine it over time.

Specifically for circuit yield optimization, see how in Figure 3.4, layer 0 is just simu-
lated at a single process/environmental corner of {dc/ac analyses, nominal process points,
typical environmental pointθ}. Layer 1 is like layer 0. Then, layer 2 adds transient/other
analyses on the single {s, θ} corner. Layer 4 adds non-nominal corners for dc/ac, and
layer 6 adds non-nominal corners for transient/other. The choice of corners is elaborated
in section 3.5.2.6. Finally, layer 8 does a full Monte Carlo simulation (with blocking) on
each candidate.

This split of simulations was chosen based on choosing analyses which give many
key measures for less simulation cost (ac, dc), and deferring the more expensive analyses
which only give incremental measures of quality (transient, and corners). The core idea
of structural homotopy does not depend on the exact choice, however. In section 9.5, we
will show a different allocation of evaluations that is alsoeffective.

To balance out the simulation cost per age layer, encourage even more exploration at
the lower levels, and avoid potentially prohibitive top-layer simulation costs, SANGRIA’s
lower layers have larger populations which shrink going upwards. Figure 3.4 left illus-
trates. The top layer has a tiny population, which is why we label it “ultra-local”.

To add fidelity at layers with fewer simulations, the non-simulated {s, θ} combina-
tions are predicted by adding performance deltas from other{s, θ}’s. Individuals are
compared via a cost function that allows meaningful optimization when no simulations
are feasible, some simulations are feasible, or all simulations are feasible.

Each layer follows an evolutionary algorithm (EA) framework for updating the pop-
ulation with selection operators and search operators. Selection for layeri is typical EA
selection, except individuals at layeri− 1 are also considered.

Section 3.5.2 will elaborate on specific algorithms, and specific algorithm settings will
be given in the results section (3.6).

3.5.1.3 Local-Optimization Search Operator

Each design candidate has its own local-optimization search stateχ, allowing it to learn
about the local structure of its search space and have accelerated convergence. This is
in contrast to a typical EA which uses mutation and crossoveroperators, which have no
memory and do not address fitness. It is also in contrast to “memetic” EAs which run a
whole or partial local optimization for each individual’s evaluation.

The specific local optimizer used is Dynamic Hill Climbing (DHC) [Yur1994]. DHC
was chosen compared to other local optimization algorithmsfor a few reasons. First,
derivatives are costly to compute, which rules out classical nonlinear programming algo-
rithms such as quasi-Newton with BFGS update [Noc1999]. Second, the search space has
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continuous and / or discrete elements, ruling out many modern derivative-free algorithms
such as NEWUOA [Pow2006] which can only handle continuous design variables.

Nature-inspired algorithms such as simulated annealing (SA), evolutionary algorithms
(EAs), and particle swarm optimization (PSO) are derivative-free and can handle mixed
continuous/discrete spaces. However, their behavior is aimed towards global optimiza-
tion, not local, so they are inefficient when the aim is merelylocal optimization. One
exception is the EA variant of covariance-matrix adaptation [Han2001] which has fast
convergence and a local optimization focus, but unfortunately it only works in continuous-
valued spaces.

Pattern (direct) search algorithms [Kol2003], which include the simplex [Dan1963]
and Hooke-Jeeves [Hoo1961] algorithms, are also derivative-free, can handle mixed spaces,
and have a local search focus. These are a reasonable choice,and in fact they have been
used within other analog CAD optimizers [Phe2000]. DHC [Yur1994] can be viewed as
a loosened version of pattern search - loosened because it allows for stepsize growth in
order to improve convergence rate, at the expense of losing some pattern search conver-
gence properties. Since we have many local optimizers in parallel, we are less concerned
about provable convergence per local optimizer, and more concerned with convergence
rate; hence we chose DHC.

We are now ready to describe the specific algorithms within SANGRIA, including an
elaboration of DHC.

3.5.2 SANGRIA Detailed Description

This section describes specific algorithms and sub-algorithms in SANGRIA, in detail.

3.5.2.1 High-Level Algorithm

SANGRIA’s high-level algorithm,SangriaOptimization(), is described in Table 3.5. The
algorithm’s inputs are the search space boundsD, age gapNa, maximum number of layers
K, and number of individualsNL(k) for each layerk.

Line 1 initializes the generation countNgen, the data structureP which will hold a
population at each age layerPk, and a list of all individuals encountered so far in the
searchPall. Lines 2-13 are the generational loop, which repeats until stopping conditions
are met. Lines 3-6 handle the case of an “age-gap” generationwhich happens every
Na generations. In an age-gap generation, the0th layer getsNL(0) new space-filling
individuals in theND-dimensional spaceD, including a “loose” layer-0 evaluation.

In lines 7-9, each age layerPi is updated at a time. First, parents are selected from
the current or lower layer, and only if they are not too old. Then, each individual’s local
DHC stateχ is updated, including evaluations appropriate to the age layerk (in line with
structural homotopy). Section 3.5.2.8 gives details on DHCupdating. Line 10 updates all
the individuals encountered so far,Pall, just in time for the MBO inner optimization to
use it (line 11). Lines 12 and 13 do bookkeeping: updating thebest design so fard∗, and
generation countNgen. Once the search terminates,d∗ is returned; and of course during
search intermediated∗’s can be returned.
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The sections that follow give details on other aspects of SANGRIA, including some
of the above routines which were called bySangriaOptimization().

Table 3.5:Procedure SangriaOptimization()

Inputs: D,Na,K,NL(k)
Outputs: d∗

1. Ngen = 0; P = ∅, Pall = ∅
2. while stop()6= True:
3. if (Ngen%Na) = 0:
4. if |P | < K:
5. P|P |+1 = ∅
6. P0 = SpaceFillIndividuals(NL(k), ND, D)
7. for k = 1 to |P |:
8. Pk = SelectParents(Pk, Pk−1, NL(k))
9. Pk,j = UpdateLocalOptState(Pk,j, k), j = 1 to |Pk|
10. Pall = unique(Pall ∪ P )
11. P|P | = P|P | ∪ InnerOptimize(Pall, D, k)
12. d∗ = di in Pall with highestY orCpk
13. Ngen = Ngen + 1
14. returnd∗

(a)

(b)

Figure 3.5: (a) SANGRIA with just one age layer so far,|P | = 1. (b)
SANGRIA with two age layers so far,|P | = 2.

3.5.2.2 Growth of Age Layers

We point out thatP starts out with just one layer, as shown in Figure 3.5(a). At the first
“age gap” generation, it grows a new layer, as shown in Figure3.5(b). At subsequent
“age gap” generations, it keeps adding age layers, until it hits steady state withK layers
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as Figure 3.4 shows. At steady state,|P | = K. MBO always feeds to the current top
(non-ultralocal) layerP|P |.

3.5.2.3 SANGRIA Individuals

The atomic unit that SANGRIA processes is an “individual”. Whereas in most EAs an
individual is a single design candidate, here the individual is a local optimization search
state, χ. χ holds (a) one or more design points, (b) associated circuit evaluations, and
(c) local optimizer-specific state information. More information will be provided after
section 3.5.2.8 where we discuss the local optimizer, DHC, in more detail.

3.5.2.4 ALPS Selection

Table 3.6 describes tournament selection of parents in SANGRIA. Line 1 determines the
candidate parents by merging layerk and layerk − 1, and only keeping the individuals
with age≤ maximum age at layerk. Lines 2-5 fill the selected population: lines 3 and 4
randomly draw parents 1 and 2 with uniform bias fromPcand, and line 5 selects the parent
with the lowest cost. Line 6 returns the updated populationP ′

k.

Table 3.6:Procedure SelectParents()

Inputs: Pk, Pk−1, NL(k)
Outputs: P ′

k

1. Pcand = ageOk(Pk ∪ Pk−1)
2. for i = 1..NL(k):
3. par1 ∼ unif(Pcand)
4. par2 ∼ unif(Pcand)
5. P ′

k,i = best({par1, par2})
6. returnP ′

k

3.5.2.5 SANGRIA Model Building Optimization

This section describes how MBO is deployed within SANGRIA. Table 3.7 describes the
high-level MBO algorithmInnerOptimize().

Lines 1 and 2 build the training input and output data, respectively, using the infor-
mation of all the individuals so far,Pall. Pall,1 is the first individual in this list of all
individuals,Pall,2 is the second, and so on.Pall,1.d is the design point of the first individ-
ual, and so on.

Line 3 constructs an SGB ensembleψ from the training data{X,y} (see section 3.3).
In line 4, an inner optimization is run according to the problem formulation. Since there
are two objectives (rather than a single, sensitive infill criterion), a Pareto-optimal set of
designs is returned to collectively approximateψ’s exploration-exploitation tradeoff. The
multi-objective optimization is performed using NSGA-II [Deb2002].

Multi-objective optimization could return a large number of Pareto-optimal individ-
uals. We do not want to evaluate all of these because it could become computationally
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expensive; a better option is to use a representative subset. So, line 5 reduces the number
of individuals from|Pinner| to Ninner, using clustering. SANGRIA employs bottom-up
clustering (hierarchical agglomerative clustering) [Jar1968] because it is simple, fast, and
reliable. Bottom-up clustering works as follows: (a) each point is assigned its own clus-
ter, (b) measure distance among all clusters, as the Euclidian distance between the closest
points in the clusters, (c) merge the two clusters that have shortest distance, (d) if target
number of clusters is hit, stop, otherwise goto b.

Model-building time, and inner optimization / model simulation time could become a
potential bottleneck. Accordingly, we use a rule of thumb for choosing parameter settings:
the computational effort ofInnerOptimize()cannot exceed the computational effort for
circuit simulation.

Table 3.7:Procedure InnerOptimize()

Inputs: Pall, D, k
Outputs: Pinner

1. X = {Pall,1.d, Pall,2.d, . . . }
2. y = {cost(Pall,1, k), cost(Pall,2, k), . . .}
3. ψ = BuildSgbEnsemble(X, y, Nens)

4. Pinner =

{
minimize{cost(ψ,d)}
maximize{u(ψ,d)}

}
s.t.d ∈ D

5. Pinner = cluster(Pinner, Ninner)
6. returnPinner)

3.5.2.6 Setting Corners

SANGRIA uses a corner-based approach to enhance efficiency,viewed as a “lightweight”
Monte Carlo simulation. Recall that the core idea of corners-based approaches is: if
corners are “representative” of process and environmentalvariations, and all corners can
be “solved”, then the final design’s yield will be near-100%.We repeat equation (2.14)
here:

d∗ = argmax
d∈D

(
∏

Ξi∈Ξ

δ(d,Ξi)) 7→ Y (d∗) ≈ 100% (3.10)

The challenge in SANGRIA is to choose corners that are representative of the perfor-
mance bounds, but with a minimum count. SANGRIA’s approach is to (a) takeNMC,cand

(e.g. 100) samples of process points, simulate them all at a typical environmental point,
then (b) chooseNMC,chosen (e.g. 25) representative points (corners). Representative cor-
ners are chosen in two steps: (b1) do nondominated filtering towards worst performance
values, i.e. nondominated filtering in the opposite directions of optimal, and (b2) if
needed, further reduce the points by bottom-up clustering [Jar1968]. Figure 3.6 illus-
trates. This procedure is not expensive as it is a one-time cost, done prior to starting
SangriaOptimization(). This also allows it to use designer-specified corners. The proce-
dure is also not overly pessimistic, as it is based on Monte Carlo samples.highest euclide
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Figure 3.6:Selecting representative corners. Top: nondominated filtering of
“pluses” towards worst performance values gives “squares”in the bottom-
left quadrant. Bottom: nondominated filtering followed by clustering; there-
fore the “squares” in the bottom plot are a subset of the “squares” on the top
plot that have the highest Euclidian distance.
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3.5.2.7 Evaluation and Cost Calculation

Table 3.8 describes the evaluation of a population at age layer k, Pk. Each design candi-
dated at layerk must be evaluated sufficiently for use in selection at layerk andat layer
k + 1 (line 2). Themin() accounts for the top (Kth) layer.

SANGRIA’s per-layer simulation specifications are shown inFigure’s 3.4 middle col-
umn. For example, layer 2’s specification is {dc/ac nominal,transient/other nominal}.
Therefore layer-1 individuals must also be simulated at those specifications, as its indi-
viduals are available for selection in layer 2.

Table 3.8:Procedure Evaluate()

Inputs: Pk, k,K
Outputs: P ′

k

1. for i = 1..|Pk|:
2. simulatePk,i for layermin(k + 1, K) specifications
3. P ′

k = Pk; returnP ′
k

When an individual is evaluated “on nominal”, each of its DHCstate’sd’s are simu-
lated at {nominal process pointsnom, typical environmental pointetyp}. When evaluated
“on corners”, it means that the evaluated is simulated at (1)all representatives’s with
etyp, and (2) alle’s with snom. This avoids simulatingall combinations of environmen-
tal and process points. Then, the performanceλ at a given{d, s, e} is estimated as the
performance at{snom, etyp}, summed with deltas in performance due tos ande:

λ̂(d, s, e) = λ(d, snom, etyp)
+ (λ(d, s, etyp) − λ(d, snom, etyp))
+ (λ(d, snom, e) − λ(d, snom, etyp))

(3.11)

This setup directly accounts for the interactions of{d, s} variables and{d, e} vari-
ables. It assumes that the interaction of all three together, {d, s, e}, is less significant.
However it can still handle the case when that interaction matters: the top “ultra-local”
layer simulates atall {s, e} combinations for a givend.

When the algorithm estimates the cost of an individual, the layerk is important. For
example, an individual may have enough simulations for layer 2, but is participating in a
layer-1 selection tournament; then its cost calculations only need to use the simulations
that layer 1 specifies.

The cost is computed as follows:

cost(d) = costg(d) + costcpk(d) (3.12)

wherecostg measures the total cost of violating constraints andcostcpk is a contribution
from measuring Cpk.

costg(d) =

Ng∑

i

violation(ĝwc,i(d, λi)) (3.13)
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violation(gi, λi) =

{
0 gi ≤ 0

gi−gi,min

gi,max−gi,min
otherwise

(3.14)

whereĝwc,i is the estimated worst-case value of performancei across all{s,d} combina-
tions. Performance is estimated at each{s,d} combination with equation (3.11).gi,max

andgi,min are the minimum and maximum values of performancegi seen so far in the
optimization run.

The additionalcostcpk is activated when all constraints are solved, and pulls cost< 0
depending on how high the Cpk is. It enables the optimizer to increase the margin further
once the estimated yield hits 100%:

costcpk(d) =

{
0 costg(d) = 0
−(Cpk(d) + cpkoff ) otherwise

(3.15)

wherecpkoff is a value sufficiently large to ensure that negative values of Cpk do not
make the overall value of cost be > 0. Cpk is calculated as in equation (2.6).

3.5.2.8 Dynamic Hill Climbing

Recall from section 3.5.2.3 that a SANGRIA individual is a Dynamic Hill Climbing
(DHC) [Yur1994] searchstate, rather than merely a point in design space. DHC is a
hillclimber which keeps any improvements found, and when itfinds improvements it tries
to capitalize on the direction of improvement with acceleration and ridge-walking.

In particular, the DHC stateχDHC maintains and updates (a) three design points {x,
xv, andxuv}, (b) simulation / cost info for each design point, and (c) state information
of a velocity vectorv, a ridge-walking vectoru, Vlist = possible nextv’s, and a next
actionρ ∈ {TRY _XV, TRY _XUV, STOP} . x is the current and best point so far,xv

is x + v, andxuv is x + u + v. From SANGRIA’s higher-level perspective, it only sees
that the (DHC) individual offers a design point (x), an associated cost for that point, and
a routine to update the individual’s local optimization state,updateLocalOptState().

For completeness, we give the algorithm from [Yur1994] in Table 3.9, but recast into
a state-machine framework, so that it fits into SANGRIA. At a given iteration, the DHC
stateχ is updated based on how design proposalsxv andxuv perform, i.e. how their
costs compared to the center designx’s cost. Lines of group 2 enable a “spinning” loop
where different random directions from centerx are tried, by popping fromχ.Vlist. This
loop will repeat unless a special case snaps it out (line groups 3, 4, 5, and 6).

Line groups 3 and 4 handle the case when DHC’sxv is worse and it has run out of
Vlist options. If DHC is not at the smallest stepsize, then it shrinksv and creates a new set
of options (line group 4). By adaptively shrinking the stepsize when not improving, the
probability of improvementpimprove goes up. Of course,pimprove → 0.5 as‖v‖ → 0 when
not at a local optimum. This is easy to visualize: as‖v‖ → 0, the mapping fromx to f
in the region of radius‖v‖ becomes a first-order Taylor-series approximation (a plane),
and exactly half that plane is better thanf(x). So, the DHC stepsize shrinks adaptively to
keeppimprove good. Of course, DHCwill reach a local optimum whenpimprove = 0. Once
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Table 3.9: Procedure UpdateLocalOptState() (state-machine versionof
DHC).

Inputs: χ, k. Outputs: χ′

1. if χ.ρ = TRY_XV:
2. if (cost(χ.xv) > cost(χ.x)) & (‖χ.Vlist‖ > 0):

# xv worsened; but options left at this stepsize
χ.v = pop(χ.Vlist)
χ.xv = χ.x + χ.v

3. else if (cost(χ.xv) > cost(χ.x)) & (‖χ.v‖ = vmin):
χ.ρ = STOP #xv worsened; no options left

4. else if cost(χ.xv) > cost(χ.x):
#xv worsened; but options left at smaller‖χ.v‖
χ.v = χ.v/2
χ.Vlist = NewStepsList(‖χ.v‖)
χ.v = pop(χ.Vlist)
χ.xv = χ.x + χ.v

5. else if‖χ.Vlist‖ = 0
#xv improved or neutral, without a spin; build off u
χ.x = χ.xv

χ.u = χ.u + χ.v
χ.v = χ.v ∗ 2
χ.xv = χ.x + χ.v
χ.Vlist = {}

6. else:#xv improved or neutral, but had to spin to get here; test u
χ.xuv = χ.x + χ.u + χ.v
χ.ρ = TRY_XUV

7. else: #χ.ρ = TRY_XUV:
χ.ρ = TRY_XV

8. if cost(χ.xuv) > cost(χ.x): #xuv worsened, so just go back to x+v
χ.x = χ.xv

χ.u = χ.v
χ.v = χ.v ∗ 2
χ.xv = χ.x + χ.v
χ.Vlist = NewStepsList(‖χ.v‖)

9. else: #xuv improved or neutral, so incorporate u into v andkeep going
χ.x = χ.xuv

χ.u = χ.u + χ.v
if ‖χ.u‖ > 0: χ.v = χ.u ∗ 2, elseχ.v = χ.v ∗ 2
χ.xv = χ.x + χ.v
χ.Vlist = {}

10. evaluate(updated subset of{χ.x, χ.xv, χ.xuv}, k); update cost(subset)
11.χ′ = χ; returnχ′
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it reaches that optimum, it will keep shrinking the stepsizeuntil the minimum stepsize
vmin is hit, at which point DHC will declare itself converged and stop (line group 3).

Line groups 5 and 6 handle the case when DHCxv is improved or neutral. If it
had been building on past successes without needing to do anyspinning, then it will try
to continue build on those past successes. In line group 5, because successes imply a
high pimprove, v’s stepsize is doubled. In line group 6, updatingu ties together multiple
past successes, with the hope that the aggregate is helpful.If it has not had any recent
successes, then it needs to re-initialize itsxuv and test it (line group 7).

Line groups 8 and 9 occur whenxuv is tested. Ifxuv was unsuccessful (line group
8), then the search state backtracks. If successful, then once again DHC capitalizes on it
by tying together the past successful steps (line group 9).

Line group 10 does evaluation of the newly-generated designs, and updates their cor-
responding costs for layerk. Note that all costs in this procedure are actually of aware of
layer valuek.

A speedup not shown in the algorithms is the following: if a layer has solved all
its constraints, then it has little need to do more work. Therefore it skips the call to
UpdateLocalOptState()for that layer, for additional computational savings.

3.5.2.9 Space-Filling Designs

Table 3.10 gives the details of creating individuals (DHC states) to collectively fill out
the design spaceD, using Latin Hypercube Sampling (LHS) [Mck1979]. In lines 1-3, a
raw LHS sample matrix is created, which assigns a bin for eachdesign variable of each
individual. In lines 4-10, actual design variable values are generated, where each variable
must stay within the variable’s subspace defined by the bin. Note how it handles any
mixture of continuous vs. discrete design variables. In thecase of continuous variables,
line 8 shows how further random sampling within the bin was needed∼ U([0, binsize]).

In line 11,InitializeDHCstate()for individualP0,j (stateχj) involves setting the state
χ’s attributes as follows:x = the inputd, v = a random direction having the magnitude
of minimum stepsizevmin, u = {0, 0, . . .}, xv = x + v, andxuv = x + u + v.

Line 12 evaluates the new individualsP0 sufficiently for level 0, and line 13 returns
them.

3.6 SANGRIA Experimental Results

3.6.1 Summary of Test Circuit Problems

We used the test circuits shown in Table 3.11, which includesthree opamps of increasing
size (from 10 to 50 devices), and a voltage reference circuit(“vref”). The schematics will
be shown further on.

Because of its excellent accuracy, and to illustrate the ability of SANGRIA to handle
an extremely large number of process variables, we used the process variation randomness
model of [Dre1999]. Accordingly, the local variation parameters for each transistor are:
NSUB (substrate doping concentration), VFB (flatband voltage), WINT (width variation),
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Table 3.10:Procedure SpaceFillIndividuals()

Inputs: NL(0), ND, D
Outputs: P0

1. B = zeros(ND,NL(0))
2. for i = 1..ND: #for each variable
3. Bi = random permutation of{1, 2, . . . , NL(0)}
4. for j = 1..NL(0): #for each individualP0,j

5. for i = 1..ND: #for each variable
6. if Di is continuous:
7. binsize = (Di,max −Di,min)/NL(0)
8. dnew,i = Di,min +Bi,j ∗ binsize + ∼ U([0, binsize])
9. else: #Di is discrete
10. dnew,i = (Bi,j)

th discrete value in{Di,1, Di,2, . . . , Di,max})
11. (P0,j) = InitializeDHCstate(dnew)
12. evaluate(P0, 0)
13. returnP0

Table 3.11:Test circuit sizes.

Label #
Devices

# Design
Vars.

# Process
Vars.

# Env.
Vars.

# Env.
Points

Test-
benches

10T opamp 10 21 91 5 3 ac, tran, THD
30T opamp 30 56 216 5 3 ac, tran, THD
50T opamp 50 97 342 5 3 ac, tran, THD
vref 12 28 106 3 3 ac, ac

LINT (length variation), U0 (permittivity), RSH (sheet resistance), and TOX (gate oxide
thickness). The per-resistor variation parameters are: DRSH (sheet resistance), DXW
(width variation), and DXL (length variation); and per-capacitor variation parameters are:
DXW (width variation), DXL (length variation), and DTOX (oxide thickness). There is
a single global-variation parameter for each of NSUB, VFB, etc. as well. The variables
s in the process variations’pdf(s), are normal, independent, and identically-distributed
(NIID).

Because there are so many variables per device, the total number of process variables
is very large. For example, there are 342 process variables for the 50T opamp, which, as
we will see, SANGRIA readily handles.

The technology was TSMC 0.18µm CMOS. The simulator was a proprietary SPICE-
like simulator of a leading analog semiconductor company, with accuracy and runtime
comparable to HSPICETM [Snps2008a].

In all cases, an initial “rough cut” design is supplied, which took about 10-30 minutes
for an expert designer to do. We do this only so that we can havea baseline for compari-
son, e.g. comparing the yield and performance spread of initial versus resulting designs.
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SANGRIA can leverage this, but does not rely on it, because everyNa = 10 generations
it will inject randomly-generated designs into age layer 0.These random designs get a
chance to refine because they do not have to compete with designs at higher layers, in-
cluding designs derived from the initial design. As we will see, in several experimental
runs it was crucial for SANGRIA to explicitlynot use the initial design’s region and in-
stead build on a region started from random sampling-based exploration. [Hor2006] also
observed this.

3.6.2 Algorithm and System Settings

Each run of each circuit problem had identical algorithm parameters. The maximum
number of circuit simulations wasNsim,max = 100,000, which is easy to run overnight
with a modestly-sized computer cluster. (Therefore all theruntimes for each forthcoming
SANGRIA run is overnight or less.)

The ALPS settings were as follows. In line with Figure 3.4, there wereK = 9 age
layers in steady state, a value similar to [Hor2006]. With anage gapNa = 10, the max-
imum age per layer was 10, 20, ... for layers 0, 1, ... respectively. Layer 8’s maximum
age was∞. [Hor2006] had similar values in the ’linear’ age setting. The lowest age
layer’s population sizeNL(0) was 200 individuals (like [Hor2006]). Population size de-
creased linearly fromNL(0) = 200 down toNL(7) = 8. The ultra-local layer hadNL(8)
= 3 individuals, which allowed some exploration without being overly computationally
expensive. The cost offset ofcpkoff = 10.0, which is more than enough because excellent
values of Cpk are >2.0.

NMC,chosen = 25 representative process points were chosen fromNMC,cand = 100 can-
didate points using the approach of section 3.5.2.6.

The MBO optimizer’s settings were as follows. SGB parameters were: learning rateα
= 0.10, minimum tree depthιmin = 2, maximum tree depthιmax = 7, target training error
ǫtarg = 5%. There wereNens = 5 SGBs in an ensemble. SGB parameters were set based on
recommendations from [Fri2002]. NSGA-II parameters were:Npop = 25,Ngen,max = 50,
with a crossover probability of 0.2 which was enough to get near-Pareto optimal results
without having the inner optimization risk dominating computational cost. The number of
individuals returned from a given inner optimization,Ninner, was set to 5, which is large
enough to get a good spread of the exploration-vs-exploitation tradeoff without becoming
too expensive.

Designs returned as final results hadNMC = 30 process points which is quite low, but
still provides reasonable resolution for Cpk values.

The whole system was coded in Python [Pyt2008], including Python Numeric [Pyn2008]
for handling arrays.

With the exception of the SGB parameters, there was very little tuning of these pa-
rameters. The parameters were set based on reasoning, choosing to err on the side of
reliability. There is almost certainly opportunity for improving algorithm speed and qual-
ity of results via parameter tuning.
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3.6.3 Experiments on 10T Opamp Circuit

3.6.3.1 Problem Details

Figure 3.7:Schematic of 10-device operational amplifier.

Figure 3.7 shows the schematic for the 10-transistor opamp.It has 21 design vari-
ables, 91 process variables, and three testbenches having ac, tran, and THD analyses
respectively. Each testbench has 3 environmental points composed of 5 environmental
variables. Specifications were:AV > 65 dB,BW > 1 MHz, GBW > 300 MHz,PM
> 56◦, GM < -10 dB, settling timeST < 12 ns,SR > 3e8 V/s, overshootOS < 12%,
andTHD < -45 dB. We performed four runs with different seeds to the random number
generator. We now analyze the results of each run.

3.6.3.2 Detailed Analysis of First Run

This section describes the results from the first run, going into detail to examine the quality
of the results, and SANGRIA’s convergence behavior.

Figure 3.8 shows the yield vs. generation, and Cpk vs. generation for the first run.
Each square in the plot is the result of a full Monte Carlo simulation of the current most-
promising SANGRIA design acrossNMC = 30 process points. We see on the far left of
the plot that the initial design’s yield is 26.7%, and that the next Monte Carlo sampling
happens at generation 60, giving an improved yield of 56.7%.The best yield keeps im-
proving with passing generations, until hitting the maximum of 100% yield at generation
112, making the run a success.

To be precise, the yield numbers are statistical estimates based on the 30 Monte Carlo
samples. This means that the lower bound for a “reported” 100% yield is 88.6%, with 95%
confidence (using Wilson’s confidence interval for a binomial proportion [Wil1927]). But
for simplicity, we will just say 100% yield.

Note the squares below the curve of yield vs. generation. These are Monte Carlo
sampled results where the candidate design did not do as wellas the best so far. It happens
when the best design so far on the “ultra-local” layer has already been simulated, so a
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Figure 3.8: Best yield vs. generation, and best Cpk vs. generation, for
SANGRIA run 1 on 10T opamp.

different design is tried, either from the ultra-local layer or a lower layer. Sometimes they
do well, but sometimes they do not.

Once 100% yield is achieved, there is no further optimization to do on the “yield” ob-
jective (if using Monte Carlo estimation on 30 feasibility samples). However, SANGRIA
continues to do meaningful optimization beyond this stage by maximizing Cpk. Figure
3.8 also shows the best Cpk vs. generation, denoted by the curve with the◦’s. We see
that Cpk is steadily increasing prior to achieving 100% yield, but it improves furtherafter
achieving 100% yield at generation 112. This has the effect of increasing the margins on
the performances. The best Cpk value is found in generation 123. The run stopped when
the 100,000 simulation budget was hit.

A further illustration of this continued improvement is shown in the boxplots of Fig-
ure 3.9. The 3x3 grid holds all 9 performancesAV , BW , etc. Each entry in the grid
summarizes the spread for a specific performance on the four designs, each from a Monte
Carlo sampling. In each entry, the left box / whiskers is for the initial design, and the three
proceeding rightwards are for 100%-yield designs from generation 106, 133, and 167 re-
spectively. A box/whiskers summarizes the performance’s distribution as follows. The
lower and upper whiskers are the minimum and maximum simulated values, respectively.
The lower and upper edges of the box are the 25th and 75th percentiles, respectively.
Therefore the box’s extremes contain 50% of the data, and thewhiskers contain 100% of
the data. Each performance’s y-axis is actually oriented such that thetop of the plot has
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Figure 3.9:Performance boxplots of four of the designs found in SANGRIA
run 1 on 10T opamp: initial, generation 106, generation 133,and generation
167.

the best values according to the performance’s aim. For example,AV (top left) aims “>”,
so its top is a larger value (70.0 dB) than its bottom (50.0 dB). Conversely, settling time
ST (bottom middle) aims “<”, so its top has a smaller value than its bottom (4.0 ns vs.
13.0 ns).

The feasibility threshold is the horizontal bar spanning all four boxes. Therefore it is
easy to scan the plots to see which performances are not met and by how much; or which
performances are met and their degree of margin. For example, we see that the initial
design (left box/whisker) does not meetAV ,GBW , PM , andST . It it is on the edge for
overshootOS, and is close forBW . It has some margin forSR and significant margin for
GM andTHD. GM has a very tight spread, and significant margin. The generation-167
design (right box/whisker) is above every feasibility threshold. It basically has equal or
tighter spread than the other designs on each performance metric. It has equal or better
margin than the other designs as well, except forGM which is better than the initial
design but slightly worse than the generation-106 design.

We can also do side-by-side comparisons from the initial design to improved designs.
For starters, see that all box/whisker plots of all three 100%-yield designs are fully within
the specification range, which they should be by definition. The margin forGBW signif-
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icantly improved by tightening the spread. The margins forOS, SR, andST improved
by shifting their respective mean values upwards.AV was one of the tougher specs, but
the three designs significantly tightened the spread to makeall samples feasible.

We can also compare the improvement among the three designs.For most perfor-
mances (BW , GBW , OS, PM , SR, andST ), we see that the margin improved going
left-to-right through the generation 106, 133, and 166 designs. Sometimes the margin
improved by tightening spread (e.g.THD), and sometimes by improving the mean (e.g.
PM). In the case ofGM , margin actually decreased a bit but that was not an issue
because all designs, even the initial design, had a very highmargin.

We can also ask how the area changed from the initial design toother designs. After
all, solving a yield issue via a drastic increase to area is not practical for industrial designs.
Because we do not use layout information, our area estimate is an approximation: the sum
ofW ∗L across devices. It turns out that all three 100% yield designs hadlowerarea than
the initial design; the smallest 100%-yield design has 23.7% less area than the initial
design. Table 3.12 shows the designs’ relative area values,along with Cpk values.

Table 3.12:Cpk and area for four designs in 10T opamp run 1.

Design Point Label Yield Cpk Area Change

Initial design 26.7% 0.037 0% (baseline)
Run 1 generation 106 100% 0.759 -21.7%
Run 1 generation 133 100% 0.805 -23.7%
Run 1 generation 166 100% 0.834 -23.4%

So far we’ve seen SANGRIA final results and yield / Cpk convergence. Let us now
examine SANGRIA’s behavior in more detail, by inspecting the convergence for each
SANGRIA layer. Figure 3.10 shows the cost vs. generation foreach age layer, which we
now explain. At generation 0, only the 0th age layer exists, so only its curve is plotted
until generation 10 (age gapNa = 10). Layer 0’s best design was able to immediately meet
all the layer-0 constraints, giving it a cost of 0. Thereforethe line is merely a horizontal
line at y-axis cost=0. At generation 10, layer 1 is added, andit is able to fully solve the
design as well because it has the same goals as layer 0. At the next “age-gap generation”,
generation 20, layer 2 is added, and despite having more goals (tran/other nominal), it
was able to solve them so its cost stays at 0.

Interesting things start to happen at generation 30. First,the population formerly at
layer 2 gets kicked out, into layer 3. Layer 3 has the same goals as layer 2, and there-
fore the best cost remains at 0. However, the new individualsgoing into layer 2 do not
immediately solve all the goals at generation 30, so their best cost is >0. In the plot,
these are the◦’s at a cost value of≈ 48 for generations 30-33. But those◦’s go back
to cost=0 at generation 34, which means that the new individuals at layer 2 were able to
solve the goals. At generation 40, layer 4 is added. Layer 4 gets immediately solved by
the incoming individuals from layer 3. At generation 50, layer 5 is added, and it is solved
immediately too. Throughout the whole run, layers 4 and 5 have 0 cost. Since the only
difference between them and layer 4 is adding corners on the ac testbench, it implies that
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Figure 3.10:Best cost vs. generation, for each age layer, on SANGRIA run 1
of 10T opamp.

once a design can solve for the process and environmental variations on ac performances,
it can solve for the nominal dc/tran/THD performances. It does not imply that solving on
nominal always means solving on corners, however! In fact, we confirm this when layer 6
is added at generation 60. Its cost is initially so high that it is out of the plot’s axes, but by
generation 62 the cost comes down sufficiently to be visible.These are the squares with
cost of≈ 50 at generation 62. Layer 6’s best cost continues to reduce until generation 70.

At generation 70, layer 7 is started, being initialized by layer 6’s. Layer 7 continues
convergence for generations 70-75, then plateaus for 5 generations. At generation 80,
layer 8 is created, starting with the layer 7 population. Layer 8 further reduces the cost,
and meets cost=0 at generation 84. Since it is already considering all testbenches and
process/environmental variations, then it can aim for a cost of <0, which it does. So from
generation 84, it converges with cost values < 0. It steadilyreduces cost for the remainder
of the run (the stars curve).

Another interesting signature ALPS behavior can be observed in the convergence plot.
Note the◦’s (layer 2 curve) appearing at generation 80, with cost≈ 50. Prior to that
generation, layer 2 had solved the problem having cost 0, butits individuals became too
old, and the new individuals feeding into it were not good enough to have 0 cost. So
layer 2 improves the design in generations 80-90, then handsit to layer 3 at generation 90
which solves it in 3 more generations. At generation 90, the new individuals coming into
layer 2 at generation 90 also do not solve the design. So, fromgenerations 90-99, layer 2
improves the best cost, and finally solves it at generation 100.

The spike of cost for layer 6 at generation 120 is another signature ALPS behavior.
Once again, its best individuals became too old, were ejected from layer 6, and no new
individuals could help. From generations 120-130, layer 6 converges downwards and
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feeds into layer 7 with helpful individuals. Similar spikeshappen to layer 6 at generation
140 and at generation 150. Note that sometimes spikes donot happen, such as in layer 6
for generations 90 - 120. This occurs when the layer’s younger individuals are the best.

Recall that each age gap generation (everyNa = 10 generations here), layer 0 gets
freshrandomly-generatedindividuals. This means that ALPS is consistently trying new
regions of the search space. Through the subsequent refinement in higher layers, these
regions get exploited. Individuals in less promising regions die out. ALPS continues
this space-filling process over time, and it is this characteristic that gives it the globally
reliable behavior, not only theoretically but also in practice. This property is extremely
important for handling challenging optimization problems, and we will exploit it in sub-
sequent chapters as well.

We also observe that the best randomly-generated individual of each age gap genera-
tion has zero cost (on ac testbench, no process or environmental variations). This means
that getting a functional sizing is relatively easy for thisproblem. Unsurprisingly, we will
see on more complex circuits, getting a functional sizing will take more search effort than
mere random sampling.

Figure 3.11: Zoom in on age layers 6-8 in best cost vs. generation, on
SANGRIA run 1 of 10T opamp.

While Figure 3.10 gives us insight into the convergence per layer, it is hard to exam-
ine the convergence of the top layers in detail. This is important because ultimately the
individuals in these layers become candidates for Monte Carlo sampling. So, in Figure
3.11, we zoom into layers 6, 7, and 8. First, note how layer 8’scost is monotonically
decreasing. This is because its maximum age is∞, which means individuals never get
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ejected for being too old, and the best-cost individual remains without regard to age. In
contrast, layers 6 and 7 do have upward spikes due to the age limit at these layers. Layer 6
has more drastic spikes than layer 7, because layer 6 solves atougher problem than layer
5 (which feeds it individuals). In contrast, layer 7’s problem is the same as layer 6’s, so it
has a running start.

Finally, because layer 8’s evaluations are based on full Monte Carlo sampling and
its cost function is monotonically decreasing, it means that Cpk will be monotonically
increasing, which is what we have already observed on the resulting individuals.

3.6.3.3 Second, Third, and Fourth 10T Opamp Runs

Figures 3.12, 3.13, and 3.14 are the results of three subsequent SANGRIA runs on the
10T opamp. In each run, we show the convergence of the yield vs. generation, Cpk vs.
generation, and best-cost vs. generation for each age layer.

Each of the three runs (2, 3, 4) achieved a yield of 100% at about generation 100.
Also, as Table 3.13 shows, runs 2, 3, and 4 each got Cpks betterthan run 1 in their
100,000 simulation budgets. We dive deeper to see what the difference in behavior is.

In run 2’s Figure 3.12 bottom, we see that the top age layer does not get cost < 0 until
generation 110. There was an aborted attempt at generation 70, where the second-highest
layer got cost 0, but that design did not translate to the top age layer with low cost. And
of course, it also did not translate to good yields, as confirmed by the low-yield results in
generations 70-100. The only difference in cost functions between the top two layers is
in the accounting for interactions among the process and environmental variables. This
means that the early design attempts had stronger process-environmental coupling, and
the final, more successful designs, did not. Run 3 had a similar phenomenon, as shown
in Figure 3.13. Both these runs illustrate that taking stepsfrom the initial design, no
matter how promising, might lead to a local optimum. So, there must be an opportunity
to try alternative regions. This reconfirms the need to haveglobally reliable statistical
optimization.

Run 4 (Figure 3.14) had a behavior like run 1 in its early generations. As opposed to
runs 2 and 3, run 4 had no false starts in getting a cost < 0, and the yields of its Monte-
Carlo sampled individuals were steadily improved. Accordingly, run 4 hit a yield of 100%
at generation 69, much earlier than run 2’s generation 113 and run 3’s generation 110. Its
Cpk at that point was like run 1 too: <1.0. But at generation 70, run 4 started to behave like
runs 2 and 3: its highest layer’s cost spikes upwards (to >0),so the search goes elsewhere.
Within just a few generations, the layer found a new region with cost < 0, and with its first
Monte Carlo sampling at that region (generation 76) it got a design with Cpk > 1.0. The
remainder of run 4 was like the last parts of runs 2 and 3: steady improvement to Cpk,
driven by steady lowering of the top layer’s cost, fed by lower layers’ designs.

Figure 3.15 shows the boxplot for Run 3’s best-Cpk design (right box/whisker plots)
compared to the initial design (left box/whisker plots). Comparing to the designs in Fig-
ure 3.9, we see that the result from run 3 has improved the margin significantly for all
performance measures. The run 3 design has 11% smaller area as well, as Table 3.13
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Figure 3.12:Convergence curves for SANGRIA run 2 on 10T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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Figure 3.13:Convergence curves for SANGRIA run 3 on 10T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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Figure 3.14:Convergence curves for SANGRIA run 4 on 10T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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Figure 3.15:Performance boxplots of two found in SANGRIA run 3 on 10T
opamp. In each grid entry, the left boxplot is the initial design, and the right
boxplot is the highest-Cpk design.
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shows. Of course, due to the adaptive space-filling nature ofALPS, we expect that if run
1 continued, it would eventually have achieved a high Cpk as well.

Table 3.13:Best 10T Opamp Designs from Four SANGRIA Runs.

Label Yield Cpk Area (m2)

Initial design 26.7% 0.037 11.60e-10
Run 1 Best 100% 0.835 8.88e-10 (-23.4%)
Run 2 Best 100% 1.672 10.25e-10 (-11.6%)
Run 3 Best 100% 1.849 10.32e-10 (-11.0%)
Run 4 Best 100% 1.669 12.04e-10 (+3.80%)
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3.6.4 Experiments on 30T Opamp Circuit

Figure 3.16 shows the schematic for the 30-transistor opamp. It has 56 design variables,
216 process variables, and three testbenches having ac, tran, and THD analyses respec-
tively. Performance specifications were: gainAV > 37.5 dB, bandwidthBW > 13.5 MHz,
gain-bandwidthGBW > 300 MHz, phase marginPM > 59◦, GM < -10 dB, unity gain
frequencyFU > 265 MHz, settling timeST < 5 ns,SR > 1.85e8 V/s, overshootOS <
6%, and total harmonic distortionTHD < -40 dB.

Figure 3.16:30-device operational amplifier.

We performed four independent runs, with resulting convergence curves shown in
Figures 3.17, 3.18, 3.19, and 3.20 respectively.

In short, all four runs hit 100% yield, and kept improving Cpksignificantly beyond.
Each of the per-layer cost convergence curves shows the signature behavior that we ex-
amined in detail on the 10T problem. Figure 3.19 is particularly interesting, because it
only got good results very late in the run; until the good results (and after them) the lower
age layers repeatedly try different regions. Finally, a good region was found and the yield
and Cpk increased accordingly. This reconfirms the value of SANGRIA’s age-layered
approach to achieving global reliability.
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Figure 3.17:Convergence curves for SANGRIA run 1 on 30T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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Figure 3.18:Convergence curves for SANGRIA run 2 on 30T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. generation.



82 Globally Reliable, Variation-Aware Sizing: SANGRIA

Figure 3.19:Convergence curves for SANGRIA run 3 on 30T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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Figure 3.20:Convergence curves for SANGRIA run 4 on 30T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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3.6.5 Experiments on 50T Opamp Circuit

Figure 3.21 shows the schematic for the 50-transistor opamp. It has 97 design variables
(W ’s, L’s, etc), 342 process variables, and three testbenches having ac, tran, and THD
analyses respectively. Therefore, these experiments demonstrate the ability of SANGRIA
to scale to a very large number of design variables and an evenlarger number of process
variables. Performance specifications were: gainAV > 30 dB, bandwidthBW > 2.3
MHz, gain-bandwidthGBW > 50 MHz, phase marginPM > 65◦, gain marginGM <
-5 dB, unity gain frequencyFU > 50 MHz, settling timeST < 15 ns,SR > 1.5e8 V/s,
overshootOS < 5%, and total harmonic distortionTHD < -40 dB.

Figure 3.21:50-device operational amplifier.

We performed two independent runs, which are shown in Figures 3.22 and 3.23 re-
spectively.

The first run hit a yield of 100% within 80 generations, and kept improving its Cpk
significantly beyond that.

The second run almost hit a yield of 100% within its pre-allocated runtime. Upon in-
spection of the cost convergence curves, we see that almost all the age layers consistently
hit a cost of 0 very quickly, and stayed there. Recall that SANGRIA has a “speedup”
where if a layer’s cost is 0, then it ignores further evolution of that layer until the next
age gap. Since fewer age layers are evolving aggressively, there is less opportunity for
SANGRIA to explore its way out. There is some evolution, however, indicated by the up-
ward spikes in the right third of the cost convergence curves; so we expect that eventually
SANGRIA will hit the target due to its continued space-filling sampling to explore new
regions. From a user’s perspective, the user would be able toobserve the convergence of
best cost vs. generation for each age layer, and could therefore observe that progress is
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being made. So in an industrial setting, he would just continue to run SANGRIA until
he observes that progress has stagnated, or that he has achieved the target yield (the more
likely scenario).

Figure 3.22:Convergence curves for SANGRIA run 1 on 50T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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Figure 3.23:Convergence curves for SANGRIA run 2 on 50T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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3.6.6 Experiments on Voltage Reference (vref) Circuit

The schematic for the voltage reference is shown in figure 3.24. It has 12 devices, 28
design variables, and 106 process variables. It has two ac testbenches, each with three
environmental points having three environmental variables. Performance specifications
were: powerPWR < 0.111 mW, temperature coefficientTC < -20◦C, minimum temper-
atureTMIN < -20◦C, maximum temperatureTMAX > 85◦C, voltage-change reference
DVREF < 600, minimum voltageVMIN < 0.78 V, maximum voltageVMAX > 2.8
V.

Figure 3.24:Voltage reference schematic.

We performed four independent runs. The convergence curveswhich are shown in
Figures 3.25, 3.26, 3.27, and 3.28 respectively. Each Figure shows best yield vs. genera-
tion, best Cpk vs. generation, and best cost vs. generation for each age layer.

In short, all four runs hit 100% yield, and kept improving Cpkbeyond. Once again,
each of the per-layer cost convergence curves shows the signature behavior that we exam-
ined in detail on the 10T problem.
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Figure 3.25:Convergence curves for SANGRIA run 1 on voltage reference.
Top: best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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Figure 3.26:Convergence curves for SANGRIA run 2 on voltage reference.
Top: best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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Figure 3.27:Convergence curves for SANGRIA run 3 on voltage reference.
Top: best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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Figure 3.28:Convergence curves for SANGRIA run 4 on voltage reference.
Top: best yield/Cpk vs. generation. Bottom: best cost vs. generation.
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3.6.7 Summary of Experimental Results

Table 3.14 summarizes the experimental results of the 14 SANGRIA runs across four
different circuit test problems.

Table 3.14:Summary of SANGRIA Experimental Results.

Problem and Run # # Variables Initial Yield Final Yield Runtime

10T opamp run 1 122 26.7% 100% < overnight
10T opamp run 2 122 26.7% 100% < overnight
10T opamp run 3 122 26.7% 100% < overnight
10T opamp run 4 122 26.7% 100% < overnight
30T opamp run 1 302 20.0% 100% < overnight
30T opamp run 2 302 20.0% 100% < overnight
30T opamp run 3 302 20.0% 100% < overnight
30T opamp run 4 302 20.0% 100% < overnight
50T opamp run 1 489 23.3% 100% < overnight
50T opamp run 2 489 23.3% 83.3% < overnight
vref run 1 146 16.7% 100% < overnight
vref run 2 146 16.7% 100% < overnight
vref run 3 146 16.7% 100% < overnight
vref run 4 146 16.7% 100% < overnight

3.7 On Scaling to Larger Circuits

This section discusses how SANGRIA would address circuits with 1000 or 10,000 or
more devices, i.e. system-level circuits. The short answeris that system-level designs
can be hierarchically decomposed, and that each node in the hierarchy can be explored by
SANGRIA (or a modified version).

There are several alternative hierarchical design methodologies, and several ways to
estimate performance at each node in the hierarchy. SANGRIAcan fit into most combina-
tions. Methodologies include top-down constraint-drivenapproach (TDCD) [Cha1997],
and multi-objective bottom up approach (MOBU) [Eec2005, Eec2007], which section
1.2.3 discussed further. For SANGRIA to handle MOBU or bottom-up computation of
feasibility regions, it would be modified to be multi-objective.

Then the question is whether or not SANGRIA can handle the most complex node
within a design hierarchy. System-level and higher designstend to have 5-20 components
at their level of the hierarchy, whereas cell-level designshave typically 10-50, (and some-
times as many as 250). So, by demonstrating the ability to handle 50-devices, SANGRIA
should be applicable anywhere in the hierarchy, and therefore handle designs with 1000
or 10,000 or more devices.
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3.8 Conclusion

Recall from the review in chapter 2.1 that none of the optimization approaches in the liter-
ature or industry had a combination of accuracy, reasonableefficiency, and globally reli-
able convergence. This chapter has presented a solution: SANGRIA. SANGRIA is a tool
for globally-reliable, variation-aware sizing of analog circuits [Mcc2008e]. SANGRIA
makes no accuracy-compromising assumptions, can handle high-dimensionality statis-
tical SPICE models, and uses simulation in the loop, but achieves industrially-feasible
runtime. Most importantly, it has globally reliable convergence, which means that the
designer does not need to be concerned about whether the optimization is stuck. Designer
confidence is further improved by showing visualizations ofbest-cost convergence per
age layer.

SANGRIA’s key elements are: structural homotopy with ALPS,individuals embed-
ding a local-optimization search operator (DHC), and improved model-building optimiza-
tion (MBO) combining scalable regression (SGB ensembles) and inner multiobjective
optimization.

We have tested SANGRIA on four different circuit problems from two different circuit
classes (opamp and voltage reference), in a total of 14 runs.The problems ranged from
10-device circuits having 21 design variables and 91 process variables, up to 50-device
circuits with 97 design variables and 342 process variables. In 13 / 14 runs, SANGRIA
was able to successfully attain 100% yield and further improve Cpk within an industri-
ally feasible number of simulations and runtime, despite the extremely high number of
parameters and evidence of multimodality. In contrast, no other approaches have reported
global yield optimization results for circuits with this many transistors, and especially not
this many process variables.

While this chapter has presented adesign aidto support global variation-aware sizing
via optimization, the next chapter presents aninsight aid for variation-aware sizing via
the extraction of whitebox performance models.
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Chapter 4

Knowledge Extraction in Sizing:
CAFFEINE

All models are wrong, but some are useful.
–George E.P. Box

4.1 Introduction and Problem Formulation

4.1.1 Chapter Summary

This chapter presents a tool to accelerate designer insightin sizing, by extracting whitebox
performance models. The tool is called CAFFEINE [Mcc2005a,Mcc2005b, Mcc2005c,
Mcc2006a, Mcc2006b, Mcc2006c, Mcc2008b, Mcc2008g]. CAFFEINE implements a
method to automatically generate compact, interpretable symbolic performance models
of analog circuits with no prior specification of an equationtemplate. The symbolic
models capture mappings of the design variables to individual performances or to Cpk
(a robustness measure). CAFFEINE takes SPICE simulation data as input. This en-
ables modeling of whatever SPICE handles: arbitrary nonlinear circuits, arbitrary circuit
characteristics (including transient and noise performance measures), modern technol-
ogy processes, environmental effects, and manufacturing variations. The possible ex-
pressions for the model are defined as a set ofcanonical form functions, structured as
layers of product-of-sum terms that alternate with layers of sum-of-product terms. These
canonical form functions are modeled as agrammar, which is subsequently searched via
grammatically-constrained genetic programming. Novel evolutionary search operators
are designed to exploit the structure of the grammar. By employing multi-objective op-
timization, CAFFEINE generates a set of symbolic models which collectively provide a
tradeoff between error and model complexity.

On six test problems, the compact performance models demonstrate better prediction
quality than several other state-of-the-art modeling techniques including posynomials,
splines, neural networks, and support vector machines.

We also describe techniques to scale CAFFEINE to handle problems with more than
100 input variables, validated by further experiments.
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4.1.2 Motivation

Bothsymbolic analysisandsymbolic modelingaim to derive human-interpretable expres-
sions of analog circuit behavior [Rut2007]. Symbolic analysis extracts the expressions
via topological analysis of the circuit, whereas symbolic modeling extracts the expres-
sions by using SPICE simulation data. These expressions have the same applications:
knowledge acquisition and educational / training purposes, analytic model generation for
automated circuit sizing, design space exploration, repetitive formula evaluation including
statistical analysis, analog fault diagnosis and testability analysis, and analog behavioral
model generation [Gie2002b]. In particular, a tool that canhelp a designer improve his
understanding of a circuit is highly valuable, because it leads to better decision-making
in circuit sizing, layout, verification, and topology design, regardless of the degree of
automation [Mcc2005a]. Therefore, approaches to generatesymbolic expressions are of
great interest.

Historically, symbolic analysis came first. Notable approaches include ISAAC [San1989,
Gie1989], ASAP [Fer1991a, Fer1991b], SYNAP [Sed1988, Sed1992], SAPEC [Man1991],
SSPICE [Wie1989], SCYMBAL [Kon1988], SCAPP [Has1989], Analog Insydes [Som1993],
and CASCA [Flo1993]. These tools differ in terms of: analysis domain (s-domain, z-
domain, dc domain), device-level vs. system-level analysis, use of small-signal lineariza-
tion, support for mismatching, support for approximations(for better interpretability),
support for weakly nonlinear circuits, support for hierarchical analysis (for better scala-
bility), and how the problem is actually formulated (modified nodal analysis, signal-flow
graph, admittance matrix, etc.). The paper [Gie2002b] is a tutorial. There has evidently
been great interest in symbolic analysis. However, its mainweakness has traditionally
been the limitation to linearized and weakly nonlinear circuits. This was recently over-
come via piecewise-linear/polynomial modeling approaches like [Man2003, Yang2005,
Dong2008]. Those new approaches, however, return expressions that are hard to inter-
pret, which is counter to the main motivations of symbolic analysis

Leveraging SPICE simulations in modeling is promising because simulators readily
handle nonlinear circuits, environmental effects (e.g. temperature, power supply volt-
age, loads), manufacturing effects, different technologies, new effects (e.g. proximity
[Dre2006]), and more. Simulation data has been used to trainmany types of regressors, in-
cluding linear models [Gra2007, Mcc2005c, Li2008c], posynomials [Dae2002, Dae2003,
Dae2005, Agg2007], polynomials [Li2007b, Mcc2005c], splines [Wol2004, Mcc2005c],
neural networks [Van2001, Wol2003, Mcc2005c], boosted neural networks [Liu2002,
Mcc2005c], support vector machines [Ber2003, Kie2004, Ding2005, Ding2005b, Mcc2005c],
latent variable regression [Sin2007, Li2008b], and kriging [Mcc2005c, Yu2007b]. How-
ever, such models either follow an overly restrictive functional template which limits their
applicability, or they are opaque and thus provide no insight to the designer. Less opaque
flows exist, such as visualizing CART trees [Bre1984] or extracting rules from neural
networks [Tic1999]. However, these approaches do not give the functional relations that
symbolic models provide.

The aim ofsymbolic modelingas defined in this thesis is touse simulation datato gen-
erate interpretable mathematical expressions for circuitapplications, typically relating the
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circuit performances to the design variables. Symbolic modeling has similar goals to sym-
bolic analysis, but a different core approach to solving theproblem. A symbolic modelψ
maps anNd-dimensional input vector of sizings and biasingsx to a scalar approximator
of circuit performancey. That is:ψ : x 7→ ŷ.

In [Dae2002, Dae2003, Agg2007], posynomial-based symbolic models are constructed.
The main problem is that the models are constrained to a predefined template, which
restricts the functional form. Also, the models have dozensof terms, limiting their
interpretability for designers. Finally, the approach assumes that posynomials can fit
the data; in analog circuits there is no guarantee of this, and one might never know
in advance. There have also been advances in building quadratic polynomial models
[Li2006, Li2007b, Feng2006], but polynomials also have a restrictive structure that limit
their usefulness.

4.1.3 Approach

The problem we address in this chapter is how to generate symbolic models with more
open-endedfunctional forms (i.e. without a pre-defined template), forarbitrary nonlin-
ear circuits and circuit characteristics, and at the same time ensure that the models are
interpretable. A target flow that reflects these goals is shown in Figure 4.1.

We approach the question by posing it as a search problem in the space of possible
functional-formtrees. An appropriate search algorithm is then genetic programming (GP)
[Koza1992], which conducts the search by iterative evolution of a population of points.
(A non-population-based approach like [Lan1987] is possible, which examines just one
search point at a time. However, because it is single-point,then it cannot swap sub-
expressions between candidate functions. This compromises its ability to explore the
search space effectively.)

GP generates symbolic expressions without using a template, but those functions are
overly complex. So, we extend GP via a grammar specifically designed to have sim-
pler but accurate,interpretablesymbolic models. We name the approach CAFFEINE:
Canonical functional form expressions inevolution.

The contributions of this chapter are as follows:

• To the best of our knowledge, the first-ever tool fortemplate-free symbolic modeling.
Because it uses SPICE simulation data, it allows modeling ofany nonlinear circuit
characteristic, or analysis (including transient, noise,and more).

• The approach returns models that are compact and understandable, yet with good
accuracy. In fact, it returns asetof possible models thattrade off accuracy and com-
plexity.

• A GP-specific contribution is a specially designed grammar and related operators,
which ensures that all functions explored follow acanonical form, making them di-
rectly interpretable. The grammar plugs into any grammatical-GP engine.

• Finally, this chapter proposes techniques toscalesymbolic modeling to problems
with more than 100 input variables. The techniques are: subtree caching [Kei2004],
gradient-directed regularization [Fri2004] to simultaneously prune basis functions and
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Figure 4.1:Template-free symbolic modeling flow.

learn remaining coefficients, a pre-evolution step of filtering single-variable expres-
sions, and always considering all the linear basis functions.

4.1.4 Problem Formulation

The modeling problem that we address has the flow of Figure 4.1. It is formulated as
follows:

Given:

• X andy: A set of {xj, yj}, j = 1..N data samples wherexj is aNd-dimensional
design pointj andyj is a corresponding circuit performance value measured from
SPICE simulation of that design. Design of experiments (DOE) or circuit optimiza-
tion can be used to generate the data samples.

• No model template

Determine:

• A set of symbolic modelsM that together provide the Pareto-optimal tradeoff between
minimizing model complexityf1 and minimizing future model prediction errorf2.

The formulation is a constrained optimization problem:

M = minimize

{
f1 = complexity(ψ)
f2 = Ex,yL(y, F (x;ψ))

}
s.t.ψ ∈ Ψ (4.1)

whereΨ is the space of template-free symbolic models. The algorithm will traverseΨ
to return a Pareto-optimal setM = {ψ∗

1, ψ
∗
2, . . . , ψ

∗
NM

}. Each modelψ maps anNd-
dimensional inputx to a scalar circuit performancey, i.e. ŷ = ψ(x). Equivalently,
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y = F (x;ψ). Complexity issomemeasure that differentiates the degrees of freedom
between different models. Details are in equation (4.5).

Ex,yL is the expected loss for a givenψ over future predictions in the distribution
pdf(x), whereL is the squared-error loss function [Fri2003]:

L(y, F (x;ψ)) = (y − F (x;ψ))2)/2 (4.2)

Section 4.4.1 will describe how an approximation forL() is computed.
By definition, no model in the Pareto-optimal setM dominates any other model.

A model ψa “dominates” another modelψb if {fj(ψa) ≤ fj(ψb)}∀j, and{fj(ψa) <
fj(ψb)}∃j; j = {1, 2} in our case. That is, to be Pareto-optimal, a model must be at least
as good as any model on both objectives, and better than any model in one objective.

4.1.5 Chapter Outline

The rest of this chapter is organized as follows.
Section 4.2 presents background on genetic programming / symbolic regression, and

identifies specific issues with the status quo approaches. Section 4.3 introduces the heart
of CAFFEINE: canonical form functions. Section 4.4 describes the reference search al-
gorithm, which uses multi-objective genetic programming and a grammar to constrain to
canonical form functions. Section 4.5 describes the first round of experiments. Section
4.6 describes how to scale up CAFFEINE to larger problems, with corresponding experi-
ments in section 4.7. Section 4.8 describes other applications of CAFFEINE. Section 4.9
discusses the sensitivity of canonical form functions to the search algorithm employed.
Section 4.10 concludes.

4.2 Background: GP and Symbolic Regression

4.2.1 Background: High-Level Issues

Genetic Programming (GP) [Koza1992] is an evolutionary algorithm, with the distin-
guishing characteristic that GP individuals (points in thedesign space) aretrees. Since a
symbolic model is a function and can be represented as a tree,the search for template-free
models can be accomplished by GP search. In the GP literature, this is calledsymbolic
regression(SR).

The functional form of results from canonical GP is completely unrestricted. While
this sounds promising compared to the restrictions of fixed-template regression, it actually
goes a little too far: an unrestricted form is almost always difficult to analyze. GP-evolved
functions can be notoriouslycomplexand un-interpretable. For example, [Koza1992]
showed functions so bloated [Sou2002] that they take up a full page of dense text. A recent
paper complains: “[GP-evolved] expressions can get, as we have seen, quite complex, and
it is often extremely difficult to understand them without a fair bit of interaction with a
tool such asMathematica” [Kir2004].

We can see for ourselves. Using a dataset from section 4.5, canonical GP evolution
returned the following “optimized” expression:
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−1.40 ∗ (vsg1 +max(vsg5, max(max(max(vsg5, max(vsg3 + vgs2, min(vsg3,
abs(1/vds2))) − log10(vsd5)), min(ib2, abs(sqrt(abs(id1))))) − log10(vsd5),
max(id2, min(vsg3, abs(sqrt(abs(log10(id2)))))) + log10(vsd5))−min(vsg3,
abs(sqrt(abs(id1)))) − log10(vsd5)))

Improvements are clearly needed. The first step is to identify and enumerate thespecific
issues that SR has.

4.2.2 Background: Specific SR Issues

This section examines SR challenges and GP approaches (or lack of approaches) to handle
each. Most of them are specific to SR.

Managing Complexity. Occam’s Razor is the guide here: the simplest model that de-
scribes the data is usually the correct one. Complexity is typically dependent on measures
like tree depth and node count. In GP, expression-simplification processes are of two
varieties: non-SR and SR-specific.

Non-SR techniques include:

• penalizing complex solutions (“parsimony pressure”) [Koza1992],

• having complexity as a second objective and using a multi-objective algorithm [Smi2005,
Kor2006],

• maximum tree depth [Koza1992],

• uniform operators such that depths never grow [Poli1999b],and

• other “bloat control” methods, e.g. [Pan2004].

The SR-specific approach is to do symbolic simplification, either (a) automatically
during or after evolution with a symbolic math tool like Mathematica, or (b) manually
after evolution.

Excessive Compounding of Nonlinear Operators.GP gives equal treatment to function
operators, whether they are linear or nonlinear (e.g. ’+’ vs. log()). The result is that even
a very small tree which would pass GP-parsimony standards could be not interpretable
by humans. An example istan(exp(sin(x))): three compounded nonlinear operators
is too much, and even two is questionable. Maximum tree depthmight handle this, but
unfortunately the tree must still be large enough to handle other reasonable combinations
of expressions such as polynomials.

Finding Coefficient Values. Induced expressions might have real-valued coefficients
which must be determined during GP search. Coefficients can be either the linear "weights"
on each basis function (along with the offset), or the nonlinear coefficients inside basis
functions.

Linear weights can be handled by: inclusion with nonlinear coefficients; linear re-
gression [Mck1999]; or having just one overall basis function and a simple correlation
calculation to sidestep linear regression until after evolution [Kei2004b].
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Nonlinear coefficients can be handled by “ephemeral random constants” [Koza1992];
by constant perturbation on a distribution, e.g. uniform [Spe2004] or Gaussian [Ang1996];
via nonlinear optimization [Top2001]; within a constant-creation grammar such as digit
concatenation [Dem2005]; or even combining multiple strategies [Dem2005].

Log-Range of Coefficient Values.For some problems, coefficient values should also
be able to take on a wide range of possible values that may varyby many orders of
magnitude: large positive numbers like 1.0e+10, small positive numbers like 1.0e-10,
zero, small negative numbers, and big negative numbers.

Some SR approaches handle it implicitly by allowinglog() and/orpower() operators
to act directly on the constants, or by choosing from a discrete set of log-range variables.
We have not been able to identify any work that directly addresses log-valued constants
for continuous-valued numbers.

Coefficient values are just one side of the “coefficient coin”; GP must also determine
where in the expression to insert each constant. Thus, in contrast to much research on
coefficient values, with the exception of the linear/nonlinear distinction, there is little
discussion of coefficient placement in the GP literature. Unfortunately, this means that
GP-evolved equations can end up having too few constants in some places and too many
in others; i.e. shortagesandexcesses.

Coefficient Shortages.Consider the expressionf(x) = log(x), which might appear in
a typical SR run. We can rewrite it asf(x) = w0 + w1 ∗ log(w2 + w3 ∗ x) in which it
has four implicit coefficients:w0 = 0.0,w1 = 1.0,w2 = 0.0, andw3 = 1.0. The first two
coefficientsw0 andw1 are linear; the others are nonlinear.

As Figure 4.2 illustrates, GP should be able to make small steps in the space of the
function’s behavior by having all relevant coefficients readily available. If there is a coef-
ficient shortage, tunability of the function is compromised.

Figure 4.2:Coefficients can be difficult to insert if not already present, even if
the behavioral change is small.

Coefficient Overabundance.Missing constants in some places is one issue, and having
too many in other places is another. The GP system is evolvingmore parameters than it
needs to. Figure 4.3 illustrates one of many examples.

Non-compact Polynomials and Rationals.In GP, it takes many terms to build up a
polynomial, and sometimes those terms cancel each other outcausing redundant terms,
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Figure 4.3:An example of coefficient overabundance.

as Figure 4.4 shows. In the literature, this is also handled implicitly as part of symbolic
simplification.

Figure 4.4: It can take many nodes to get a simple polynomial or rational
expression. They can even cancel each other out.

Dimensional Awareness.In real-world use, functions describe something, and that "some-
thing" has units of measurement. Each input variable, and the target variable, has its own
unit, such as "m/s" for a velocity variable. For a GP-evolvedfunction to be physically
meaningful, the units have to align, e.g. only like units canadd, and the input variables
must propagate through to the output such that the correct output unit is hit. Most SR
systems ignore this, but the work of Keijzer is a notable exception. He demonstrated
one system that used dimensionless values, another that biased evolution towards correct
units, and a third system that had correct-by-constructionunits [Kei1999, Kei2001]. Kei-
jzer noted that if there is a coefficient in front of an expression, that coefficient could
conceivably have "corrective" units such that the input units translated properly into the
output units. Interestingly, the existence of coefficientseverywhere (implicit or explicit)
causesimplicit corrective unit transformations!

Bounded Ranges for Expression Outputs.For a given problem, each unit of measure-
ment has a range of reasonableness. For example, velocity ofa car can safely be bounded
between 0 and 500km/h. An ideal function would never allow intermediate or final ex-
pressions that go beyond unreasonable unit ranges. Most GP research ignores this, though
Keijzer handles this via interval arithmetic in GP [Kei2001, Kei2003].

Bounded Ranges for Operators.Some mathematical operators are only valid for spe-
cific ranges, e.g. division “/” can only have a nonzero denominator, andlog() needs a pos-
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itive argument. GP research typically handles this by “protected operators” [Koza1992]
or simple exception handling, though the safest and most elegant way is probably interval
arithmetic [Kei2001, Kei2003].

The challenge is to find a way to restrict the functional form enough to overcome each
of these SR problems, without constraining away any possible forms. The next section
discusses CAFFEINE, and how it overcomes these issues.

4.3 CAFFEINE Canonical Form Functions

The design of CAFFEINE follows two guidelines:

• ensure maximum expressiveness per node, and

• make all candidate functions directly interpretable.

Figure 4.5 shows the general structure of a CAFFEINE function. It alternates between lev-
els ofsum-of-productexpressions andproduct-of-sumexpressions. Each sum-of-product
expression is a weighted linear add of an overall offset termplus weighted basis func-
tions. A basis function is a combination of product terms, where each product term is a
polynomial/rational, zero or more nonlinear operators, and zero or more unity operators.
Each product term acts as a “gate” to the next sum-of-products layer.

Figure 4.5:CAFFEINE evolves functions of this canonical form. While itcan
go deeper indefinitely, it is typically only as deep as shown in order to retain
human interpretability.

An example function is shown in Figure 4.6. We now describe how the function aligns
with the CAFFEINE object, a tree. In the “7.1/x3” part of the function, the 7.1 is the tree’s
top left “w0” and the “1/x3” is its neighboring “poly/rat’l of vars”. The “1.8” corresponds
to top “w1”, and the “x1” is the its neighboring “poly/rat’l of vars”.

The function’s “log” corresponds to “nonlinear func”, which in the tree holds the
“weighted linear add” term “−1.9 + 8.0/x1 + 1.4 ∗ x2

2/x3”. That term itself breaks down:
function’s the “−1.9” is the tree’s lower “woffset”; “ 8.0/x1” corresponds to the tree’s
lower left “w0” * “poly/rat’l of vars”; and “1.4 ∗ x2

2/x3” corresponds to the tree’s lower
right “w1” * “poly/rat’l of vars”.
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Note how CAFFEINE places coefficients only where they are needed, and nowhere
else. This characteristic, which is distinct from traditional GP approaches to symbolic
regression, is critical to generating interpretable functions. A coefficient on everything
also means that they can be "dimensional transforms" to resolve dimensional awareness.

Figure 4.6: Example of a function in text form, and its corresponding
CAFFEINE tree form.

Figure 4.7 gives an example which has unity functions for product terms. Specifically,
note how there isno nonlinear function that gates one layer of linear adds to thenext. In
this fashion, CAFFEINE supports a product-of-sums formulation.

Figure 4.7:Example where CAFFEINE product terms include unity functions.

Typical usage of CAFFEINE would restrict the number of product term layers to just
one or two, which is a more effective “maximum depth” constraint, therefore ensuring that
there is not an excessive compounding of nonlinear components such aslog(sin(exp(x))).
There is a limit on the number of basis functions. Due to the use of a canonical form, all
evolved functions are immediately interpretable, with no symbolic manipulation needed.

Such constraints on functions directly resolve excessive complexity including GP
bloat [Sou2002]. Furthermore, they can be used in a complementary fashion with other
complexity-reducing tactics, e.g. having a second objective of complexity within multi-
objective search.



4.4 CAFFEINE Search Algorithm 105

4.4 CAFFEINE Search Algorithm

This section describes the search algorithm used on CAFFEINE functions. CAFFEINE
search uses genetic programming (GP) as a starting point, but extends it in order to prop-
erly address template-free symbolic modeling. It attacks the issues of model complexity
and interpretability in two main ways: a multi-objective approach that provides a tradeoff
between error and complexity, and a specially designed grammar / operators to constrain
the search to specific functional forms without restrictinggood solutions.

As described in the previous section, in CAFFEINE the overall expression is a linear
function of basis functionsBi; i = 1, 2, ..., NB:

y = F (x;ψ) = a0 +

NB∑

i=1

ai ∗Bi(x) (4.3)

A CAFFEINE individualψ has one GP tree to define each basis function:ψ =
{B1, B2, ..., BNB

}. The linear coefficientsai are determined on-the-fly using linear re-
gression on the least-squares eror cost function.

4.4.1 Multi-Objective Approach

CAFFEINE uses a state-of-the-artmulti-objectiveevolutionary algorithm, namely NSGA-
II [Deb2002]. NSGA-II returns a set of individuals that, collectively, trade off model error
and complexity. Error and complexity are objectivesf1 andf2 in equation (4.1).

Error (expected lossEx,yL) is approximated by “training error”ǫtr, which is is the
normalized root mean squared error of individualψ on training data:

ǫtr(ψ) =

√√√√ 1

Ntr
∗

Ntr∑

i=1

(
ŷtr,i − ytr,i

max(y) −min(y)

)2

(4.4)

whereNtr is the number of training samples,ytr,i is samplei of training outputsytr, ŷtr,i

= F (xtr,i;ψ), andxtr,i is samplei of training inputsXtr. Note that the y-values are
scaled byy, notytr. ǫtest has a similar formula, except theNtr training points{ytr,Xtr}
are replaced by theNtest testing points{ytest,Xtest}.

Complexity is measured from the number of basis functions, the number of nodes in
each tree, and the exponents of “variable combos” (VCs), according to:

complexity(ψ) =

NB∑

j=1

(wb + nnodesj +

nvc(j)∑

k=1

vccost(vck,j)) (4.5)

wherewb is a constant to give a minimum cost to each basis function,nnodes(j) is the
number of tree nodes of basis functionj, andnvc(j) is the number ofVCs of basis function
j, with cost:

vccost(vc) = wvc ∗
d∑

i=1

|vc(i)| (4.6)
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Using the terminology of [Wam1995], the approach accomplishessimplification during
generation. It does so by maintaining evolutionary pressure towards lower complexity.
The user avoids ana priori decision on error or complexity because the algorithm gener-
ates a set of models that provide tradeoffs of alternatives,rather than producing just one
model.

Note that specific parameter settings are given in the experiments (section 4.5).

4.4.2 Grammar Implementation of Canonical Form Functions

In GP, a means of constraining search is via a grammar, as in [Whi1995]. Tree-based
evolutionary operators such as crossover and mutation mustrespect the derivation rules
of the grammar.

Even though grammars can usefully constrain search, none have yet been carefully
designed for functional forms. In designing such a grammar,it is important to allow all
functional combinations (even if just in one canonical form).

The CAFFEINE grammar, shown in Table 4.1 is explicitly designed to create separate
layers of linear and nonlinear functions and to place coefficients and variables carefully;
in adherence with Figure 4.5

Table 4.1:CAFFEINE Grammar.

REPVC 7→ VC | REPVC * REPOP | REPOP
REPOP 7→ REPOP * REPOP | OP_1ARG ( W + REPADD) |

OP_2ARG ( 2ARGS ) | ... 3OP, 4OP, etc
2ARGS 7→ W + REPADD, MAYBEW | MAYBEW, W + REPADD
MAYBEW 7→ W | W + REPADD
REPADD 7→ W * REPVC | REPADD + REPADD
OP_2ARG 7→ DIVIDE | POW | MAX | etc
OP_1ARG 7→ INV | LOG10 | etc

First, we describe the notation of Table 4.1. The nonterminal symbols are in bold-case
(terminal symbols are not). Each line (or two) shows the possible expressions that a non-
terminal symbol on the left can map (7→) into. The possible expressions, i.e. “derivation
rules” are separated by the OR operator ‘|’.

We now explain how the grammar implements canonical form functions.REP is short
for “repeating”, such as “repeating operators”REPOP and “repeating variable combo”
REPVC, which are explained further. The start symbol isREPVC, which expands into
one basis function (remember that an individual has severalroot-level basis functions).
Note the strong distinction among operators. The root is a product of variables (REPVC)
and / or nonlinear functions (REPOP). Within each nonlinear function isREPADD, the
weighted sum of next-level basis functions.

A VC is a “variable combo”, intended to maintain a compact representation of poly-
nomials/rationals. Its expansion could have been implemented directly within the gram-
mar; though in our baseline system we store a vector holding an integer value per de-
sign variable as the variable’s exponent. An example vectoris [1,0,-2,1], which means
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(x1 ∗ x4)/(x3)
2, and according to equation (4.6) has cost|1|+ |0|+ | − 2|+ |1| = 4. This

approach guarantees compactness and allows for special operators on the vector.
In determining coefficient values, we distinguish between linear and nonlinear coeffi-

cients. As described, a CAFFEINE individual is a set of basisfunctions which are linearly
added. Each basis function is a tree of grammatical derivations. Linear coefficients are
found by evaluating each tree across all input samples to geta matrix of basis function out-
puts, then to apply least-squares regression with that matrix and the target output vector
to find the optimal linear weights.

With each nonlinear coefficientW in the tree (i.e. ones that are not found via linear
regression), a real value will accompany it, taking a value in the range[−2 ∗B,+2 ∗ B].
During interpretation of the tree the value is transformed into [−1e+B,−1e−B]∪[0.0]∪
[1e− B, 1e+B].

POW(a,b) is ab. When the symbol2ARGS expands to includeMAYBEW, either the
base or the exponent (but not both) can be constants.

The designer can turn off any of the rules in the grammar of Table 4.1, if they are
considered unwanted or unneeded. For example, he could easily restrict the search to
polynomials or rationals, or remove potentially difficult-to-interpret functions such assin
andcos. He could also change or extend the operators or inputs, e.g.includeWi, Li, and
Wi/Li.

Table 4.2:Procedure ExtractSymbolicCaffeineModels()

Inputs: X, y

Outputs: M
1. M = ∅; P = ∅; Q = ∅
2. for i = 1..Npop:
3. Pi ∼ Ψ
4. forNgen = 1..Ngen,max:
5. {P,Q} = OneNsgaiiGeneration(P,Q)
6. M = nondominatedFilter(M ∪ P ∪Q)
7. returnM

4.4.3 High-Level CAFFEINE Algorithms

This section describes the CAFFEINE model extraction algorithms in pseudocode. Table
4.2 shows the highest-level routine,ExtractSymbolicCaffeineModels(). It takes in the
training inputsX and training outputsy. It will output a Pareto-optimal set of models,
M .

Line 1 of Table 4.2 initializesM , as well as the current set of parentsP and current set
of childrenQ, all to empty sets. Lines 2 loops across the population sizeNpop to randomly
draw each individualPi from the space of possible canonical form functionsΨ.

Line 4 begins the EA’s generational loop of lines 5 and 6. The loop stops when the
target number of generationsNgen,max is hit. Line 5 does the main EA work, which
here is a single generation of the NSGA-II [Deb2002] multi-objective EA. Line 6 updates
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the external archive of Pareto-optimal individuals,M , by nondominated-filtering on the
existingM with the recently updated parentsP and childrenQ.

Line 7 of Table 4.2 concludes theExtractSymbolicCaffeineModels()routine, by re-
turning the Pareto-optimal symbolic models,M .

Table 4.3 gives the pseudocode for one generation of the NSGA-II algorithm [Deb2002].
It inputs the parentsP and childrenQ, and returns respective updated versionsP ′ andQ′.

In line 1 of Table 4.3, the procedure merges the two inputs into one overall population
of candidate parents,R. In line 2, it sortsR into nondomination layersFi, i = 1..NND,
whereF1 is the nondominated set,F2 is what would be nondominated ifF1 was removed,
F3 is what would be nondominated ifF1 ∪ F2 was removed, etc.F contains all the
candidates with no duplicatesF1 ∪F2 ∪ · · ·FND = Pk ∪Pk−1; F1 ∩F2 ∩ · · · ∩FND = ∅.

Table 4.3:Procedure OneNsgaiiGeneration()

Inputs: {P,Q}
Outputs: {P ′, Q′}
1. R = P ∪Q
2. F = fast-nondominated-sort(R)
3. P ′ = ∅; i = 1
4. until |P ′| + |Fi| ≤ Npop:
5. crowding-distance-assignment(Fi)
6. P ′ = P ′ ∪ Fi

7. i = i + 1
8. Nfill = Npop - |P ′|
9. Fi = sortFi in descending order of crowding distance
10.P ′ = P ′ ∪ {Fi,1, Fi,2, · · · , Fi,Nfill

}
11.Q′ = ApplyOperators(P ′)
12.Q′ = Evaluate(Q′)
13. return{P ′, Q′}

The aim of lines 3-10 is to fill up the selected parents,P ′.
It begins by initializingP ′ to an empty set in line 3. Then lines 4-7 iterate by filling up

each nondomination layer, butonly if the whole nondomination layerFi fits. Specifically,
it first adds all individuals fromF1, if they all fit, i.e. if if |Psel| + |F1| ≤ NL. If there
is space left, it then adds all individuals fromF2 if they all fit. If there is space left, then
adds all individuals fromF2 if they all fit. And so on.

Lines 8-10 of Table 4.3 cover the case whenP ′ may not be full yet. This occurs when
the last nondomination layerFi did not fit perfectly intoP ′’s remaining space ofNfill

individuals. In that case, line 9 sorts the nondomination layerFi according to “crowding
distance”. Crowding distance of an individual is the maximum Euclidian distance (in
performance space) between that individual and its closestneighbor. Line 10 takes the
Nfill individuals inFi that have the greatest spacing, and adds them toP ′.

Now that the parents have been selected, children can be created. Line 11 of Table
4.3 applies evolutionary search operators to the parentsP ′ to create childrenQ′. These



4.5 CAFFEINE Results 109

operators are grammar / CAFFEINE-specific, so the operator details are given in section
4.4.4.

Line 12 evaluates the childrenQ′. In this case, evaluation is of the two CAFFEINE
objectives, model training errorǫtr in equation (4.4), and model complexity in equation
(4.5). To measures training error, recall that least-squares regression must first be done to
determine the linear coefficientsai of each of the basis functionsBi.

Line 13 returns the updated parentsP ′ and childrenQ′, and the routine concludes.

4.4.4 Evolutionary Search Operators

We now describe how trees are randomly generated, and explain the search operators on
the trees. The search operators are grouped by the aspect of search representation that
they concern: grammar, real-valued coefficient,VCs, and basis functions.

Random generation of trees and subtrees from a given symbol involves merely ran-
domly picking one of the derivations of one of the symbols, and recursing the (sub) tree
until terminal symbols are encountered (subject to tree depth limits).

Grammatical restrictions on the trees lead to a natural grammar-obeying crossover
operator and mutation operator, as described by Whigham [Whi1995]. Whigham-style
crossover works as follows: it randomly picks a node on the first parent, then randomly
picks a node on the second parent with the constraint that it must be the same grammatical
symbol (e.g.REPOP) as the first node, and finally swaps the subtrees corresponding to
each node. Whigham-style mutation involves randomly picking a node, then replacing its
subtree with a randomly-generated subtree (as in the generation of initial trees).

Real-valued coefficients are mutated according to a Cauchy distribution [Yao1999],
which cleanly combines aggressive local tuning with the occasional large change.

The specialized structure ofVCs get appropriate operators, which include: one point
crossover, and randomly adding or subtracting to an exponent value.

Since each individual has a list of basis functions, this leads to special operators:
creating a new individual by randomly choosing > 0 basis function from each of 2 parents;
deleting a random basis function; adding a randomly generated tree as a basis function;
copying a subtree from one individual to make a new basis function for another.

4.5 CAFFEINE Results

This section describes the application of CAFFEINE to building symbolic models for
analog circuits that map design variables to performances,for problems with 13 input
variables. It shows the actual symbolic models generated, the measured error vs. com-
plexity tradeoffs, how prediction error and complexity compare to posynomials, and how
prediction error compares to other state-of-the-art (blackbox) regression approaches. The
extension of CAFFEINE to larger problems is described in section 4.6.
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4.5.1 Experimental Setup

Unary operators allowed are:
√

(x), log10(x), 1/x, x2, sin(x), cos(x), tan(x),max(0, x),
min(0, x), 2x, and10x, wherex is an expression. Binary operators allowed arex1 + x2,
x1 ∗ x2, max(x1, x2), min(x1, x2), power(x1, x2), andx1/x2. Conditional operators in-
cluded≤ (testExpr, condExpr, exprIfLessThanCond, elseExpr) and≤ (testExpr,
0, exprIfLessThanCond, elseExpr). Any input variable could have an exponent in the
range {. . . , -1, 1, 2, . . . }. While real-valued exponents could have been used, that would
have harmed interpretability.

The circuit being modeled in this example is a high-speed CMOS OTA as shown
in Figure 4.8. The goal is to discover expressions for the low-frequency gain (ALF ),
unity-gain frequency (FU), phase margin (PM), input-referred offset voltage (V OFF ),
and the positive and negative slew rate (SRp, SRn), To allow a direct comparison to the
posynomial approach [Dae2002], an almost-identical problem setup was used, as well as
identical simulation data. The only difference is that, because scaling makes the model
less interpretable, neither the inputs nor the outputs werescaled. The one exception is
thatFU is log-scaled so that the mean-squared error calculations and linear learning are
not wrongly biased towards high-magnitude samples ofFU . The technology is 0.7µm
CMOS. The supply voltage is 5V.Vth,nom is 0.76V and -0.75V for the NMOS and PMOS
devices, respectively. The load capacitance is 10 pF.

Figure 4.8:CMOS high-speed OTA.

Good training data is essential to the methodology. The choice of design variables and
sampling methodology determines the extent to which the designer can make inferences
about the physical basis, and what regions of the design space the model is valid in. We
used an operating-point driven formulation [Leyn1998] , where currents and transistor
gate drive voltages comprise the design variables (13 variables in our case). Device sizings
could have been used as design variables instead; it dependson designer preference and
other reasons (see section 6.4).
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Full orthogonal-hypercube Design-Of-Experiments (DOE) [Mon2004] sampling of
design points was used, with scaleddx=0.1 (the simpler problem ofdx=0.01 from [Dae2002]
is ignored in this chapter) to have 243 samples. The simulation time for one sample
was about 1 s, or 4 min for all samples; this is fully dependenton the circuit, analyses,
and experimental design method being used. These samples, otherwise unfiltered, were
used as training data inputs. Testing data inputs were also sampled with full orthogonal-
hypercube DOE and 243 samples, but withdx=0.03. Thus, in this experiment we are
creating a somewhat localized model; one could just as readily model a broader design
space, but the above choice allows us to compare the results to [Dae2002].

The run settings were:NB = maximum number of basis functions = 15 (any larger
is definitely non-interpretable),Npop = population size = 200 (like NSGA-II’s default),
Ngen,max = 5000 generations (more than enough time to converge), maximum tree depth
= 8 (so that each basis function has exactly one layer of nonlinear operators), and “W”
coefficients range[−1e + 10,−1e− 10] ∪ [0.0] ∪ [1e− 10, 1e+ 10] (so coefficients can
cover 20 orders of magnitude, both positive and negative).

All operators had equal probability (a reliable setting), except parameter mutation was
5x more likely (to encourage tuning of a compact function). Complexity measure settings
werewb = 10,wvc = 0.25. That is, the cost of adding a basis function is relatively high
compared to the cost of adding another variable combo.

One run was done for each performance goal, for 6 runs total. Each run took about 12
hours on a 3 GHz Pentium IV Linux workstation. (Note that thiswas on a slow Matlab-
based system with extensive pass-by-value functions. The implementation of section 4.6
is significantly faster because it has pass-by-reference functions and more improvements).

We calculate normalized mean-squared error on the trainingdata and on the separate
testing data:ǫtr andǫtest as described in equation (4.4). These are standard measurements
of model quality in regression literature. The testing error ǫtest is ultimately the more
important measure, because it measures the model’s abilityto generalize to unseen data.
These measures are identical to two of the three posynomial “quality of fit” measures in
[Dae2002]: its measure “worst-case quality”qwc is the training errorǫtr, and its measure
“typical case quality”qtc is the testing errorǫtest (as long as long as the constant ‘c’ in the
denominator is set to zero, which [Dae2002] did.)

4.5.2 Results: Whitebox Models and Tradeoffs

Let us first examine some symbolic models generated by CAFFEINE. We ask: “what
are the symbolic models having less than 10% training and testing error, with the lowest
complexity?”

Table 4.4 shows those functions. (Note thatFU has been converted to its true form
by putting the generated function to the power of 10). We see that each form has up to
four basis functions, not including the constant. ForV OFF , a constant was sufficient to
keep the error within 10%. We see that a rational functional form was favored heavily; at
these target errors only one nonlinear function, ln( ), appears (forALF ). That expression
effectively says that theorder of magnitudeof some input variables is useful because it
deals in logarithmic scales.
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Table 4.4:CAFFEINE-generated symbolic circuit models with < 10% train-
ing error and <10% testing error.

Perf. Expression
Char.

ALF −10.3 + 7.08e-5/id1 + 1.87 ∗ ln(−1.95e+9+1.00e+10/(vsg1 ∗ vsg3)
+1.42e+9∗(vds2 ∗ vds5)/(vsg1 ∗ vgs2 ∗ vgs5 ∗ id2))

FU 10(5.68−0.03∗vgs1/vds2−55.43∗id1+5.63e−6/id1)

PM 90.5 + 190.6 ∗ id1/vgs1 + 22.2 ∗ id2/vds2

V OFF −2.0e-3
SRp 2.36e+7+1.95e+4∗id2/id1 − 104.7/id2 + 2.15e+9∗id2 + 4.63e+8∗id1

SRn −5.72e+7−2.50e+11∗(id1 ∗ id2)/vgs2 + 5.53e+6∗vds2/vgs2 + 109.7/id1

One can examine the equations in more detail to gain an understanding of how design
variables in the topology affect performance. For example,ALF is inversely proportional
to idl, the current at the OTA’s differential pair. Or,SRp is solely dependent onid1 and
id2 and the ratioid1/id2. Or, within the design region sampled, the nonlinear coupling
among the design variables is quite weak, typically only as ratios for variables of the
same transistor. Or, that each expression only contains a (sometimes small) subset of
design variables. Or, that transistor pairsM1 andM2 are the only devices affecting five
of the six performances (within 10%).

We now examine the CAFFEINE-generated tradeoffs between training errorǫtr (qwc)
and complexity. Figure 4.9 illustrates. All models in the tradeoff of training error vs.
complexity are shown: as complexity increases, the training error decreases. In each
performance instance, CAFFEINE generates a tradeoff of about 50 different models. As
expected, a zero-complexity model (i.e. a constant) has thehighest training error of 10-
25%. The highest-complexity models have the lowest training error, of 1-3%.

We can also examine the curves relating complexity to the number of basis functions.
Recall that complexity is a function of both number of basis functions, and the complex-
ity of each tree within each basis function. In the curves, wesee that the number of
basis functions usually increases with the complexity. However, sometimes complexity
increases by having larger trees within existing basis functions, rather than adding more
basis functions. This can be seen in the curves: as complexity increases, the number of
bases temporarily levels off, or even decreases.

The testing errorǫtest (qtc) is also shown in Figure 4.9. We see that unlike the training
error, it is not monotonically decreasing as complexity rises. This means that some less
complex models are more predictive than more complex ones. However, we can prune
the models down to the ones that give a tradeoff between testing error and complexity, as
shown in Figure 4.10. These are the most interesting and useful.

It is notable that the testing error is lower than the training error in almost all cases.
This sounds promising, but such behavior is rare in the regression literature, and made
us question what was happening. It turns out that there is a valid reason: recall that the
training data is from extreme points of the sampling hypercube (scaleddx=0.10), and the
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Figure 4.9:Plots of models’ training error, testing error, and number of bases
vs. the complexity for each performance goal for the opamp ofFigure 4.8.
Every(diamond, triangle, square) triplet corresponds to a symbolic model
at a given complexity.
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Figure 4.10:Every (diamond, triangle) is a symbolic model forALF like
Figure 4.9, except filtered to only keep models on the tradeoff of testingerror
vs. complexity.

testing data is internal to the hypercube (dx=0.03). This testing data tests theinterpolation
ability. Thus, models that reallyare predictive should be able to interpolate well, even at
the cost of a perfect fit to the extreme points. In any case, validly having the testing error
lower than the training error demonstrates the strength of the CAFFEINE approach.

By only putting the relevant variables into a model, the approach demonstrates the
potential to provide expressions for circuits with significantly more variables (see next
section).

One may improve their understanding of the basic dependencies in a circuit in an-
other fashion: by examining expressions of varying complexity for a single performance
characteristic. Low-complexity models will show the macro-effects; alterations to get
improved error show how the model is refined to handle second-order effects. Table 4.5
shows models generated for the phase margin (PM) for decreasing training and testing
error. A constant of 90.2, while giving 15 % training error, had only 4% test error. For
better prediction, CAFFEINE injected two more basis functions; one basis being the cur-
rent into the differential pairid1, the other basis,id2/vds2, being the ratio of the current to
the drain-source voltage ofM2; i.e.M2’s small-signal output conductance (1/rout2). The
next model turns the input current term into a ratioid1/vgs1; i.e. M1’s transconductance,
inverted (1/gm1). Interestingly, and reassuringly, almost all ratios use the same transistor
in the numerator and denominator.

Such analyses achieve one of the aims of the CAFFEINE symbolic modeling tool:
demonstrating how to gain insight into the topology.
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Table 4.5:CAFFEINE-generated models ofPM , in order of decreasing error
and increasing complexity.

Test
error
(%)

Train
error
(%)

PM Expression

3.98 15.4 90.2

3.71 10.6 90.5 + 186.6 ∗ id1 + 22.1 ∗ id2/vds2

3.68 10.0 90.5 + 190.6 ∗ id1/vgs1 + 22.2 ∗ id2/vds2

3.39 8.8 90.1 + 156.85 ∗ id1/vgs1 − 2.06e-3∗id2/id1 + 0.04 ∗ vgs2/vds2

3.31 8.0 91.1 − 2.05e-3∗id2/id1 + 145.8 ∗ id1 + 0.04 ∗ vgs2/vds2 − 1.14/vgs1

3.20 7.7 90.7 − 2.13e-3∗id2/id1 + 144.2 ∗ id1 + 0.04 ∗ vgs2/vds2

−1.00/(vgs1 ∗ vgs3)

2.65 6.7 90.8 − 2.08e-3∗id2/id1 + 136.2 ∗ id1 + 0.04 ∗ vgs2/vds2

−1.14/vgs1 + 0.04 ∗ vgs3/vds5

2.41 3.9 91.1 − 5.91e-4∗(vgs1 ∗ id2)/id1 + 119.79 ∗ id1 + 0.03 ∗ vgs2/vds2

−0.78/vgs1 + 0.03 ∗ vgs1/vds5 − 2.72e-7/(vds2 ∗ vds5 ∗ id1)
+7.11∗(vgs2∗vgs4∗id2)−0.37/vsg5−0.58/vgs3−3.75e-6/id2−5.52e-
6/id1

4.5.3 Results: Comparison to Posynomial-Based Symbolic Modeling

We also compared CAFFEINE to the posynomial approach using the posynomial results
in [Dae2002]. We first compare model complexity. To pick the models to compare, we
first choose the CAFFEINE model which meets the reported posynomial training and
test error of [Dae2002], then we compare the number of posynomial coefficients to the
number of coefficients appearing in the CAFFEINE expressions (this is reasonable when
the CAFFEINE expressions are largely rationals; more complex symbolic models would
be less appropriate). As Figure 4.11 shows, the CAFFEINE models are 1.3 to 6.4 times
more compact than the posynomial models. And, inV OFF , the only performance that
the posynomials had slightly better prediction error than CAFFEINE (see Figure 4.12),
the CAFFEINE model is 6.2x more compact.

We can also compare the prediction abilities of CAFFEINE to posynomials. To pick a
model from a CAFFEINE-generated tradeoff for comparison, we fixed the training error
to what the posynomial achieved, then compared the testing errors. The results are in
Figure 4.12. In one case,V OFF , CAFFEINE did not meet the posynomial training error
(0.4%), although it probably could have with more basis functions; we instead picked an
expression which very nearly matched the posynomial approach’s testing error of 0.8%.
What we saw in the previous data, and what we see again here, isthat CAFFEINE has a
lower testing error than training error, which provides great confidence to the models. In
contrast, in all cases butV OFF , the posynomials had a higher testing error than training
error, even on this interpolative data set. The CAFFEINE models’ testing errors were
2x to 5xlower than ones from the posynomial models. The exception isV OFF , where
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Figure 4.11:Comparison of the complexity of CAFFEINE models to posyn-
omial models [Dae2002]. Method: (1) choose CAFFEINE model that meets
posynomial training and test error, then (2) compare numberof coefficients.

Figure 4.12:Comparison of CAFFEINE testing error to posynomial testing
error; and to the training error.
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the posynomial achieves 0.8% testing error compared to 0.95% for CAFFEINE. In short,
posynomials have poor prediction ability even in interpolation. CAFFEINE models pre-
dict far better, and with more compact models. Given this, one can reasonably question
the trustworthiness of constraining analog circuit performance models to posynomials.

4.5.4 Results: Comparison to State-of-the-Art Blackbox Regression
Approaches

While other modeling techniques may produce models that areopaque (and therefore not
interpretable), it is still instructive to see how well CAFFEINE compares to them in terms
of prediction ability.

So, on the 6 problems already described in section 4.5.1, we tested the following
regression techniques: a constant, linear models with least-squares fit, full quadratic
models with least-squares fit, projection-based quadratic(PROBE) [Li2006], posynomial
[Dae2002], state-of-the-art feedforward neural networks(FFNN) [Amp2002], boosting
[Sch2002] the FFNNs, multivariate adaptive regression splines (MARS) (i.e. piecewise
polynomial with stepwise construction) [Fri1991], least-squares support vector machines
(LS-SVM) [Suy2002], and kriging [Jon1998].

Model builders were coded and configured as follows.

• The code to build constant, linear, and full quadratic models was about 25 lines of
Matlab. The model building time was a few seconds, at most.

• The code to build PROBE was about 100 lines of python, using Numeric / LAPACK
for least-squares regression and maximum rank of 2. The model building time was a
few seconds, at most.

• The posynomial results were taken directly from [Dae2002];it reports that the model
building time was 1-4 minutes (on a slower machine).

• The FFNN is trained via an adaptive Levenberg-Marquardt optimization scheme (OL-
MAM); we used the Matlab code referenced in [Amp2002]. Settings wereNum-
Restarts= 10,MaxEpochs= 5000. The time to build a single network was about 10
s. A suitable error was typically found in the first or second restart of about 3 hidden
neurons. Therefore the total model building time was about (10 s) * (10 restarts) *
(first 2 neurons) + (10 s) * (2 restarts) * (1 final neuron) = 10*10*2 + 10*2 = 220 s =
3.7 min.

• The boosted FFNN was Matlab code wrapping the OLMAM code. Settings were
NumModels= 20. The model building time was about (220 s to discoverNumHid)
+ (10 s)*(20 models) = 220 s + 200 s = 420 s = 7.0 min. A 10x speedupvia a C
implementation would make this 42 s.

• The MARS model builder was about 500 lines of Matlab code; model building time
was about 5 minutes.

• The SVM is trained using the least-squares strategy (LS-SVM); we used the Matlab
code from [Suy2002], with all settings at “fully automatic”; the model building time
was about 5 minutes.
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• The kriging model builder was about 200 lines of Matlab code,with Θmin = 0.0,Θmax

= 10.0,pmin = 0.0,pmax = 1.99. The model building time was about 5 minutes.

Figure 4.13 shows the resulting test errors for the 6 performances (adapted from [Mcc2005c]).

Figure 4.13:Comparison of prediction ability of CAFFEINE to state-of-the-
art modeling techniques.

On this dataset, CAFFEINE does the best. MARS comes in very close. Kriging is
the next-best. The FFNN, boosted FFNN, and SVM are all very close, and perform about
the same as the linear model. The quadratic and posynomial approaches and posynomial
approaches perform the worst.

The results on different regressors inform us about the nature of the data. Progress-
ing across the spectrum of polynomial complexity – from the simplest linear models to
posynomials to projection-based quadratic to full quadratic – the prediction error contin-
ually worsens. It turns out that the polynomials even capture thetraining error poorly; for
example the projection-based quadratic had a training error of about 10% for each per-
formance. Since the prediction error became lower the more constrained the polynomial
model was, this indicates that where the models do attempt touse the added flexibility to
predict better, it backfires. In general, this is indicativethat a polynomial functional tem-
plate is not appropriate for circuit performance mappings,even for this relatively simple
OTA circuit.



4.6 Scaling Up CAFFEINE: Algorithm 119

CAFFEINE only selects input variables that really matter. It is biased towards the
axes of the input variables rather than being affine-invariant. That is, CAFFEINE expres-
sions and search operators work on one or a few input variables at a time, as opposed to
using all variables in a weighted sum. MARS did similarly, because its stepwise-forward
nature makes it also biased towards the axes and is selectiveof input variables. While
CAFFEINE had the best or near-best prediction error on 5 of the 6 performance goals,
MARS had the best or near-best on 3. As we shall see, the other approaches lose predic-
tion performance because they have different biases.

Kriging performed fairly admirably in this setting. This isnot surprising because it
tends to perform well when the input samples have relativelyuniform spacing, as they
do here with the DOE sampling. Kriging, FFNNs, and boosted FFNNs did worse than
CAFFEINE and MARS, most likely because they did not have the helpful (for this appli-
cation) bias towards the input axes. The boosted FFNN did nothave noticeably superior
performance to the FFNN, which means that overfitting was likely not an issue with the
FFNN. The SVM’s performance was poor, probably because it treated the variables it
selected too uniformly. Also, the support vector at the center of the sampling hypercube
has to reconcile all the other samples, which it does not really have enough parameters
to do properly. Because kriging did substantially better than SVMs, the choice of kernel
distance function was likely not an issue. Interestingly, only three approaches, namely
CAFFEINE, MARS, and kriging, did better at prediction than aconstant. This is not
because constants are good predictorsper se, but because other predictors failed for the
various reasons described. Put in another way, the other predictors’ attempts to predict
outputs from unseen (testing) inputs did poorly because themodels generalized in poor
directions that caused more extreme error values, whereas the constant never had extreme
error values.

In summary, CAFFEINE demonstrated that it could out-predict all the state-of-the-art
approaches tested (on the given circuit-test suite), in addition to being theonly approach
that outputstemplate-free, symbolicmodels. CAFFEINE’s construction time is longer
than the other methods, but is still fast enough for theinsight applications that it was
designed for.

4.6 Scaling Up CAFFEINE: Algorithm

We ran the algorithm described in section 4.4 on larger circuits – problems with more
than 100 input variables. The results were disappointing: despite good performance on
smaller problems, CAFFEINE was too slow to return interesting results on these larger
problems in reasonable time. That experience motivates this section. The aim is to alter
the search algorithm so that it can scale to problems of 100 variables. The specific aims
are to (a) run in a reasonable time – hours or minutes, (b) havepredictive models, and (c)
have interpretable models.

The improved CAFFEINE leverages four complementary techniques:

• Subtree caching
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• Gradient-directed regularization to simultaneously prune basis functions and find co-
efficients for the remaining basis functions

• Filter single-variable expressions in a pre-evolution step

• Always consider all linear basis functions

We now describe each technique in detail.

4.6.1 Subtree Caching

In the original implementation of CAFFEINE, every time a tree was changed, it would
have to befully re-evaluated. The technique of sub-tree caching [Kei2004]sidesteps eval-
uations in some nodes of the tree. Given that the training dataset does not change, when a
new tree is created from parent tree(s) via the search operators, onlypart of the new tree
is different. Therefore, we evaluate just the nodes of the tree that have changed, and their
parent nodes, andcachethe results. The “evaluation” for other nodes merely uses the eval-
uated results that have been cached previously. Note that todo this cleanly, CAFFEINE
was re-implemented in Python, whereas the previous implementation was in Matlab. This
improved runtime further because Python passes function values by reference, whereas
Matlab passes by value.

4.6.2 On-the-fly Pruning with Gradient-Directed Regularization

In previous subsections, the linear coefficientsa of equation 4.3 were learned by mini-
mizing the least-squares (LS) loss function on the trainingdata. But for larger problems
having potentially more basis functions, the LS predictions can be unstable because there
is higher variance in the range of possible parameters. Furthermore, to keep the com-
plexity down, it is desirable to have a more aggressive way toprune the basis functions.
Regularization is promising because it explicitly accounts for parameter variance and can
implicitly prune basis functions on-the-fly. Historically, the main regularization choices
have been ridge regression [Hor1970] and the lasso [Tib1997]. Unfortunately, ridge re-
gression does little pruning, and the lasso prunestoo aggressively. Fortunately, a new
technique, gradient-directed regularization (GDR) [Fri2004], strikes a compromise. GDR
does gradient-based optimization on the loss functionf2 in equation (4.1) according to the
coefficient update rule:

â(ν + ∆ν) = â + ∆ν ∗ hr(ν) (4.7)

where∆ν is small (“infinitesimal”) value andhr is the direction of the next step. The
starting value ofa is [0, 0, . . . , 0]. The gradient to the loss function is:

gr(ν) = − d

dâ

1

NB

NB∑

i=1

L(yi, F (xi; â)) (4.8)

whereL is given in equation (4.2).
One could directly optimize usinggr instead ofhr in (4.7), but little pruning would

happen, and collinear or near-collinear bases get similar values (like ridge regression).
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Instead, GDR encourages diversity by selectively updatingcoefficients. Specifically, it
changesai at a given step only if|gri| is sufficiently large:

hr(ν) = {hri(ν)}∀i = {γi(ν) ∗ gri(ν)}∀i; i = 1, 2, . . . , NB (4.9)

γi(ν) = I(|gri(ν)|) ≥ τ ∗ max
0≤k≤NB

|grk(ν)|) (4.10)

whereγi is an indicator function that returns 0 or 1, andhri either outputs 0 orgri as
it combines the indicator function and the gradient.τ is a parameter which controls the
degree of pruning: 0.0 is like ridge regression, 1.0 is like lasso, and values in between
strike a compromise.

We employ GDR here (with settings given in section 4.7.1). The result is that we can
have CAFFEINE individuals with a large number of basis functions, and in a single pass
GDR will drive many linear coefficients to zero (i.e. prune the basis functions), and set
robust values for the remaining linear coefficients. GDR is fast too: our 300-line python
implementation of GDR has about the same runtime as the highly-optimized LAPACK
linear LS solver.

4.6.3 Pre-Evolution Filtering of Single-Variable Expressions

The third scalability-improving technique focuses the search towards the most promising
single-variable nonlinear expressions. It determines those expressions with the routine
ExtractUsefulExpressions()shown in Table 4.6, prior to the evolutionary run (i.e. right
before line 2 in the procedure of Table 4.2).ExtractUsefulExpressions()considers a large
set of possiblesingle-variableexpressions at once, and extracts the most promising ones.

We now describeExtractUsefulExpressions()of Table 4.6 in detail. It takes as inputs
the target training inputsX and corresponding outputsy. It also takes inιthr, which gov-
erns the final number of expressions returned. It will returna set of chosen expressions,
Buseful.

In lines 1-6,ExtractUsefulExpressions()constructs the candidate expressionsB, by
enumerating through all combinations of input variables (line 2), operators (line 3), and
exponents (line 4).

Line 7 simulates each candidate expression on each of the training input vectors inX.
Each row of the resulting matrixXB has the values of each training input vector as input
to a given expressionBi.

Line 8 identifies the influence of eachBi, i.e. each row inXB, by conducting linear
learning on the mapping fromXB to y. Since it is possible (and likely) that the num-
ber of expressions exceeds the number of training samples, GDR is used because it can
handle underdetermined linear systems. From GDR, each expressionBi will get a linear
coefficientai.

Then, line 9 computes theinfluence, ιi, of an expressionBi according to:

ιi = |ai| ∗ ( max
1≤j≤N

(Bi(xj)) − min
1≤j≤N

(Bi(xj))) (4.11)
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Table 4.6:Procedure ExtractUsefulExpressions()

Inputs: X, y, ιthr

Outputs: Buseful

1. B = {}; i = 1
2. for each input variablev = {x1, x2, . . . }
3. for each operatorop = {unity(), log10, . . . }
4. for each exponentexp = {-2, -1.5, . . . }
5. defineBi asop(v)exp

6. B = B ∪Bi; i = i + 1
7. XB = simulateX on eachBi

8. a = GDR linear learning onXB 7→ y.
9. ιi = compute influence ofBi according to (4.11); for eachBi

10.B = sortB in descending order ofιi
11.Buseful = ∅; ιtot = 0; i = 1
12. whileιtot < ιthr:
13. Buseful = Buseful ∪ Bi

14. ιtot = ιtot + ιi
15. i = i + 1
16. returnBuseful

wherexj is thejth training sample.max
1≤j≤N

(Bi(xj)) is the largest value thatBi computes to

across the training data, andmin
1≤j≤N

(Bi(xj)) is the smallest value. Influenceιi is essentially

an absolute and normalized version of linear coefficientai.

Lines 10-16 use theιi information to do final selection of basis functions. First,line
10 sorts all the basis functions such thatB1 has highest influence,B2 has second-highest
influence, and so on. Line 11 initializes the loop that follows. Line 12 loops around
until the total influence quota is hit,iotathr. For example,iotathr = 0.95 means that the
routine will keep the highest-influence expressions having95% of total influence. To
implement this aim, line 13 adds the next-most influencing expression, and lines 14-15
do bookkeeping.

Line 16 returns the final chosen expressions,Buseful.

TheseBuseful get stored for use during the evolutionary run. During the run, when-
ever a sum of products expression is about to be randomly generated (as a basis function,
or at a lower level in the CAFFEINE expression tree), thenκ% of the time, only the useful
expressions are considered. There has to be enough opportunity to try other expressions
to avoid over-constraining the search, but the majority of search effort can be focused on
known-promising expressions. We setκ = 80%.

Note that variable interactions can easily be generated viacrossover and mutation op-
erations on single-variable expressions. This strategy isreminiscent of MARS [Fri1991],
which builds up complex multi-variable expressions from a foundation of single-variable
expressions.
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4.6.4 Always Include All Linear Basis Functions

The focus of the final scale-up technique is to enhance prediction ability. It was based on
the following observations:

• Circuit problems with a larger number of input variables tend to have at least partially
linear responses to some variables.

• GDR was very effective at pruning bases.

• A recent paper showed enhanced prediction ability by combining linear basis func-
tions with a (non-CAFFEINE) nonlinear model [Fri2005].

So, we altered the search to always consider all linear basisfunctions (but not to evolve
them). To be precise, when evaluating an individual, there is a step which does linear
learning to find the best coefficients for the tree-based basis functions (and the offset). We
altered that step to include more basis functions – one linear basis function for each input
variable. This greatly increases the number of basis functions for linear learning, but not
for the evolutionary search itself which only sees the number of GP trees.

This measure ensures that linear responses to variables arealways considered. This
biases the search towards more stable, understandable models, without having to ask the
evolutionary algorithm to manage the extra bases.

This completes the description of the four enhancements to CAFFEINE which were
designed to allow it to scale up to larger problems. We will now present some experimen-
tal results.

4.7 Scaling Up CAFFEINE: Results

4.7.1 Experimental Setup

In this section, the aim is to determine how well the scalability goals have been achieved
with the improved CAFFEINE.

The tests are on three progressively larger circuits – the amplifiers shown in Figures
3.7, 3.16, and 3.21. The circuit regression problems have been set up with the parameters
of Table 4.7. Four output performances are modeled for each circuit, with the intent to
represent a cross-section of analyses and measures:AV (gain), THD (total harmonic
distortion),SR (slew rate), andOS (overshoot). The technology is 0.13µm CMOS. The
design variables are widthsW , lengthsL, multipliersM , capacitancesC, and resistances
R. The samples were taken using Latin hypercube sampling [Mck1979, Mck2000] on a
uniform distribution in the hypercube having its center at a“good” design, and variable
ranges±10%. The training and test data were split apart by sorting the samples according
to the output value, allocating every4th sample to the test data, and the rest to training (i.e.
25% test data). This technique, inspired by “vertical slicing” in [Kor2007], guarantees that
the test data will cover the whole range of possible output values.

The search strategy settings were as follows. For pre-evolution filtering: influence
thresholdιthr = 25%, bias to useful expressionsκ = 80%. In GDR, pruning degreeτ =
0.5. In CAFFEINE, all settings were like in section 4.5, except population sizeNpop =
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Table 4.7:Parameters of Circuits for the CAFFEINE Scaling Experiments.

# Vari-
ables

# Devices # Train
Samples

# Test
Samples

Performances Modeled

24 10 129 32 AV , THD, SR,OS
59 30 330 82 AV , THD, SR,OS
129 50 1050 262 AV , THD, SR,OS

100, and maximum number of generationsNgen,max = 50. Far fewer generations are now
needed to get to reasonable results because the pre-evolution filtering picks highly useful
expressions, and the linear bases are always available.

4.7.2 Experimental Results

This section aims to see how well the scalability goals were achieved: on the above ex-
amples, run in a reasonable time (hours or minutes), have predictive models, and have
interpretable models.

To assess the scalable CAFFEINE, we compare its models to a reference regression
algorithm that has a good track record of predictive abilityand of scalability: MARS
[Fri1991]. To make the comparison as fair as possible, we used GDR for MARS’ linear
regression subroutine. A further motivation for MARS is that it was the most competitive
to CAFFEINE in the experiments of section 4.5.

We first consider the interpretability of MARS-generated models versus CAFFEINE-
generated models. We recognize that the judgement of interpretability is necessarily sub-
jective, so here we aim to give the reader a feel. To do so, we must review MARS slightly
further. Each MARS basis function is a product of “hockey stick” (HS) functions:

BMARS(x) =

Nprod∏

i=1

HS(i)(x(i), ti, qi) (4.12)

whereHS(i) is theith HS function having either a+ or− sign, andx(i), ti, andqi are the
chosen input variable, split value, and power forHS(i), respectively. AHS function is:

HS±(x, t, q) = ±
{

0 if x < t
(x− t)q if x ≥ t

(4.13)

To see how MARS basis functions look on real problems, we willuse an arbitrarily
chosen exampleOS, from the largest circuit (50T opamp). Table 4.8 shows the equation
for just asingleMARS basis function. As we can see, the hockey stick functions translate
to very hard-to-interpret functions.

We saw that even a single basis function from MARS is extremely challenging to
interpret. Table 4.9 shows the 50T opampOS expression that CAFFEINE generated. The
model is are not as interpretable as we have seen for smaller circuits, butsomeinsights
can be extracted. It is notable that of the 109 input variables, CAFFEINE pruned down
to just use 17 variables, i.e. about 10% of the variables. Thevariables include widths
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Table 4.8: A single basis function in MARS-generated equation forOS of
50-transistor opamp{

0 if LM2 < 2.13 ∗ 10−6

(LM2 − t) if LM2 ≥ 2.13 ∗ 10−6

}
*

{
0 if LM3 < 290.0

(LM3 − t) if LM3 ≥ 290.0

}
*

{
0 if mDP1M2 < 8.416 ∗ 10−6

(mDP1M2 − 8.416 ∗ 10−6) if mDP1M2 ≥ 8.416 ∗ 10−6

}

Table 4.9: Caffeine-generated equation of OS for the 50-transistor opera-
tional amplifier circuit. (All basis functions.)

−780.8
+9.90 ∗ 108 ∗ LMDP3 + 5.23 ∗ 108 ∗ LMCM1 + 4.18 ∗ 108 ∗ LM9

−9.27 ∗ 108 ∗ LMCMB2 − 4.24 ∗ 108 ∗ LM4 − 4.20 ∗ 108 ∗ LM13

+11.46 ∗mM2 + 7.11 ∗mM17 − 8.83 ∗mCM1M2

+1.14 ∗ 108 ∗WMDP3 + 7.09 ∗ 107 ∗WMCM3 + 2.39 ∗ 107 ∗WM11

−2.45 ∗ 107 ∗WM4

−8.86 ∗ 106 ∗ log10(WMCM3) ∗m3/2
M10 ∗W

3/2
MCM3 ∗ (0.655 ∗m2

CM5M1 +m
5/2
CM2M1)

W , lengthsL, and multipliersm. Most of the basis functions have a linear relation to
OS. To decreaseOS, there someL’s which need to be decreased (e.g.LMDP3 and
5.23 ∗ 108 ∗ LMCM1), while otherL’s need their values are increased (e.g.LMCMB2

andLM4). Similarly, to decreaseOS with m’s, somem’s need decreasing and others
need increasing. And similarly forW ’s too. There is a single base with nonlinearity. It
has interactions among the variablesWMCM3, mM10, mCM5M1, andmCM2M1. It is very
notable that of the 109 input variables, only 4 have significant interactions (in terms of
affectingOS).

Table 4.10 summarizes the interpretability results for CAFFEINEversus MARS. In
short, MARS models are definitely not interpretable, and CAFFEINE models (arguably)
are, at least enough to extract some insights.

Table 4.10 also lists the CPU time that MARS and CAFFEINE eachtook to build
each regression model. We see that the runtime is indeed reasonable, even for the largest
problems. It is far faster than the original CAFFEINE on the smaller problems.

Table 4.10:MARS and CAFFEINE build times and interpretability, for differ-
ent problem sizes.

# Vari-
ables

Can interpret
MARS model?

MARS
build time
(min)

Can interpret
CAFFEINE
model?

CAFFEINE
build time (min)

24 No 7 ≈ Yes 20
59 No 11 ≈ Yes 40
129 No 25 ≈ Yes 100
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We have considered the interpretability and model construction times of MARS ver-
sus CAFFEINE. What about prediction ability? Table 4.11 presents the results of the
regressors’ prediction performance. We see that MARS and CAFFEINE have similar
performance: in some cases CAFFEINE is slightly better, in other cases MARS is. We
see that some problems are quite difficult to model (e.g.THD of the 10-device circuit),
while other problems are quite easy (e.g.OS of the 50-device circuit).

In sum, this section has described techniques to scale up CAFFEINE to more input
variables, and validated the new “scalable” CAFFEINE on 16 test problems.

Table 4.11: Prediction (testing) error of MARS vs. CAFFEINE on larger
circuit modeling problems.

# Variables # Devices Output MARS error (%) CAFFEINE error (%)

24 10 AV 3.52 2.95
24 10 THD 24.98 24.90
24 10 SR 0.18 0.42
24 10 OS 4.31 5.21

59 30 AV 6.19 5.54
59 30 THD 3.53 6.85
59 30 SR 0.32 1.23
59 30 OS 6.25 6.06

109 50 AV 3.42 3.28
109 50 THD 4.47 4.51
109 50 SR 0.90 0.92
109 50 OS 0.08 0.08

4.8 Other Applications

This section describes other problem types that CAFFEINE has been applied to, which
include behavioral modeling, robustness modeling, and analytical performance tradeoff
modeling.

4.8.1 Behaviorial Modeling

CAFFEINE has also used been applied to generate behavioral models of analog circuits,
as an “Interpretable Behavioral Model Generator” (IBMG) [Mcc2005b]. There has been
much progress in automated behavioral modeling and especially model order reduction
(MOR) [Rut2007]. Despite this, manual design of models remains popular because hu-
mans can leverage their insights, and take responsibility as needed for the final model.
CAFFEINE canbridgemanual and automated design, by offering behavioral model “sug-
gestions” to guide the modeling expert. These suggestions are resulting from evolving the
models in CAFFEINE.
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The problem description is as follows. We consider ap-input q-output nonlinear dy-
namic system, specifically a circuit, of the form:

dx

dt
= f(x(t), u(t)) (4.14)

y(t) = C ∗ x(t) +D ∗ u(t) (4.15)

wherex(t) is the system’sn-dimensional state (i.e. node voltages and branch currentsin
the circuit),u(t) is thep inputs at timet, andy(t) is theq outputs at timet. f(x, u) is
an arbitrary nonlinear function vector field that describeshow the state changes.y(t) is a
linear function ofx(t) andu(t).

The task is to create a more compact form of the given dynamical system, i.e. one
with m states wherem = n. The model must be interpretable behavioral expressions, i.e.
easily readable functional forms that describe how the state changes. Finally, the approach
must have error control by actually generating a set of models that trade off between error
and complexity. The generator’s inputs areu(t) andy(t), taken from a transient simulation
using a standard SPICE simulator. With the aim of interpretability, x(t) is not an input,
even though it creates a more difficult learning problem. Theexpressions to be generated
must take the form:

dz

dt
= g(z(t), u(t)) (4.16)

y(t) = E ∗ z(t) + F ∗ u(t) (4.17)

wherez is the system’s state, andg, E, andF are the reduced-system equivalents off ,
C, andD respectively. The initial system state is set to bez(0) = {0, 0, . . .}. IBMG
must “learn” the vector valued functiong(z, u) as well asE andF . LearningE andF is
merely a set of linear learning problems (one for each outputvariable) oncez(t) for each
t is known. Learningg(z, u) is the major challenge, as each pointg ∈ G involves a choice
of the number of basis functions, and the functional form of each of those basis functions
(which takes the other basis functions and u as an input). Anypossible composition of
functions is allowed.

We could have formulated the problem more generally, i.e.y as a nonlinear function
of x andu. But IBMG approximates nonlinear mappings via state variables that do not
appear inf(), which relatex andu to y in a nonlinear fashion. In making this choice
we simplify IBMG and also encourage re-use of expressions for outputs. Alternatively,
we could have formulated the problem where IBMG is supplied the circuit’s internal state
information (a much easier problem). Instead we will force IBMG invent its own states
and state transition equations.

To solve the problem, CAFFEINE was altered into “IBMG” by making it evolve the
differential equationsg(z, u), which included discovering the state variables to use.E
andF are found via solving a least-squares problem. Its setup parameters were the same
as section 4.5.
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Figure 4.14:Highly nonlinear latch circuit.

We test IBMG on the strongly nonlinear latch circuit, shown in Figure 4.14. The tech-
nology is 0.18µm CMOS.V dd=1.8V, V dd_sub=1.8V, V ss=0.0V, andV ss_sub=0.0V.
Figure 4.15 shows the circuit’s input and output waveforms.IBMG’s goal is to build
a model that produces similar outputs given those same inputs. V dd andV ss are also
treated as inputs to IBMG. Each waveform had 2001 samples.

We ran IBMG to build models for the latch. Runtime was 72 hours(a compiled
implementation would be about an order of magnitude faster). Figure 4.16 shows the best-
performing result, which achieved an error of 1.31%. This isa fairly tight fit, especially
given that IBMG did not use the circuit’s internal state information and instead had to
invent its own states and state transition equations. Examining the waveform, we see
that the sharp nonlinear transitions are handled quite gracefully, though the model output
jumps around somewhat at around 0.5 ns. The output is fairly smooth over time in part
thanks to minimization of error of derivatives. Thus, IBMG has accomplished the error-
minimization goal.

Figure 4.17 illustrates the outcome of IBMG’s error-control strategy: a set of about
50 behavioral models that collectively trade off model complexity with error. Table 4.12
shows in detail a subset of the resulting models, at different levels of complexity and
accuracy. Even the best model with 1.3% error is highly interpretable.

In short, IBMG is a variant of CAFFEINE, specifically designed for offering behav-
ioral model “suggestions” to guide the modeling expert. This aim was confirmed by
experimental results for a highly nonlinear latch circuit.
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Figure 4.15:Input and target output waveforms (nBit, not shown, is merely
the inverse of Bit).

Figure 4.16:Target output signals and model output signals.
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Figure 4.17:Pareto front of complexity versus error, for CAFFEINE-evolved
behavioral models.
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Table 4.12:IBMG-generated behavioral models for the latch circuit.

Train error Expression

15.11% dx1/dt = nBit
dx2/dt = Bit ∗ x1

6.25% dx1/dt = −21.3 − 9.28 ∗ 10−3 ∗ bufclk ∗ x1 + 104 ∗ nBit ∗ bufclk
3.32% dx1/dt = 2.21e− 2 − 3.72 ∗ 10−2 ∗ x1 − 21.8 ∗Bit ∗ nBit ∗ bufclk

dx2/dt = nBit ∗ bufclk ∗ x1

dx6/dt = x1

1.31% dx1/dt = 78.2 + 1.06 ∗ 10−3 ∗Bit ∗ x1 − 2.11 ∗ 10−2 ∗ bufclk ∗ x1

−4.85 ∗Bit ∗ nBit ∗ bufclk ∗ x10

dx2/dt = nBit ∗ bufclk ∗ x1

dx3/dt = x1

dx4/dt = Bit ∗ nBit ∗ bufclk ∗ x1 ∗ x10

dx6/dt = Bit ∗ nBit ∗ bufclk ∗ x1

dx8/dt = Bit ∗ nBit ∗ bufclk
dx9/dt = bufclk ∗ x1

dx10/dt = 25.9 + 1.44 ∗ 10−4 ∗Bit ∗ x1 − 1.89 ∗ 10−3 ∗ x10

E,F Inp_driven = 7.62 ∗ 10−3 + 8.85 ∗ 10−7 ∗ x1

for −2.98 ∗ 10−8 ∗ x2 − 7.63 ∗ 10−10 ∗ x3 + 3.02 ∗ 10−11 ∗ x4

1.31% −7.77 ∗ 10−7 ∗ x6 + 0.07 ∗ x8 + 7.43 ∗ 10−8 ∗ x9

−1.05 ∗ 10−5 ∗ x10 − 2.32 ∗ 10−12 ∗Bit− 7.77 ∗ 10−7 ∗ nBit
−2.60 ∗ 10−7 ∗ bufclk + 0.07 ∗ V dd− 0.05 ∗ V ss

Inn_driven = 0.42 − 3.91 ∗ 10−7 ∗ x1 + 3.15 ∗ 10−8 ∗ x2

−4.93 ∗ 10−10 ∗ x3 − 2.32 ∗ 10−12 ∗ x4 − 2.60 ∗ 10−7 ∗ x6

−0.05 ∗ x8 − 8.82 ∗ 10−9 ∗ x9 + 8.95 ∗ 10−6 ∗ x10

−2.32 ∗ 10−12 ∗Bit− 7.77 ∗ 10−7 ∗ nBit
−2.60 ∗ 10−7 ∗ bufclk + 0.07 ∗ V dd− 0.05 ∗ V ss
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4.8.2 Robustness Modeling

In the application of statistical modeling, the designer’sgoal is to gain an understanding
of how designable variables affect robustness measures such as yield or Cpk (“process
capability”) [Nist2006]. This application follows the same methodology as performance
modeling, except in this case the Cpk is modeled from SPICE simulation data. The ex-
ample circuit used is the 50-device amplifier of Figure 3.21.

Table 4.13 shows the CAFFEINE-generated equation for Cpk [Mcc2006b]. The test-
ing error was 6.3%. Note that the technology variations are embedded in the numerical
coefficients of the model. Cpk is not a function of these process parameters, only their
aggregate effect on the design variables. Since the processparameters are not part of the
model, this model is specific for the given technology.

In examination of the expression, we can learn a several things. First, only five vari-
ables are needed to hit the 6.3% test error:Cc, Wdp2, Wdp1, Wdp2, Wmt4, Wmt1. The
variables comprise one compensation capacitor and four widths, and no lengths or mul-
tipliers. There are significant nonlinear interactions among the variables. An increase to
Wmt4 will increase Cpk, as will a decrease toWmt1. Cpk is quite dependent on the square
root ofCc. Cpk can also be increased by increasingWdp2 (big effect) or increasingWdp1

much smaller effect

Table 4.13:Caffeine-generated equation of Cpk for 50-device amp.

+1231.4
+4.21 ∗ 106 ∗W 2

mt4/Wmt1

−0.0012/
√
Cc

−9.39 ∗ 108 ∗W 2
dp2 ∗

√
Wdp1 ∗min(0.104, 6.60 ∗ 107 − 76.9/

√
Cc)

+1.21 ∗ 1012/min(−4.96 ∗ 106, 1010 − 2.48 ∗ 105/(
√
Wdp2 ∗ Cc))

4.8.3 Automated Sizing

While the original intent of CAFFEINE was to provide designers with insight about
their circuit, CAFFEINE’s predictive abilities were good enough to merit examining if
its model building is fast enough to put into the loop of an automated circuit-sizing appli-
cation. The paper [Mcc2006a] explored that opportunity, and achieved speedups which
made CAFFEINE modeling fast enough for such an application.Note that the scalability
enhancements in section 4.6 of the present chapter have improved CAFFEINE’s speed
sufficiently as well.

Details can be found in [Mcc2006a].

4.8.4 Analytical Performance Tradeoffs

In [Mcc2008b, Mcc2009], CAFFEINE was used to extract analytical models of the trade-
off among circuit performances. The approach is to use the performance values from a
set of Pareto-optimal circuits. All but one of the performances is used as inputs to the
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CAFFEINE models, and the remainining performance is used asthe model output. Sec-
tion 8.5 has details.

It can be concluded that CAFFEINE has many possible applications in circuits and
elsewhere, because it is appropriate wherever regression tools are used, and where insight
into the mapping is desirable.

4.9 Sensitivity To Search Algorithm

There is possibility to change the search representation, yet constrain the search to canon-
ical form functions. The representation discussed so far isdirect: a tree-based geno-
type maps to the “function” phenotype. In [Mcc2006a], a string-based genotype with
neutral networks (“introns”) was used. In [Mcc2006c], five different variants of search
representations and algorithms were explored. They included a comparison of grammat-
ical GP variants, where the genotype is either a tree [Whi1995] or a string of derivation
rules [ONe2003]. No approach was markedly better. The salient result was that all of
them could return useful interpretable models. Section 4.6described other changes to the
model-construction algorithm to improve its scalability.

This underscores the key contribution of this chapter: given SPICE simulation data,
applysomecompetent search algorithm and representation to the spaceof canonical form
functions, and one can get reasonable, interpretable, template-free circuit performance
models. Of course, the choice of algorithm affects the modelbuilding time and ability to
scale to more input variables or training samples, as section 4.6 discussed.

We refer the reader to [Mcc2006a, Mcc2006c] for more details.

4.10 Conclusion

This chapter has presented a tool to support analog circuit sizing by giving the designer
insight into the mapping from design variables to performances.

CAFFEINE is a tool which for the first time can generate interpretable, symbolic mod-
els of nonlinear analog circuit performance characteristics as a function of the circuit’s
design variables, withouta priori requiring a model template. The keys to CAFFEINE
are: a flow which leverages SPICE simulation data, a means of extracting interpretable
functions from the simulation data based on genetic programming search, and canonical-
form constraints on the functions to ensure interpretability. Using multi-objective genetic
programming, CAFFEINE generates, without an initial template, a set of models that
collectively trade off between error and complexity.

In the first round of experiments, visual inspection of the models has demonstrated
that the models are interpretable. The performance models were also shown to be signifi-
cantly more compact than posynomials. The CAFFEINE models also had markedly better
prediction ability than posynomials, projection-based polynomials, support vector ma-
chines, MARS splines, neural networks, and boosted neural networks. This indicates that
CAFFEINE can be applied to under-the-hood applications too, such as circuit optimiza-
tion that uses model-building within the optimization loopto determine new candidate
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design points. CAFFEINE has also demonstrated promise in applications of robustness
modeling and behavioral modeling.

This chapter has also described techniques to scale up CAFFEINE to handle many
more input variables: subtree caching, gradient-directedregularization to prune during
linear learning, pre-filtering single-variable expressions, and generously considering lin-
ear basis functions. In second-round experiments on problems with more than 100 input
variables, CAFFEINE has achieved a prediction performancecomparable to state-of-the-
art blackbox techniques like MARS; and unlike MARS models the resulting CAFFEINE
equations can be visually inspected and are not constrainedto a predefined functional
template.

This chapter has also described the application of CAFFEINEto other analog circuit
problems such as behavioral modeling and robustness modeling. It can be concluded that
CAFFEINE has many applications in circuits and elsewhere, because it is appropriate
wherever regression tools are used, and where insight into the mapping is desirable.

The last three chapters have discussed background, design-aiding, and insight-aiding
tools for the designer task of global varation-aware sizing. The next several chapters
generalize beyond the sizing task, to also search for circuit structureor topology design.



Chapter 5

Circuit Topology Synthesis:
Background

I do not know what I may appear to the world; but to myself I seemto have been only like
a boy playing on the seashore, and diverting myself in now andthen finding a smoother
pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered
before me.
–Isaac Newton

5.1 Introduction

Recall from chapter 1 the basic flow for analog circuit designat a node in the hierarchy.
We show it again in Figure 5.1. The first step in this flow is topology design or selection.
The choice of analog circuit topology has a giant impact on the performance of the overall
design. Designers often make the topology selection decision based on experience. While
the choice of a topology is often thought of as a relatively quick decision compared to
sizing and layout, the implications of the choice resonate throughout the rest of the design
cycle. Even the best circuit optimizers can only produce as good a result as the chosen
topology allows [Rut2002].

Unfortunately, a suboptimal topology choice can occur:

• The topology may not worsening effects due to Moore’s law, such as larger statistical
variations [Itrs2007].

• The topology may not handle new effects, previous undesigned-for effects like such
as proximity [Dre2006].

• Functionality requirements may be qualitatively new to thedesigner.

• Or, the designer may unknowingly miss an advance in topologydesign.

In the combined steps of topology design/section and sizing(first two steps of Figure
5.1), the aim is to automatically determine the circuit components, interconnections, and
suggested component dimensions to meet a set of circuit design goals. Goals can be
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Figure 5.1:Basic flow for analog circuit design (at a node in the hierarchy).

performance constraints and / or objectives. If the goals are just constraints, the aim can
be called a “specs-in, sized-topology out” flow.

Because of the importance and challenge of topology selection and design, tech-
niques relating to it have been researched extensively in both the analog CAD literature
[Rut2002, Rut2007], as well as the evolutionary computation literature (specifically, in
genetic programming and evolvable hardware). Despite the extensive work, there is not
yet an industrial tool for topology selection or for design.

Topology selection / design tools will be the focus of this chapter and subsequent
chapters. This chapter is a review, and the other chapters present a set of techniques with
industrially-oriented applicability.

The rest of this chapter is organized as follows. Section 5.2examines different pos-
sible topology-sizing design flows (per sub-block), and their relation to techniques in in-
dustry and academia. Section 5.3 discusses which flows incorporate best into hierarchical
design methodologies to handle system-level design. Section 5.4 presents requirements
for a topology selection / design tool, with an eye towards industrial applicability. Be-
cause there has been much recent research to open-ended topology synthesis using GP,
section 5.5 examines and explains why open-ended topology synthesis is so problematic.
Section 5.6 concludes this review chapter.

Subsequent chapters present MOJITO and its derivatives. MOJITO is a topology se-
lection / design tool that has industrially-acceptable inputs and outputs, accuracy, and
runtime. Derivatives leverage MOJITO to enable topology-performance knowledge ex-
traction, and accelerate design of novel topologies.

5.2 Topology-Centric Flows

This section examines different possible topology-sizingdesign flows, and the related
literature for each flow.
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5.2.1 Flow: Industrial Status Quo

The first flow of interest is the industrial status quo, as shown in Figure 5.2. Here, the
designer starts by manually selecting an initial topology off-the-shelf, based on the input
design goals (performance specifications and objectives).He then sizes that topology,
using either an automatic optimizer e.g. [Cdn2005b] or manually.

If he hits the target design goals with that topology, he can declare the topology-sizing
steps done, and proceed to layout. If not, he will select the next-most promising off-
the-shelf topology, and size it. Once again, if goals are hit, he can stop, otherwise he
will select another promising topology. He will continue trying this until he runs out of
appropriate off-the-shelf topologies.

Figure 5.2:Status quo industrial flow for topology selection/design and sizing.

If no topology can meet specs, a decision must be made. If a newdesign is not
absolutely needed, such as if performance goals can be loosened, the designer can declare
the design “good enough” and move on to other work. There is strong desire to avoid
designing a new topology because of the greatly increased risk that the design will not
work, with significant cost ramifications due to the need to re-spin and increased in time-
to-market. Because of these risks, the motivation for a new topology has to be strong.
New topologies only come about if there is no other way, if theidea has possible orders
of magnitude payoff such that it’s worth the money to try, or if there is some way to make
trying it zero risk.

However, sometimes those motivations for a novel topology design exist, so the de-
signer will have to create a new topology. He will try to minimize risk and design time by
basing the new topology on other analog circuit topologies and building blocks, using his
knowledge and experience. He will continue working on it until he hits the target, or runs
out of time or ideas.
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The advantage of this flow is that the final topology is either fully trusted (because
it either uses a known topology), or mostly trusted because the new topology is similar
to previous topologies, with changes that an analog engineer reasoned his way through.
Unfortunately, the topology selection time can be unpredictable, especially if there are
several iterations of topology selection and circuit sizing. Novel topology design relies
on the designer being able to be “inspired” which is hard to schedule, and there is still
risk because until the new topology gets verified from manufacturing and test. Therefore
the design time for handling new topologies is poor, and evenholds risk of no invention
happening. The flow is somewhat complicated, though it does feel natural to designers.

Can this status-quo flow be improved upon?

5.2.2 Flow: Automated Topology Selection

One way to improve upon the status quo industrial flow is toautomatethe topology selec-
tion process, as shown in Figure 5.3. The overall flow looks similar to the industrial flow
of Figure 5.2, but the implementation is substantially different because of the extra input
needed. In particular, the auto-selection step needs to have a topologies database (DB)
as input, and possibly selection rules for the topologies database as well. (If the database
does not have selection rules, it needs to compute them on-the-fly).

Figure 5.3: Designer flow for topology selection/design and sizing, which
incorporates automated topology selection.

Several analog CAD systems in the literature have been proposed to follow this flow.
Most notable are the rule-based “expert system” style approaches starting in the mid-
1980’s. These include BLADES [Tur1986], ISAID [Tou1990], OASYS [Har1992], and
more [Ber1988, Fung1988, Koh1990, Sto1992, Ant1995, Ning1991, Swi1991, Hor1997].
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For example, OASYS [Har1992] has a pre-specified decision tree [Bre1984] that chooses
among 12 different topologies, depending on the input specifications. Unfortunately,
these approaches require an up-front setup effort of weeks to months, which must be
repeated foreachnew process node on each circuit type. While many proposals were
made, the approaches fell out of use as process generations inevitably changed due to
Moore’s Law [Itrs2007].

Approaches like AMGIE [Plas2002] aim to overcome the process node issue by au-
tomatically partitioning the space using SPICE in the loop,prior to the main automated
sizing loop. The problem was that the approach did not support very many topologies,
made potentially dangerous assumptions while partitioning, and had substantial compu-
tational effort for the partitioning step.

Each topology that the system might output has to be entered by the CAD developer
beforehand. While this means that all the topologies are inherently trustworthy, it also
means significant effort to enter the topologies into the CADsystem. Another side effect
is that the tool cannot help in generating novel circuitry, for example when no topology
in the DB meets specifications.

A final variant, derived from [Her1998] takes an interestingtwist on the topology “se-
lection” problem. Rather than trying to intelligently select the topology, it merely iterates
through a list of hundreds of possible topologies and optimizes each one until the target
is hit. At first glance this sounds computationally expensive. However, it is not expen-
sive in the proposed flow because each optimization is extremely fast, taking on the order
of seconds. It is fast because the circuit has been pre-modeled as a convex optimization
problem, so the optimization needs to merely run a convex solver on the pre-set equa-
tions [Boyd2004]. The problem is that convex performance models are neededa priori.
In early work, these models were manually generated, which is obviously very tedious.
More recent work [Dae2002, Dae2003, Agg2007] has shown how to automatically create
convex posynomials from simulation data, but unfortunately they have poor prediction
accuracy, as section 4.5 has examined.

5.2.3 Flow: Flat, Lightweight Multi-Topology Sizing

Rather than manually specifying each topology separately,a different approach is to de-
fine afamily of topologies by parameterizing the topologies’ possible structures, using a
fixed-length vector. Each variable in the vector is used to either (a) enable, disable, or
choose specific components in a “flat” fashion, or (b) set sizing/biasing values. We call
this “multi-topology sizing” because the approaches simultaneously consider the topol-
ogy choices and sizes/biases in a unified search space. The flow is shown in Figure 5.4.
Such approaches include DARWIN [Kru1995] and MINLP [Mau1995] for opamps, and
[Dob2003, Fra2000, Tang2006] for system-level designs.

A key advantage is that these approaches only require structural information about
the circuit, which is independent of the process node. (Though in some system-level
cases, behavioral models are also an input, to speed search.) Another advantage is that
the topologies are trustworthy by construction.
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Figure 5.4:Designer flow for flat, lightweight multi-topology sizing

Unfortunately, each approach relies on a sneaky definition of the search space that is
specific to the circuit type. There is not a clear path to generalize. The flat search space
makes it difficult to compose libraries with large numbers oftopologies. These limitations
mean that DARWIN has just 24 possible opamp topologies, and MINLP just 64 possible
opamp topologies. For this reason, give the search space of flat multi-topology sizing the
“lightweight” label.

5.2.4 Flow: Open-Ended Topology Synthesis

Starting from the mid-1990s, a very different approach to determining a sized topology
was taken in the evolutionary computation literature, in the subfields of genetic program-
ming (GP) and evolvable hardware. The flow for the approach isshown in Figure 5.5.

Figure 5.5:(Ideal) designer flow when using open-ended topology synthesis.
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The flow looks amazingly simple at first glance, taking just the design goals as inputs,
and producing a sized netlist. GP is given a set of devices (transistors, resistors, etc) that
it can connect in arbitrary ways without rules – all the building blocks are “invented”
(or reinvented) from scratch. This is what gives it the open-ended nature. No topology
information is input.

GP has a natural ability to handle search spaces with tree-like and graph-like struc-
tures (topologies). Therefore it seems to be a natural fit forsearching the space of analog
circuit topologies. Many researchers have explored this, including [Koza1997, Lohn1998,
Koza1999, Gri2000, Zeb2000, Goh2001, Shi2002, Sri2002, Zeb2002, Koza2003, Ando2003,
Koza2004b, Hu2004, Das2005, Cha2006, Mat2007, Sap2008].

The early approaches such as [Koza2003, Lohn1998, Shi2002]) were very open-
ended, having few constraints. Unfortunately, they had prohibitive CPU effort. Even
worse, and results which were nottrustworthybecause there was no apparent logic be-
hind them. The trust issue was exacerbated because the results often looked strange.
Such odd circuits can be found in early papers like [Koza1997], all the way to very recent
papers like [Sap2008].

Figure 5.6:Actual designer flow when using open-ended topology synthesis.

Researchers who wanted to have industrially interesting circuits found themselves
adding constraints, then re-running the system, and addingmore constraints, and so
on, in a seemingly non-stop loop. Some of the more recent efforts [Sri2002, Das2005,
Mat2007]) added tighter constraints using domain knowledge to improve efficiency and
trustworthiness, but there is still no guarantee of trustworthy results or even trackable
novelty. Judging by the published results, the constraintsadded by this research seem to
have restricted the synthesis system to very tiny circuits of just a few transistors. Further-
more, many circuit robustness issues were still ignored. The manual, painful, iterative
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constraint-adding loops still exist. Therefore, while Figure 5.5 was theideal flow for
open-ended topology synthesis, Figure 5.6 is a morerealistic flow that actually reflects
the constraint-adding process.

As evidenced by the number of publications, the GP communityhas strong interest in
open-ended topology synthesis. Interestingly, the community considers topology synthe-
sis a success story for GP,despitethe fact that it is not being used commercially after 10
years of intense research. Because of this interest, and these misconceptions, we explore
open-ended topology synthesis’ deeper issues in significantly more detail in section 5.5.

5.2.5 Flow: Hierarchical, Massively Multi-Topology Sizing

This flow aims to get a structurally-diverse search space like open-ended synthesis, yet re-
turn topologies that are trustworthy-by-construction. The flow for this approach is shown
in Figure 5.7.

Figure 5.7:Designer flow for massively multi-topology sizing.

At first glance, the flow has strong similary to the flow of flat, lightweight multi-
topology sizing (Figure 5.4): in both cases there is multi-topology sizing, which takes in
design goals and a topologies DB as input. But the differenceis in how the input topolo-
gies DB can be interpreted. If the library has asufficiently richnumber of topologies, it
means that the designer does not have to intervene in a typical design problem. That is,
the library is hidden, from the perspective of the designer.That is why the topologies
DB is within the tool block in Figure 5.7, as opposed to being an explicit input from the
designer. This is of interest to designers, because it meansthat it uses the same inputs and
outputs as existing industrial automated sizers like [Cdn2005b]. Actually, there is even
one less input – unlike the sizers, the topology does not needto be specified. The flow is
simply “specs in, sized topology out”.

The challenge is in how to specify a sufficiently rich library. After all, the “flat” topol-
ogy libraries for opamps had < 100 topologies, with no clear way to grow much bigger.
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The answer is in the use of hierarchy to specify the library. That is, the set of possible
topologies is specified by a set of hierarchical analog building blocks. Some building
blocks can instantiate (refine) into one of many building blocks. This framework can be
viewed as a grammar, where different sentences in the grammar are different topologies,
and the building block composition of the topologies follows the grammar’s derivation
rules.

Interestingly, one could do a multi-topology sizing run with many objectives, re-
sulting in a results DB of Pareto-optimal sized topologies.Using this results DB, fu-
ture queries for a sized topology, given performance specifications, are merely a cheap
database lookup away. That is, it is “specs in, sized topology out, immediately.”

One group uses this approach [Mar2008] for system-level (A/D) design. The algo-
rithm starts withjust abstract models having behavioral model performance descriptions.
Over the run of the algorithm, it allows the abstract models to go through refinements,
having transforms to well-known structural descriptions to give trusted topologies. This
is, in effect, a grammar. An issue with this approach is that multiple resolutions of be-
havioral models must be specified, which makes defining the library of topologies more
difficult.

An approach requiring less library setup effort takes injuststructural descriptions, not
behavioral. The papers [Mcc2007, Mcc2008a] showed how just30 building blocks could
expand into thousands of different topologies. Chapters 6 and 7 describe this approach in
much greater detail.

5.2.6 Hierarchical, Massively Multi-Topology SizingWith Novelty

A problem with the previous flow (hierarchical, massively multi-topology sizing) is that if
no topology can meet specifications, then the designer must manually determine anovel
topology to meet specifications. Novel topology design relies on the designer being able
to be “inspired” which is hard to schedule. Therefore the design time for handling new
topologies is poor, and even holds risk of no invention happening.

A flow that can help to de-risk this is shown in Figure 5.8. Thistool searches across
100% trusted topology space, and adds noveltyonly if there is a performance payoff. That
is, only novel designs that actually give a payoff are rewarded. That is, it “innovates” as
needed. It is especially useful if there is a mechanism to track novelty, to measure the
degree of trust designers have in the topology.

5.2.7 Flows: Summary

The industrially interesting categories are hierarchical, massively multi-topology sizing,
and its novelty extension because they achieve the trustworthiness of the analog CAD
approaches, yet search through rich topology search spaceslike the GP approach.
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Figure 5.8:Designer flow for massively multi-topology sizing with novelty.

5.3 Reconciling System-Level Design

We desire for our target topology selection / design tool to handle complex system-level
designs.

Recall from section 1.2.3 that system-level designs can easily be hierarchically de-
composed into a set of sub-blocks, where each sub-block has known constraints and ob-
jectives. One can design a system-level circuit using a hierarchical design methodology
to traverse the nodes (sub-blocks) in the hierarchy. Each node in the hierarchy is designed
following the generic analog design flow of Figure 5.1. The choice of cell-level analog
circuit topology can have a giant impact on the performance of a system.

Figure 5.9: The multi-objective bottom-up (MOBU) hierarchical design
methodology (from section 1.2.3).

An example is the multi-objective bottom-up (MOBU) hierarchical design method-
ology [Eec2005], which finds Pareto-optimal hypersurfacesat the lowest-level blocks
with multi-objective optimization, then does multi-objective optimization at successively
higher levels, as shown in Figure 5.9. The top-down constraint-driven methodology
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[Cha1997] (TDCD) designs the top block first, resulting in specifications for each of its
sub-block. Then, each sub-block is designed to meet those specifications, and so on. Be-
fore its top-down constraint-satisfaction step, TDCD needs models of feasibility of each
sub-block. The Pareto-optimal surfaces of MOBU turn out to be a good way to generate
such models.

Because these hierarchical methodologies are an effectiveway to approach system-
level design, we desire for the topology selection / design tool to fit into them. MOBU
needs a tool that generates a Pareto-optimal set of sized topologies, and TDCD needs a
tool that performs constraint-satisfaction across several topologiesanda way to generate
a node’s feasibility model (e.g. via generating a Pareto-optimal set).

Figure 5.10 gives two ways to handle constraint satisfaction, and Figure 5.11 gives two
ways to handle multi-objective synthesis. The next paragraphs consider the relative merits
of each approach within constraint satisfaction, and each approach within multi-objective
synthesis.

Figure 5.10:Constraint-satisfaction flows for hierarchical design. (a) Uses
just single-topology sizing, and (b) Uses multi-topology sizing.

Figure 5.10 (a) shows a constraint-satisfaction approach that has two nested loops.
The inner loop uses automatic topology selection in the “change topology” backtracking
step. The outer loop changes specifications if needed (it is sometimes needed within the
context of TDCD). This approach has two issues: two loops makes for a complicated flow.
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Worse, the automated topology-selection step needs a topology rule-partitioning scheme,
and those are problematic as section 5.2.2 described.

Figure 5.10 (b) is an improved way to do constraint satisfaction. In its flow, the
topology-changing loop is replaced by multi-topology sizing. This overcomes both the
issues: two loops, and topology rule-partitioning. Therefore, for constraint satisfaction,
the flow of Figure 5.10 (b) is preferred to the flow of Figure 5.10 (a).

Figure 5.11: Multi-objective flows for hierarchical design. (a) Uses just
single-topology sizing, and (b) Uses multi-topology sizing.

Figure 5.11 describes how multi-objective synthesis mightbe handled. In general,
multi-objective sizing algorithms [Sme2003a] bypass the issue of needing specifications
seta priori by optimizing on >1 objectives to generate Pareto-optimal performance trade-
offs as part of the search task. But so far, multiobjective sizers have only worked on one
topology at a time. This means that to get an optimal tradeoffacross multiple topologies,
one needs one sizing runper topologybefore merging the topologies, as Figure 5.11 (a)
shows. The Pareto-optimal sets across topologies are merged into a single set. Then,
search at higher-level blocks implicitly performs topology selection of lower-level blocks
[Eec2007]. Unsurprisingly, this enhanced-MOBU flow gave better results than using just
a fixed topology approach to MOBU. But tradeoff-merging has limits: it would be ex-
tremely tedious and time-consuming to do a different sizingrun for each of 100 or 1000
or more topologies.

Figure 5.11 (b) shows the ideal approach for multi-objective synthesis, which simul-
taneously considers a large number of possible topologies and returns a multi-topology
tradeoff across specs, all in one sizing run with no re-loopsneeded. For multi-objective
synthesis, Figure 5.11 (b) is preferred over Figure 5.11 (a).
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In short, this section has described topology synthesis approaches that best fit the
context of a hierarchical design methodology. The methodologies need either constraint
satisfaction or multi-objective synthesis. In both cases,a multi-topologyapproach is the
preferred flow. Specifically, Figure 5.10 (b) shows the preferred flow for constraint sat-
isfaction, and Figure Figure 5.11 (b) shows the preferred flow for multi-objective syn-
thesis. Since multi-objective optimization is typically more challenging than constraint
satisfaction, and it is needed for MOBU and desirable to TDCD, then we will focus our
multi-topology sizing efforts to be also multi-objective.

In summary, multi-topology synthesis can be readily incorporated into hierarchical
design methodologies, and therefore handle complex system-level design.

5.4 Requirements for a Topology Selection / Design Tool

Now that we have reviewed several topology selection / design flows and related research,
within the context of a hierarchical design methodology, weare well positioned to con-
sider the requirements for a topology design / selection tool. To be appropriate for indus-
trial use, a topology design / selection tool must have the following attributes.

If a topology that isknownto be 100% trustworthy will meet the performance goals,
then the tool should return that topology.

The tool should strive to keep the inputs and outputs as closeas possible to existing
industrial tools. The core aim is to use inputs and outputs that are acceptable for in-
dustrial optimizers like [Cdn2005b, Snps2005], but to add minimal extra I/O to enable
multi-topology sizing. Instead of a single topology, the tool takes in a set of hierarchi-
cally organized building blocks. Just like a single topology, these building blocks can be
specified in an industrial circuit schematic editor. Getting such inputs is not unreason-
able: such blocks do not appear as anything special to the designer, as they are merely
based on well-known building blocks that one can find in any analog design textbook
[Raz2000, San2006]. And in fact, since we have already designed an example library
(see chapter 6), the designers can use that. The tool provider would typically provide a
default library for each circuit type.

The other inputs relate to computing performance: testbenches specify the circuit
analysis and test harness to measure performance, objectives and constraints specify the
aims of each performance measure, and simulator model files describe how transistors
etc. behave for a particular semiconductor process node. Note that MOJITO only needs
structural information; it does not need a special decisionrule base, nor does it need
abstract models with mappings to refined structures. This makes it straightforward to
switch technologies, or even add new building blocks to the library.

The tool should output a Pareto-optimal set sized topologies, for selection by a de-
signer or within a hierarchical methodology like MOBU or TDCD. By doing so, it can
handle complex system-level circuits.

To avoid reinventing the wheel, and maximize trustworthiness, The tool should draw
on as much prior structural design knowledge as possible, solong as that knowledge is
convenient to the user. (It does nothaveto be convenient to the tool provider.)
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To have SPICE accuracy and to be readily flexible to changes inprocess nodes, the tool
should use SPICE for feedback, rather than specially designed performance estimators.

The tool should resort to adding noveltyonly if no existing known topology can meet
performance goals. To add novelty otherwise would introduce unnecessary risk, such as
the risk of a costly respin. If novelty is added, it should be easy to track where the novelty
is added, and what the performance payoff is.

These requirements can be seen as a pragmatic fusion of requirements from knowledge-
based CAD, optimization-based CAD, and evolutionary computation.

5.5 Open-Ended Synthesis and the Analog Problem Do-
main

This section elaborates on why open-ended topology synthesis is so problematic. It is
primarily aimed at GP / AI researchers, to give some background and context so that the
challenging nature of the structural synthesis problem becomes more clear.

5.5.1 Design “Implementation”

When GP researchers read about GP for analog topology synthesis, they are used to read-
ing about “front-end design”, as discussed in chapter 1. Specifically, the input is a set of
circuit specifications (e.g. get gain > 60 dB, power consumption < 10mW), and the tar-
get output is a “netlist”, which describes the synthesized circuit in terms of components,
interconnections, and component dimensions.

That’s actually just one step in a much broader flow, which is shown in Figure 5.1.
Somehow, that netlist has to get into the real world, as a “chip” (VLSI circuit). The
back-end flow is as follows. Once the netlist is determined, it is converted into a “layout”,
which is essentially a set of overlapping polygons at different layers, where specific layers
/ patterns represent specific types of components and interconnects. The layout is inte-
grated into an overall system layout, which is sent to a billion-dollar fabrication facility.
The system layout is used for creation of process “masks,” which are a sort of physical
filter on whether to dope / etch / etc. different parts of a silicon wafer. In modern process
technologies, mask construction costs millions of dollars[Itrs2007]. Using the masks,
many chips at once are fabricated on a wafer. The chips are sliced apart from each other,
then packaged, and finally tested.

If a problem is detected after a step in this flow, then the process backtracks to the
previous step. The most expensive step is creation of the process masks, so this is where
it is most important to avoid backtracking. In a worst case, which still often happens in
practice, a fabricated chip does not work at all. To fix it, oneneeds to go back to designer,
and then fabricate and test again. This is known as a “respin.” Obviously, respins are
highly undesirabel because of mask costs. These days, respins also mean significant loss
of profitability because of the delay in bringing the productto market.
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Using a new analog topologysignificantlyraises the chance of a respin due to lack of
experience with that topology. This makes adoption of an analog structural synthesis tool
a costly, risky proposition.

5.5.2 Analog Designer Perspective

Since the mid 1980’s, analog designers have been presented with claims about “analog
synthesis.” Researchers have labeled “analog synthesis” to mean many things, including
global parameter optimization, automated conversion fromnetlist to layout, and auto-
mated topology design (the version that GP targets). For a survey, see [Gie2002a].

Our focus here is automated topology design. Most analog designers would acknowl-
edge that if such a technology actually worked, and well, it would considerably alter the
nature of analog design. Their counterparts in digital design have already experienced
such a revolution: the mid 1980’s introduction of digital circuit logic synthesis.

Unlike digital synthesis, few claims of analog synthesis have held true. The analog
synthesis techniques were typically too unscalable or brittle to be useful in industry. Of the
dozens of various types of analog “synthesis” technologiesreported over the last twenty
years, just a few have found their way into industrial use, and that was only recently
[Snps2005, Cdn2005a, Cdn2005b, Mun2008, Ext2008]. None ofthese do automated
topology design (they do automated sizing/biasing and automated layout). Thus, when
designers hear about a new structural synthesis technology, from GP or elsewhere, they
are highly skeptical. In contrast, digital designers are very open to automated-design
techniques.

How do the claims of GP look, from a designer’s perspective?
For starters, they are not shocked, even when they see the work on reinvented patents

[Koza2003]. With every other structural synthesis technology reported until now,some-
thing was missing, which limited its widespread industrial use. Despite their limited
understanding of GP, designers have no real reason to treat or trust GP differently. They
simply believe that something’s missing for GP too.

They are right. When an analog designer digs more deeply intothe GP methodology
for automated topology design, he will find problems. Some are obvious (to an analog
designer), and some are subtle.

5.5.3 Performance Estimation and Circuit Robustness

In analog synthesis, circuit robustness is strongly related to performance estimation. A
performance estimator takes in a sized topology, and estimates its performances. To
achieve a robust design, the synthesis engine must use performance estimation that is
as accurate as possible.

The ideal performance estimator would predict with 100% accuracy how a design
performs after layout, manufacturing, and testing withoutactually fabricating it. More-
over, it would run quickly enough to be invoked thousands or millions of times through-
out optimization, to allow through automated exploration of designs. SPICE [Nag1973,
Nag1975] is the most accurate and general estimator, but there are also faster, less general,
less accurate ones.
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5.5.3.1 Environmental conditions

The manufactured chip will need to work at the desired performance level, even as tem-
peratures change, power supply changes, and load changes. These are conditions of the
circuit’s operating environment.

5.5.3.2 Manufacturing variations

When manufacturing a VLSI circuit, random variations get introduced into the implemen-
tation of the designs as an inherent effect of the fabrication process. The automated tool
must model this and handle it.

The simplest model is so-called “Fast/Slow corners”, whichin effect try to capture
the 3-sigma extremes in each type of transistor’s operatingspeed due to manufacturing
variations. This approach is popular for its simplicity andavailability. However, corners
do not model the problem well, because they are designer to bracket variations indigital
circuit performance, not analog circuit performance. Section 2.2.5 elaborates.

The approach [Pel1989] is historically the most popular approach to modeling local
process variations (mismatch). In its formulation, mismatch between two devices is pro-
portional to their distance, and inversely proportional totheirsqrt(W ∗L). There is about
one random variable per device. The random variables are typically normally-distributed,
and may be correlated.

Some approaches build empirically-based statistical models to estimate a probability
density function, such as [Pow1994]. These models almost always make assumptions that
render them inaccurate, for example assuming that certain random variables are indepen-
dent when they are not, or ignoring local statistical variations as in [Alp2003].

The backpropagation-of-variance approach [Dre2003] usesa more physical basis for
randomness modeling and is quite accurate. However, an implication is that for every
transistor,≥ 8 random variables are introduced. Therefore, a medium-sized circuit could
have hundreds or thousands of random variables. The random variables are typically
normal, independent, and identically distributed (NIID) [Box2005].

5.5.3.3 Layout issues

“Layout parasitics” are effects that are not accounted for prior to layout [Lam1999]. An
example layout parasitic is when the material between two wires acts like a circuit com-
ponent (e.g. a capacitor) rather than acting like the “ideal” open circuit. A parasitic-
annotated netlist can be extracted from a layout, but it willhave 10x to 100x more devices.
This could take significantly longer simulation time.

As a further aggravation, layout parasitics are subject to process variations themselves.
This dramatically increases the number of process variables, and therefore the effect that
process variation has on performance.

5.5.3.4 Other Effects

As process nodes change and devices shrink to follow Moore’sLaw, new effects crop
up and others become worse. Depending when an open-ended synthesis approach is de-
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ployed, and for what applications, it may have to consider some of the following ef-
fects: proximity effects [Dre2006], electromagnetic compatibility (EMC) [Paul1992], ag-
ing/reliability effects, and more. A thorough, up-to-datedescription of issues can be found
at the latest ITRS, e.g. [Itrs2007].

5.5.3.5 SPICE Can Lie

SPICE [Nag1973, Nag1975] will sometimes output results that are dramatically different
than true silicon operation. This can be due to problems in its device models, in conver-
gence of the SPICE solver, or perhaps inadequate models of parasitics. SPICE transistor
models seem to be in a continually inadequate state, with known deficiencies, such as dis-
continuities from one operating region to another. Part of the difficulty is that the model
structure must work for several processes. Models typically requirehundredsof parame-
ters that ideally are easy to extract. Extracting parameters forstatisticalSPICE models is
particularly problematic.

Because of these model deficiencies, designers do not fully trust SPICE, and have
tactics to avoid known problems. For example, they consciously avoid transistor operating
regions where the models are known to be inadequate.

5.5.4 Robustness of Manually-Designed Topologies

Manually-designed topologies are almost always designed with robustness in mind. This
section highlights how a manually-designed topology implicitly has this robustness. From
another perspective, this section discusses what other robustness issues must be consid-
ered when doing open-ended synthesis of a topology.

5.5.4.1 Robustness in Manual Topology Design

We now examine what analog designers do to make topologies more robust. We will refer
to a well-known circuit shown in Figure 5.12 (copied from Figure 4.8 for convenience).

The effect of “local” (“mismatch”) variations within a chiphas traditionally been
smaller than “global” variations, which are between chips and between runs; tradition-
ally having values of 1-2% vs. 10-20%, respectively1. The main tactic to deal with global
variations is to design structures in which performance is afunction of ratios of sizings,
rather than absolute values. For example, in common-sourcegain stages, a load resistor
would have variation of 10-20%. So, designers use a PMOS load instead, matched up to
an NMOS gain transistor, and gain is dependent on the ratios (e.g. in Figure 5.12, M5a is
a resistive load for M3a) [Lak1994, Raz2000, San2006].

Differential design is another tactic to move away from “absolute” signal values,
which are susceptible to global variation. In differentialdesign, “mirrors of structures”
are created, and the circuit operates on adifferencebetween two voltage/current signals,
rather a single signal. The OTA in Figure 5.12 is symmetricalabout a vertical axis cen-
tered on M5 and M7. The output is a function of the difference between the positive and
negative inputs,nin_p andnin_n.

1Though for modern geometries≤ 90nm, local and global variations are the same order of magnitude.
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Figure 5.12:CMOS high-speed OTA

A precise current is expensive to generate; it’s a much better idea to generate one
or a few reference currents and copy them throughout the circuit with “current mirrors.”
The OTA in Figure 5.12 does this: the three transistors on theleft are the “biasing” cir-
cuitry to generate currents, which are then copied throughout the circuit. Sometimes a
single current can be shared, rather than trying to match twoseparate currents. The OTA’s
differential-pair devices (M1a and M1b) do this: instead ofhaving different “tail” cur-
rents, M1a and M1b share the same current which goes through M6 and M7.

Negative feedback is a well-known general engineering technique for compromising
some performance in the interest of precision. Analog circuits often use negative feed-
back, such as for improving the common-mode rejection ratioof a differential amplifier,
or for reducing the variation of an amplifier’s gain [Raz2000].

5.5.4.2 Trust and Re-Use

The topology is trusted because it (a) has been created and characterized by expert analog
designer(s) based on logic and experience, and (b) has been fabricated and tested over
many process generations. Topology re-use is widespread inindustry because past suc-
cess means more confidence that the topology will work. A new topology is typically a
derivative of an existing topology, because similarity to known designs maintains trust.
We will see that re-use plays a highly important role.

5.5.4.3 Device Operating Constraints

As discussed in section 2.2.9, topologies have device operating constraints (DOCs) based
on the topology’s design principles. Every transistor in the circuit has been designed with
the assumption that it will be operating in a specific region.There is a good chance that
the design assumptions do not hold in operating regions outside those constraints.
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5.5.4.4 Clear Path To Layout

The designer knows that, for manually-designed topologies, there is a clear path to layout;
to a large extent the designer has already anticipated the parasitics. Layout designers also
have tactics to improve robustness, such as: folding transistors, guard rings, and careful
routing to avoid cross-coupling between sensitive wires [Has2000, Lam1999]. Analog
layout synthesis is another analog CAD subproblem [Rut2000]; it isdifficult to model
and solve well, as illustrated by continued research activity despite the availability of
commercial tools like [Cdn2005a]. When layout parasitics are more pronounced, such
as in RF design, there are ways to tighten the coupling between sizing and layout design
[Van2001, Sme2003a, Zha2004, Bha2004].

To properly account for layout effects in synthesis, one possibility is to unite the front-
end design space (topology and circuit sizes) with the back-end space (layout), and ap-
proach the whole problem at once, as in section 5.2 of [Koza2003]. Unfortunately, run-
time was 50x slower than a GP run on an equivalent problem thatdid not consider layout.
And, that work drastically simplified the layout synthesis problem – it did not even extract
the parasitics from the layout before simulating the netlist.

5.5.4.5 Synthesis Exaggerates “Cheating” of Search Algorithms

We say a “cheat” occurs when design has good measured performances, but which upon
inspection is useless (e.g. not physically realizable). Anexample is too many long, nar-
row transistors. The solution in that case is to add more constraints on width/length ratios.
Each added constraint takes time to detect, correct, and re-run. There is dramatically more
opportunity for structural synthesis to cheat compared to sizing optimization, because the
open-ended topology design space is drastically larger, and there are more opportunities
for SPICE to lie. Evolvable hardware research is filled with examples of odd designs;
however, in non-reprogrammable or non-reconfigurable analog VLSI, one cannot em-
brace odd design results because of the high cost of fabrication.

5.5.5 An Updated Model of the Open-Ended Synthesis Problem

5.5.5.1 A Realistic Model

Most earlier GP structural open-ended synthesis work such as [Koza1999, Lohn1998,
Zeb2002, Sri2002, Koza2003] did not have a very thorough model of the problem com-
pared to analog CAD optimization, but some of it has been getting better recently. In
[Koza2005], corners were added to account for environmental and (very roughly) manu-
facturing variations, and they employ testbenches directly from an industrial CAD vendor
[Snps2005]. However, other recent research has not yet acknowledged the need for more
robustness, e.g. [Das2005, Mat2007, Sap2008].

GP does not have DOCs, because it does not make assumptions about what region
each transistor will operate in. GP actually has stronger performance measures in one
regard: it also tries to match waveforms of behavior (i.e. minimize the difference between
a target waveform and the candidate circuit’s waveform).
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Compared to analog CAD optimization work, after the trust issue, GP’s biggest defi-
ciency in problem modeling is its lack of a good model of manufacturing variations. The
closest method presented is robust HFC [Hu2005a]. It did have Monte Carlo sampling,
but the randomness model is not suitable for VLSI circuits.

Beyond analog CAD optimization, GP-evolved circuits must somehow get the same
advantages as a manually-designed topology. Such circuitsmust get designer trust, in-
cluding an explanation and formulae for behavior. Ultimately, successful fabrication and
testing of GP-synthesized circuits is necessary. On the way, there are the hurdles of SPICE
(mis)behavior, layout parasitics, search space cheats, and extra challenges from process
variations.

5.5.5.2 Computational Challenges

Ultimately, the only way to accurately model manufacturingvariations is viasimulation
on accurate statistical models. Let us examine the runtime of a typical structural open-
ended synthesis run that uses brute force Monte Carlo sampling. Except for layout, we
will temporarily ignore all the extra challenges wrought bya non-fixed topology.

Let us say: there are 8 corners (for environmental variations), 10 Monte Carlo sam-
ples (for manufacturing variations; 10 is optimistic), andassume a simulation time of 1
minute for a circuit at one corner and one sample on all testbenches on a 1 GHz machine.
Parasitic-extracted layouts can easily lead to 10x longer simulation times. Larger designs
and/or longer-than-transient analyses could easily take 6x, 60x, or even 600x longer to
simulate.

It is typical for a GP run to explore 100 million designs for more challenging prob-
lems; 1 billion or even 10 billion would not be unreasonable [Koza2003]. But let us have
1,000 1-GHz machines in parallel.

Then, the total run time = 152 years! And it’s even longer for tougher problems, where
the simulation time is 6x-600x longer and the number of individuals is 10x-100x more.

One might ask if Moore’s Law can ease this challenge.

5.5.5.3 Mooreware vs. Anti-Mooreware

GP is considered an example of “Mooreware” [Koza1999], where an algorithm becomes
more effective with more computational power, and therefore with the march of Moore’s
Law [Moo1965] over time.

However, Moore’s Law when attacking VLSI design problems isa double-edged
sword. Each new technology generation also requires more modeling effort, and there-
fore more compute time! For example, the need for substrate noise modeling is growing;
to model this takes 30 minutes on four modern processors [Soe2005], i.e. 120x more
computational effort.

Thus, open-ended analog synthesis is an “Anti-Mooreware” problem: it gets more
difficult as Moore’s Law progresses. So, we cannot rely on the“Mooreware” aspect of
GP to eventually be fast enough1.

1While we cannotrely on the “Mooreware” aspect, GPcan opportunustically take advantage of ad-
vances in computing that drive down the cost per flop, including multicore machines, massively multicore
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Figure 5.13:Effects of Moore’s Law on open-ended topoology synthesis.

5.5.5.4 Moore’s Law Breaks Topologies

Topologies are getting constrained in new ways due to Moore’s Law. Here is an example.
Supply voltages and threshold voltages are steadily decreasing, but threshold voltages
cannot scale as quickly because of fundamental physical constants. At some point, “cas-
code” configurations, which stack two transistors on top of each other, are unusable (e.g.
M4b and M5b in Figure 5.12 are in cascode). The alternatives are less ideal: folded cas-
codes mean larger power consumption, and extra stages mean slower speed and instability
risk.

Figure 5.13 summarizes the effect of Moore’s Law on open-ended topology synthesis.

5.6 Conclusion

This chapter examined different possible topology-sizingdesign flows (per sub-block),
and their relation to techniques in industry and academia. Approaches came from both
analog CAD and from genetic programming / evolvable hardware. This chapter discusses
the pros and cons of each flow, and how they might handle system-level design via a
hierarchical design methodology. Based on the analysis, the final recommended flows in-
volved massively multi-topology sizing, used with either constraint satisfaction or multi-
objective optimization.

After that, specific requirements for a topology selection /design tool were presented,
with an eye towards industrial applicability.

Then, a special section was dedicated to explaining why open-ended topology syn-
thesis is so problematic. In short, to get near the trustworthiness of other approaches, an
open-ended approach would need 150 years on a 1000-node cluster of 1-GHz computers.

machines, cloud computing, and graphics processing units.GP can also opportunistically take advantage
on the improvements in SPICE / simulation / analysis technology.
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The key reason for this is that manually-designed analog circuits embed a lot of implicit
knowledge about the problem, and it is very computationallyexpensive to automatically
account for them.

The next chapters present MOJITO and its derivatives. MOJITO is a topology se-
lection / design tool that has industrially-acceptable inputs and outputs, accuracy, and
runtime. Derivatives leverage MOJITO to enable topology-performance knowledge ex-
traction, and to accelerate design of novel topologies (MOJITO-N).



Chapter 6

Trustworthy Circuit Topology
Synthesis: Design Flows and MOJITO
Search Space

Maybe my caveman ancestors invented the wheel or something.I’m not sure.
–Brendan Fraser

6.1 Introduction

This chapter and the next present a design tool, called MOJITO, to aid the designer in
the task of topology selection, design, and sizing. It doestrustworthymulti-objective
structural synthesis of analog circuits. MOJITO is composed of a search space (this chap-
ter), and a search algorithm which traverses the space (nextchapter). MOJITO defines a
space of thousands of possible topologies via a hierarchically organized combination of
designer-trusted analog building blocks, which can be found in analog circuit textbooks
[Raz2000, San2006]. That is, they arefield-specific, pre-defined, andhierarchicalas dis-
cussed in chapter 1. Using these types of blocks overcomes several key issues: the issues
of trust and runtime (issues in open-ended synthesis approaches), and a rich set of possible
topologies (an issue in “flat” search-space CAD approaches).

6.1.1 Target Flow

MOJITO is a system for multi-objective and topology sizing [Mcc2007, Mcc2008a, Mcc2008c,
Pal2008]. Its inputs and outputs are shown 6.1. MOJITO fits into the user flows for hi-
erarchical, massively multi-topology sizing of Figures 5.7 and 5.8. In those figures, it
implements the “auto multi-topology sizing block” as well as the “massive topologies
DB” that feeds into the block. As hinted in the introductory chapter, MOJITO actually
follows the generally applicable framework for GP in structural design, as described in
Figure 6.2.

Before we proceed to describe the MOJITO search space, we first describe the payoff
of using domain knowledge.
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Figure 6.1:MOJITO inputs and outputs.

6.1.2 Background: The Power of Domain Knowledge

Domain knowledge, applied appropriately, can give dramatic improvement in the runtime,
reduction in the search space size, or improvement in quality of results. For industrial
applications, then speed and quality of results are of utmost importance. So, embedding
domain knowledge can be well worth the up-front effort needed to capture the knowledge.
We now give some illustrative examples from both evolutionary computation (EC) and
analog CAD.

In EC, each of these brought one or more orders of magnitude speedup or improvement
in result quality:

• generative representations and modularity in general, e.g. [Hor2003]

• permutation design via floating-point representations [Rot2006];

• avoiding “danglers” in circuit topology design e.g. [Koza2003]

• machine-code symbolic regression [Nor1994]

• machine-code digital logic design [Poli1999]

• avoiding the need for learning the linear weights in symbolic regression [Kei2004]

• thorough exploration of smaller building blocks, e.g. one variable at a time in sym-
bolic regression [Kor2006]

• and many more.

In analog CAD, some examples on the payoff of domain knowledge include:

• 1,000,000x speedup when building behavioral models of circuits, by using knowledge
of its connectivity [Phi1998]

• 1000x by exploiting sparsity in matrices [Lai2006]
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• 100x space reduction via cheap-to-compute device operating constraints (DOCs) in
circuits [Ding2005]

• 1,000,000x space reduction in [Ber2005] by reformulating the independent design
variables of a design problem to more natural variables - i.e. operating point driven
formulation [Leyn1998]

• and many more.

• in SPICE simulation, 10x-1000x or more speedup by selectively choosing when to do
a full LU decomposition in corners analysis [Hu2008]

For non-trivial practical applications, using domain knowledge is therefore key. As we
will see, this also applies to topology synthesis.

6.1.3 Reuse of Structural Domain Knowledge

In [Koza2004a], the authors note: “Anyone who has ever looked at a blueprint for a build-
ing, an electrical circuit, a corporate organizational chart, a musical score, a city map, or
a computer program, will be struck by the ubiquitous reuse ofcertain basic substructures
within the overall structure...Reuse can accelerate automated learning by avoiding ‘rein-
venting the wheel’ on each occasion requiring a particular sequence of already-learned
steps. We believe that reuse is the cornerstone of meaningful machine intelligence.”

All scientific and engineering fields accumulate knowledge of useful structures over
time; added new structures are literally advances in the field. For mathematics, this in-
cludes new theorems and proofs; for computer science, algorithms; for software engi-
neering, design patterns, and libraries of code; for biology, new theories and models; for
analog circuit design, new circuit topologies and buildingblocks.

Interestingly, “reuse” in GP systems has been reuse of structures that were found by
GP during the run, or in a previous run, and not reuse of structural domain knowledge (as
described above). For automotive design, GP would literally have to reinvent the wheel –
and the piston, crankshaft, transmission, etc.

The authors of [Das2005] partially overcome this by supplying loosely grouped build-
ing blocks for possible use by the system. Unfortunately, this and past EAs have a ten-
dency to exploit missing goals to return circuits with odd structures or behavior; this is a
major issue because one must trust the topology sufficientlyto commit millions of dol-
lars to fabricate and test the design. Up-front constraintssuch as current-mode analysis
[Sri2002] and Kirchoff’s-Law constraints [Das2005] can beadded, but plugging such
“holes in goals” [Mcc2006d] is tedious and provide no guarantee that the circuit returned
to the designer will be trustworthy enough to send for fabrication. Furthermore, the open-
ended approach makes the EAs extremely computationally intensive, taking weeks or
more of CPU time.

This chapter will show how theappropriatereuse of structural domain knowledge
simultaneously solves the GP issues of computational efficiency and of trust, for those
problems which have a sufficient amount of accumulated structural domain knowledge.
Figure 6.2 illustrates the general approach to such problems. The first step is to deter-
mine an appropriate data structure to hold the knowledge, and then to take the effort to
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put domain knowledge into that library. In our case, we use a parameterized grammar,
then manually entered a library of analog circuit building blocks. The library is based on
the large amount of structural knowledge that has accumulated in analog design over the
decades [Raz2000, San2006]. With that data structure to guide the search, GP is run, sub-
ject to the constraints of the domain knowledge. In our case,since our domain knowledge
is captured as a grammar, applying grammatically-constrained GP is appropriate. The
results from the run can be used as guidance to add new blocks to the library, and the loop
repeats.

Figure 6.2: A general framework to leverage domain-specific structural
knowledge with GP. The instantiation of the framework for analog circuit
topology synthesis, MOJITO, is described with the text on the right.

6.2 Search Space Framework

This section describes the MOJITO topology space. This space is specified by structural
information only, searchable, trustworthy, and flexible. Its flexibility is due to an intrin-
sically hierarchical nature which includes parameter mappings; the parameter mappings
can choose sub-block implementations. It could be summarized as a parameterized gram-
mar that has been thoughtfully designed for analog circuits. Any topology (sentence)
drawn randomly from the grammar will be trustworthyby construction.

6.2.1 Search Space Framework I: Base

Creating a representation for circuits is a design challenge in its own right. We choose
to adopt a strongly hierarchical approach, because a flat representation is not conducive
to the construction of a large library or to larger designs (as discussed in section 5.2.3).
Analog circuit hierarchies can be represented by analog hardware description languages
(HDLs) [Ash2002, Kun2004], by analog circuit database representations, and even by
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grammars [Res1984, Tan1993]. With these options already existing in the analog domain,
why not just use one of them? We actually could, but we choose to develop a notation that
can address the following problem more directly. The problem is that if a designer makes
a small conceptual change to a circuit that corresponds to a small change in performance,
there may be a drastic change in the netlist. While this complicates the design of an
appropriate search representation, it is needed for changes like folding an input or flipping
all NMOS transistors to PMOS. Myriad examples can be found inany analog design
textbook. The structural-only op amp approaches [Kru1995,Mau1995] do cover some of
these examples, but are designed into a flat space, need special heuristics just to work in
their small spaces, and do not readily generalize. The existing grammatical approaches
did not provide enough flexibility.

The generative representation GENRE [Hor2003] provided inspiration for our work.
A generative representation transforms a genotype to a phenotype by executing the geno-
type commands as if they were a program. Unfortunately, GENRE does not readily allow
one to embed known trusted building blocks, and is too flexible in allowing the addition
and removal of ports on substructures during search. The MOJITO representation re-
moves some flexibility in order to allow easier embedding of domain knowledge; it has
an associated drawing style that both analog designers and computer scientists will un-
derstand. It is composed of three simply-defined “Block” types, which we now describe.

Let us define a “Block” as merely a circuit block at any level ofthe hierarchy. It has a
fixed set of the arguments in its interface: “port arguments”(nodes available to the outside
world) and “number arguments” (parameters which affect itsbehavior, e.g. a device size).
Arguments to a Block’s embedded Blocks are a function of arguments above. To fully
implement (netlist) a given Block, the Block only needs to begiven values for its input
arguments.

The block types are:

• Atomic Block. These are the leaf nodes in the building block hierarchy. Therefore,
they do not contain any sub-blocks. It is only Atomic Blocks that appear on an imple-
mented netlist. Figure 6.3 gives examples.

• Compound Block. A Compound Block holds a composition of sub-blocks. Sub-
blocks can have internal connections among themselves and to the parent Compound
Block’s external ports. Figure 6.4 gives examples.

• Flexible Block. These hold severalalternative sub-blocks, where only one alter-
native is chosen during netlisting based on the value of the Flexible Block’schoicei

parameter. Each sub-block has its own choice of wiring as well. It is due to the dif-
ferent block possibilities in Flexible Blocks that enablesa library. Figure 6.5 gives an
example.

Despite having just the three simple types of blocks above, the blocks’ combinations
and interactions allow us capture of essential structural domain knowledge of analog cir-
cuits. The Flexible Blocks are what turn a Block into its own IC library of possibilities
rather than merely a representation of a single circuit design. Traversing the topology
space merely means changing one or more of the “topological argument” input values of
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the top-level block.

Figure 6.3:Example Atomic Blocks: nmos4 transistor, pmos4 transistor, re-
sistor, capacitor, dc-controlled voltage source (dcvs).

Figure 6.4:Example Compound blocks: nmos3, mosDiode, biasedMos.

Remember that for all these subblocks, instantiation into sets of NMOS vs. PMOS
devices is deferred until the very leaf block, based on the parameters that flow from the
top-level block through the hierarchy to the leaves. This flexibility allows for a large
number of topologies at the top level, without having an excess number of building blocks.
It also means that many parameters are shared in the conversion from one block to its
subblocks, which keeps the overall variable count lower than it might have been. For
example, devices along a current branch share the sameI parameter. This is crucial to
the locality [Rot2006] of the space, where small changes to the genotype lead to expected
small changes in the objective function. Locality is crucial to the ultimate success of the
search algorithm.

In Figure 6.3, thenmos4block has four external ports:G, D, S, andB. It has two
input parameters,W andL, as shown in the part’s top right. The other Atomic Blocks are
similar. Note how thedcvsblock (DC-controlled voltage source) has only one external
port; the other port ties directly to ground. This makes it convenient to parameterize the



6.2 Search Space Framework 163

Figure 6.5:Example Flex Block: mos4 turns the choice of NMOS vs. PMOS
into a parameter “choice_i”.

biases of other blocks. The top-right of each block shows theblock’s input parameters:
(W,L) for nmos4’s width and length, (W,L) forpmos4, (R) for resistor’s resistance, (C) for
capacitor’s capacitance, and (DC) fordcvs’s voltage value. These values are used directly
within the device’s instantiation in the SPICE netlist.

Figure 6.4 shows three example Compound Blocks:mos3, mosDiode, andbiasedMos.
mos3only contains one sub-part, amos4, but it hides themos4’sB terminal by tying it to
themos4’s Sterminal, reflecting the fact that designers commonly conceptually work with
transistors having three terminals, not four. ThemosDiodehas a similar tying mechanism.
ThebiasedMosreflects the common designer approach of deferring work on biasing cir-
cuitry to focus first on signal circuitry. Like Atomic Blocks, the top-right of each block
shows that block’s input parameters. For example,mos3takes W, L, use_pmos as in-
puts. Those inputs get propagated down to each sub-block viathe notation inside each
sub-block. For example, withinmos3, its mos4sub-block gets itsW parameter set to the
mos3’s W value (W=W); the same for L (L=L); and themos4’s parameterchoice_iset to
themos3’s use_pmosvalue.

Figure 6.5 shows themos3Flexible Block, which instantiates into annmos4block
if choice_i= 0, or apmos4block if choice_i= 1. mos3’s W andL sizing parameters
propagate directly tonmos4’s and pmos4’s W and L parameters in a unity mapping of
“(W=W, L=L)”. Of course, more complex mappings can be used. For example, higher-
level blocks set theis_pmosvariable depending on the block’s context in the hierarchy,
which will propagate to the bottom to usenmos4vs. pmos4.

We have shown how larger blocks can be built up from smaller blocks. To make a
whole library, we continue the process to eventually reach the level of the target circuit,
such as an operational amplifier (op amp). Despite the simplicity of such blocks, the
combination of block types, especially Flexible Blocks, means that a given block is its
own library of possible topologies. A block’s search space is merely combinations of
the possible values that each parameter in the block can take. The example library for op
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amps is presented as a whole in Figure 6.10, and will be elaborated in subsequent sections.
The library can readily be specified in an analog HDL such as VHDL-AMS [Ash2002]
or Verilog-AMS [Kun2004], a hierarchical circuit schematic editor, or a programming
language (we use Python [Pyt2008]). The library for opamps only needs to be developed
once, and this is it. This library already implicitly includes the libraries for all its sub-
parts, such as cascode stages and current mirrors. To develop libraries for larger blocks,
this library can be extended upwards.

6.2.2 Search Space Framework II: On “Small” Changes

We already briefly mentionedlocality: good locality means that small changes to the
genotype lead to expected small changes in performance (objective function). Good lo-
cality is important for an effective search algorithm [Rot2006]. In analog circuits, there
is a complication to achieving locality. If a designer makesa small conceptual change to
a circuit (genotype) that corresponds to a small change in performance, there may still be
adramaticchange in the netlist (phenotype).

We will now give an example. Figures 6.6 to 6.9 show schematics with only small
conceptual differences, and similar behavior / performance. However, as we see in the
figures, they haveverydifferent schematics / netlists / phenotypes. There are many other
examples in analog circuit design, such as “folding” an input stage, flipping all NMOS
transistors to PMOS and vice versa, and many more in analog textbooks like [Joh1997,
Raz2000, San2006].

Past open-ended synthesis approach do not cover these at all, because their respective
representations do not capture design intent, they just capture the structural information,
i.e. one particular instance of a netlist. For example, a GP-synthesized tree does not have
an explicit means to convert among the schematics of Figures6.6 to 6.9 via small changes
to individuals’ genotypes. Past trustworthy synthesis approaches only coversomeof the
examples. For example, [Mau1995] could flip NMOS/PMOS transistors by changing a
single bit in the genotype. However, each of the past trustworthy approaches only covered
a small fraction of these possible transformations. For example, none of them captured
the relation among Figures 6.6 to 6.9. A core reason is that the “flat” representation makes
it difficult to do so; for example Figures 6.6 to 6.9 haveinteractionswith NMOS/PMOS
flipping that are hard to capture in a flat fashion.

This characteristic complicates the design of an appropriate search representation.
We need to capture the domain knowledge such that small conceptual changes lead to
small changes in performance, despite possibly dramatic changes in the netlist. That
is, in the mappings of genotype→ phenotype→ performance: genotype→ phenotype
is sometimeslarge when genotype→ performance→ is small (due to small change in
design intent).

The framework of Atomic, Compound, and Flexible Blocks can handle this challenge.
It leverages the Flexible Block’schoice_iparameter, which can be afunctionof one or
more higher-level parameters, and choose between sub-blocks that are identical except
how those sub-blocks are wired to their parent block.
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Figure 6.6:Schematic:input_is_PMOS = False,loadrail_is_vdd = True.

Figure 6.7:Schematic:input_is_PMOS = True, loadrail_is_vdd = False.
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Figure 6.8:Schematic:input_is_PMOS = True, loadrail_is_vdd = True.

Figure 6.9:Schematic:input_is_PMOS = False,loadrail_is_vdd = False.



6.3 A Highly Searchable Op Amp Library 167

As an example, we now describe how the framework handles Figures 6.6 to 6.9. Near
the top of the blocks hierarchy are the parametersloadrail_is_vdd(“is the load’s rail
attached tovdd, notvss?”), andinput_is_pmos(“are the input devices pmos, not nmos?”).
Those values propagate down the hierarchy until a choice forfolded vs. cascode must be
made: is_folded= (input_is_PMOS== loadrail_is_vdd). Figures 6.6 to 6.9 show how
the two top-level parameters ofinput_is_pmosand loadrail_is_vddtranslate into four
different schematics.

While all four schematics all have similarconceptualbehavior, and similar building
blocks, they have very different final topologies. The library has captured this: it is only a
small change in a given circuit design to move from one designto another (changing the
value ofloadrail_is_vddand/orinput_is_pmos).

The MOJITO space has some relation togenerativerepresentation like L-systems
[Lin1968] or GENRE [Hor2003] because creation of the phenotype (netlist) is performed
by running an algorithm defined by the genotype (design point). However, whereas
GENRE dramatically changes the structural search space during a run via operations
on the grammar itself, MOJITO searches through a gramatically-constrained structural
space. Furthermore, MOJITO diverts significant search effort to refining structures’ pa-
rameters (device sizes and biases).

6.3 A Highly Searchable Op Amp Library

This section describes the example library that we developed for operational amplifiers.
It is shown as a whole in Figure 6.10.≈ 30 blocks combine to allow≈ 3500 different
topologies. It allows for: one-and two-stage amplifiers, PMOS vs. NMOS loads, PMOS
vs. NMOS inputs, stacked vs. folded cascode vs. non-cascodeinputs, cascode vs. non-
cascode vs. resistor loads, level shifting, different current mirrors, and single-ended and
differential inputs.

In the Figure, each box is a building block. The expansions due to Flexible Blocks are
denoted by OR operators. Compound Blocks get expanded via AND operators. Blocks
with “ :” underneath get defined elsewhere in the diagram. Atomic Blocks comprise the
leaf blocks.

The root node is the “ds amp vdd/gnd ports” block at the top left. “ds” means
differential-input, single-ended output. It can expand into either a “ds amp1 vdd/gnd
ports” block, or a “ds amp2 vdd/gnd ports” block, i.e. eithera 1-stage or 2-stage ds am-
plifier. The “ds amp2 vdd/gnd ports” block holds a 1-stage ds amp (for the first stage),
a 1-stage ss amp (for the second stage), and a capacitor (for feedback). All blocks with
“vdd/gnd ports” means that the rails have been resolved to connect to power (vdd) and
ground (gnd). They all have aloadrail_is_vddparameter as described in section 6.2.2.
Correspondingly, the block “ds amp1 vdd/gnd ports” can expand into a “ds amp1” in one
of two ways: with its load rail connected tovdd, or with its load rail connected tognd.
The block “ss amp1 vdd/gnd ports” expands similarly.

The library includes: 3 current mirror choices, 2 level shifter choices (one choice is
a wire); 2 choices of how to allocatevdd/gnd ports for a 1-stage amplifier and 4 for a
2-stage amplifier; 3 source-degeneration choices; 3 single-ended load choices; and more.



168 Trustworthy Topology Synthesis: MOJITO Search Space

Figure 6.10: MOJITO op-amp building blocks library. About 30 building
blocks are hierarchically composed to form≈ 3500 different topologies.
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Instantiation into NMOS vs. PMOS devices is deferred until the very leaf blocks, as
a function of the parameters that flow through the hierarchy from the root node to leaf
nodes. This flexibility allows for a large number of possibletopologies, without having
an excess number of building blocks in the library. It also means that many parameters
are shared in the conversion from one block to subblocks, which preserves locality of the
search space mapping, and keeps total variable count low.

The library can be readily modified for other problems by building up different blocks
and/or using a different block as the root node. For example,search of a single-ended
input, single-stage opamp would use “ss amp1” as the root node; or search for a digital
cell might use a library that builds off “mos3” blocks.

This is an example library that hasfield-specific, pre-defined, andhierarchicalbuilding
blocks, as discussed in chapter 1. It is this combination of traits which enables a rich
search space of trustworthy-by-construction topologies.

6.4 Operating-Point Driven Formulation

MOJITO uses an operating-point driven formulation [Leyn1998] in which bias current (I)
or voltage (V ), and transistor length (L), are the independent variables, rather than tran-
sistor width (W ) andL. Its advantages are that designable variables have less nonlinear
coupling than aW/L (sizing) formulation; and that one can have device operating con-
straints (DOCs)(section 2.2.9) in which the DOCs can be measured by simple function
calculations on design variable values without need for circuit simulation.

To implement it, we need to computeW from device biases (I ’s andV ’s), for each
device of each candidate design. First- or second- order equations are too inaccurate, and
SPICE in the loop, per device, is too slow. So we sampled 350,000 points in the{L,
Ids, Vbs, Vds, Vgs} space, SPICE simulated each point once on an NMOS and once on
a PMOS BSIM3 model, then stored all the points in a lookup table (LUT). Therefore,
during a MOJITO run we can directly computeW ’s from biases, accurately and with no
extra simulations in the given technology process.

6.5 Worked Example

The search space is a library of circuit building blocks, andis equivalently a parameterized
grammar. Therefore, a point in the search space is a circuit,and equivalently is a sentence.
In EA terms, it is an individual. This section illustrates the different ways one can view
an individual, with emphasis on the individual’s structure.

Let us start with the view that is both concrete and intuitive: the schematic. This is
the view that is most natural to analog designers. Figure 6.11 is an example individual
shown in schematic form. From an analog designer perspective, it is a “PMOS-input
Miller OTA” with these characteristics:

• It is a two-stage amp, using a simple capacitor for feedback /Miller compensation.
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• The first amplification stage has differential input and single-ended output. The input
devices are PMOS. There is no cascode-folding or source degeneration. A simple
current mirror, attached to the ground rail, reflects the signal and serves as load.

• The second stage has single-ended input and output. The input device is NMOS. A
single PMOS device serves as load. There is no source degeneration or cascoding.

Figure 6.11:An example individual (“PMOS-input Miller OTA”) shown in
schematic form, annotated with MOJITO Building Blocks.

The schematic of Figure 6.11 isannotatedto illustrate its relation to the building
blocks library. Each box that outlines a set of devices is an instantiation of a building
block. The whole design is the grammar’s root node “ds amp VddGndPorts”, as indicated
in the schematic’s top left corner. “ds amp VddGndPorts” is composed of three sub-
blocks: “ds amp1”, “capacitor”, and “ss amp1”, which are alllabeled on the schematic.
In analog design terms, the OTA is composed of: a differential-in, single-ended-out input
stage (“ds amp1”), a single-ended-in, single-ended-out output stage (“ss amp 1”), and a
Miller feedback capacitor.

The “capacitor” Block is a non-divisible Atomic Block, but the other two sub-blocks
do subdivide further as stages 1 and 2 of the amp. The “ds amp1”subdivides into “dd
input” and “ds load” blocks, and those keep subdividing until eventually they hit “nmos4”
and “pmos4” Atomic Blocks. The “ss amp1” block on the right subdivides into an “ss
load” and “ss input” block, which also keep subdividing until they eventually hit “nmos4”
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Figure 6.12:Choices made in library for the schematic of Figure 6.11.
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and “pmos4” Atomic Blocks. (Note: For ease of understanding, not all intermediate
subblocks are highlighted.)

We just described the subdivision of an individual from a schematic-centric view. One
can also take a view that is centered around the library/grammar itself, as shown in Figure
6.12 for the same individual. This view contains a subset of the library of Figure 6.10:
where at each Flexible Block’s “OR” option, a single choice is made and the non-chosen
options are not shown. Arrows indicate where choices were made.

Starting at the root node “ds amp vdd/gnd ports” in the top left, we see that the first
choice was to “ds amp2 vdd/gnd ports” (and not to “ds amp1 vdd/gnd ports”, which is not
shown). That is, a two-stage OTA was chosen over a single-stage OTA.

Then, the “ds amp2 vdd/gnd ports” block expands into three sub-blocks: “ds amp1”,
“capacitor”, and “ss amp1”, just like the expansion shown inthe schematic (Figure 6.11).
“ds amp1 vdd/gnd ports” makes the choice “ds amp1”, as shown in top middle. Its al-
ternative was actually also “ds amp1”, but the difference between the choices is how the
vddandgndports are allocated – specifically, whether the load goes to thevddor thegnd
rail, as discussed in section 6.2.2. We know from the schematic that the input stage’s load
goes to thegnd rail, therefore the stage’s valueloadrail_is_vddwill be False. Similarly,
“ss amp1 vdd/gnd ports” takes one of the “ss amp1” choices, with its difference based on
the allocation ofvddandgndports. In this case,loadrail_is_vddwill be True.

In the very center of Figure 6.12, the “ds amp1” block subdivides into the “dd input”
and “ds load” blocks, akin to what we saw in the schematic’s input stage (Figure 6.11
left). In middle-left, “dd input” takes the further choice “dd stacked input cascode” (vs.
“dd folded input cascode”), which subdivides into “biased mos3” and “ss input” blocks.
The “ds load” block subdivides into a “current mirror” and “wire” block. In middle-right,
the “current mirror” takes the choice “simple CM” (vs. “cascode CM” or “low power
CM”). This is the current mirror in the bottom left of the schematic in Figure 6.11. The
“simple CM” subdivides into two “mos3” Blocks.

The individual’s “ss amp1” block subdivides further, as shown in the bottom half of
Figure 6.12, corresponding to the output stage of the schematic in Figure 6.11. “ss amp1”
divides into “ss input” and “ss load”. The specific “ss input”chosen is “ss stacked input
cascode” (vs. “ss folded input cascode”), which itself is composed of “cascode device or
wire”, “mos 3”, and “source degen”.

The block subdivisions continue via “AND” combinations and“OR” arrow-choices,
until finally Atomic Block leaf nodes are reached. Since thisindividual has both NMOS
and PMOS devices, then the arrows for “nmos4” and “pmos4” areboth shown in Figure
6.12.

An individual is represented within the synthesis engine’scode in a vector-valued
fashion. This is its genotype; all the other representations can be computed from the
genotype. Specifically, the vector representation is an unordered mapping from variable
names to corresponding chosen value. The variables are the variables needed to instan-
tiate the root block, “ds amp vdd/gnd ports”. Some variablesare for topology choices
(choice_index), and others are for setting specific device values (I ’s andV’s which trans-
late toW’s andL’s). Tables 6.1 and 6.2 gives the example individual’s topology choice
values and device-setting values, respectively.
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Table 6.1:Example Individual: Values for Topology Choice Variables.
Variable Name Value Variable Name Value

chosen_part_index 1 stage1_loadrail_is_vdd 0
stage1_input_is_pmos 1 stage1_degen_choice 0
stage1_inputcascode_is_wire 1 stage1_inputcascode_recurse 0
stage1_load_chosen_part_index 1 stage2_loadcascode_recurse 0
stage2_load_part_index 0 stage2_inputcascode_is_wire 1
stage2_loadrail_is_vdd 1 stage2_input_is_pmos 0
stage2_degen_choice 0 stage2_inputcascode_recurse 0

Each parameter in Table 6.1 relates to one of the Flexible Block “OR” choices in
the library of Figure 6.10. Eand each specific parametervaluereflects the specific “OR”
choice made as shown in Figure 6.12. The parameterchosen_part_indexdecides between
one and two stages. A value of 1 means two stages were chosen, confirmed by the two-
stage schematic in Figure 6.11.stage1_loadrail_is_vdd= 0 means that stage 1’s loadrail
is not set tovdd, but tognd instead, as we already saw.stage1_input_is_pmos= 1 means
that stage 1’s input is PMOS, not NMOS, as we already saw. And so on. Note that
some variables may be ignored, depending on values of other variables. For example,
if chosen_part_index=0 to choose a one-stage topology, then all variables related to the
second stage will be ignored. (Section 7.4 discusses this further.)

Table 6.2 gives example device-setting values. These are all parameters which do not
affect the topology. Because we employ an operating-point driven formulation (section
6.4), the parameters areI ’s andV’s, not W’s andL’s. As discussed in section 6.4, the
I ’s andV’s get translated intoW’s andL’s at the level of NMOS4 and PMOS4 netlisting,
using a lookup table.

A final view of an individual is the SPICE netlist. It is merelya text-based listing of
each device’s connections, type, and parameters in a line-by-line fashion. This is the form
used as input to SPICE simulation, to estimate the individual’s performance values.

6.6 Size of Search Space

This section examines how large a fully trustworthy (reuse-only, no novelty) space can be-
come in terms of number of possible topologies, and what thatmeans from the designer’s
perspective.

6.6.1 Size of Op Amp Space

We first ask: can the number of possible topologies be sufficiently rich so that the designer
can consider it “complete enough” to not have to intervene ina typical design problem?

We calculate the size as follows. The count for an atomic block is one; for a flexible
block, it’s the sum of the counts of each choice block; for a compound block, it’s the
product of the counts of each of its sub-blocks–but there aresubtleties. Subtlety: for a
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Table 6.2:Example Individual: Values for Device-Value Variables.
Variable Name Value Variable Name Value

feedback_C 1.1883e-11 stage1_Ibias 0.016297
stage1_Ibias2 0.015746 stage1_Vds_internal 1.4584
stage1_Vout 1.6830 stage1_ampmos_L 2.1885e-06
stage1_degen_fracDeg 0.86943 stage1_folder_L 3.5032e-05
stage1_folder_Vgs 1.2074 stage1_fracAmp 0.52026
stage1_fracVgnd 0.47741 stage1_inputbias_L 3.9621e-05
stage1_inputbias_Vgs 1.3419 stage1_inputcascode_L 2.7729e-05
stage1_inputcascode_Vgs1.5280 stage1_load_L 1.9609e-05
stage1_load_cascode_L 4.0927e-05 stage1_load_cascode_Vgs1.2094
stage1_load_fracIn 0.70442 stage1_load_fracOut 0.03599
stage2_Ibias 0.0087295 stage2_Ibias2 0.01206
stage2_ampmos_L 3.8062e-05 stage2_ampmos_Vgs 1.2756
stage2_ampmos_fracAmp0.54704 stage2_degen_fracDeg 0.05280
stage2_inputbias_L 4.4781e-05 stage2_inputbias_Vgs 1.1022
stage2_inputcascode_L 2.2396e-05 stage2_inputcascode_Vgs1.4486
stage2_load_L 9.7247e-06 stage2_load_Vgs 1.5154
stage2_load_fracLoad 0.19648 stage2_loadcascode_L 6.1258e-06
stage2_loadcascode_Vgs 0.92834

given choice of flexible block, other choice parameters at that level may not matter. Sub-
tlety: one higher-level choice might govern> 1 lower-level choices, so do not overcount.
Example: a two-transistor current mirror should have two choices (nmos vs. pmos), not
four (NMOS vs. PMOS x 2).

Using the above method, the size of the MOJITO opamp library is 3528 topologies.
Table 6.3 summarizes this and compares it to the other approaches.

Table 6.3 shows that MOJITO’s flexible hierarchical nature increases the number
of possible trustworthy op amp topologies to increase by 50xcompared to [Kru1995,
Mau1995]. All the approaches have an industrially palatable amount of effort for con-
structing the library: GP does not have a library, DARWIN andMINLP each have one
big “flat” block, and MOJITO has about 30 small, hierarchically composed blocks.

Table 6.3:Size of Op Amp Topology Spaces.
Technique # topologies Trustworthy?
GP without reuse, e.g. [Koza2003] billions NO
DARWIN [Kru1995] 24 YES
MINLP [Mau1995] 64 YES
GP with reuse: MOJITO (this work) 3528 YES

Having such a rich set of options can qualitatively change the designer’s perception of
the process: rather than doingselectionfrom a few dozen topologies, the tool issynthe-
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sizingthe optimal combination of building blocks from a huge set ofpossibilities. Since
the library only needs to be defined once for a given problem type (e.g. op amp), the de-
signer no longer needs to view it as an input, even if the process node changes. Figure 6.1
illustrates this, where the library is hiddenwithin the tool, and the key input for the user is
merely objectives / constraints. Once a MOJITO run is complete for a given process node,
the database of Pareto-optimal sized topologies can be queried for the solution to a given
set of specs in the same technology node. This therefore supports a designer workflow
“specs-in sized-topology-out” withimmediateturnaround.

6.6.2 How Rich Can A Search Space Be?

The second major question of this section is: How big can the space of possible trustwor-
thy topologies for an industrially relevant application get? Compared to what we have
just established, we can make the space even larger in many ways, using new techniques,
recursion, and system-level design:

• Add more design techniques. The field of analog design is a research field in
its own right, with its own conferences, journals, etc. Coreadvances in that field
arepreciselythe development of new topologies and circuit techniques. One can
think of that design effort as (manual) co-evolution of building block topologies.
Design opportunities and challenges arise due to new applications, different target
specifications, and the steady advance of Moore’s Law [Itrs2007]. Each design
technique advance would increase the size of the space by at≈ 2x, so if we merely
took the top 10 advances in op amp design, we would increase the space by≈ 210 =
103, bringing the count to3.5∗106. And that is a lowball estimate: more realistically
one would consider dozens or hundreds of advances, and some advances could be
used in multiple places in the design; if we had 10 advances which doubled, 10
which tripled, and 10 which quadrupled, then the space increases by2 ∗ 10 ∗ 310 ∗
410 = 6 ∗ 1013, to a total of2 ∗ 1017 trustworthy op amp topologies.1

• Recursion.Circuits’ designs can recurse. For op amps, this is for instance via “gain
boosting.” One level of recursion brings the count to(2 ∗ 1017)

2
= 4 ∗ 1034 , and

two levels of recursion (i.e. gain boosted amps using gain boosted amps) brings the
count to(4 ∗ 1034)

2
= 1.6 ∗ 1069 trustworthy op amp topologies. Yes, designers in

industry do actually use two levels of gain boosting, in combination with the latest
design techniques.

• System-level design.So far we have just talked about an op amp space which is a
circuit at the lowest level of the design hierarchy (cell level), but higher levels exist
too. The next-highest level includes circuits such as data converters (A/Ds, D/As),
active filters, and more. These circuits use lower-level blocks like op amps. The
level above that is typically the whole analog system, e.g. aradio transceiver like a
Bluetooth or Wi-Fi implementation. The level above that would typically combine

1This does not account for the subtleties discussed in section 6.6 so it may be slightly optimistic, but the
point is clear: adding just a few more blocks candramaticallyincrease the number of possible topologies
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the analog and digital parts into a mixed-signal system. Each level can have many
sub-blocks, and each of those sub-blocks can be any of its combinations. E.g.
an A/D might have 8 different op amps. If each op amp had1.6 ∗ 1069 possible
topologies and even if there was no other topological variation at the A/D level, it
means(1.6 ∗ 1069)

8
= 4.2 ∗ 10553 possible A/D topologies. Let’s say the system

at one level higher up had an A/D, a D/A, and a couple other blocks all with about
the same number of topologies; then its size would be(4.2 ∗ 10553)

4
= 3.1 ∗ 102214

possible topologies. (For reference, if there are just 3528topologies at the cell level,
that leads to((3528)8)

4
= 10113 designs).

Combinatorial explosion is a good thing: the more possibilities available foranyblock
type, the more possible trustworthy topologies that the overall library contains. One can
do system-level trustworthy topology design in spaces with10113 topologies,10832 topolo-
gies, or more, if: (a) If one can decompose their design into sub-problems (where each
sub-problem has its own goals), (b) if one has a competent hierarchical design methodol-
ogy, and (c) if the problem of “massively multi-topology” cell-level sizing design can be
solved. Wecando (a) because decomposition is obvious in circuit design, and the names
of sub-blocks are well-established (op amps, bias generators, A/Ds, D/As, filters, phase-
locked loops, etc) [Raz2000, San2006]. We can do (b) becausecompetent hierarchical
design methodologies have been demonstrated. In fact, theyhave recently demonstrated
the ability to choose among different candidate topologies[Eec2007]. This chapter and
the next demonstrate (c). All conditions (a)-(c) are satisfied, so therefore system-level
trustworthy topology design in spaces with10832 topologies is achievable.

6.7 Conclusion

This chapter has presented a search space framework that is simultaneously trustworthy-
by-construction, yet with a massive set of possible topologies. Such a rich set of options
topology can qualitatively change the designer’s perception of the process: rather than
doingselectionfrom a few dozen topologies, the tool issynthesizingthe optimal combi-
nation of building blocks from a huge set of possibilities.

Whereas this chapter described the search space for topology design, the next chapter
describes the searchalgorithm for topology design. Together, they comprise MOJITO
[Mcc2007].



Chapter 7

Trustworthy Circuit Topology
Synthesis: MOJITO Search Algorithm

Natural selection is a mechanism for generating an exceedingly high degree of improba-
bility.
–Ronald A. Fisher

7.1 Introduction

This is the second of two chapters describing MOJITO, a design aid for analog circuit
topology selection and design [Mcc2007, Mcc2008a, Mcc2008c, Pal2008]. While the
previous chapter described the MOJITO search space, this chapter describes the MOJITO
search algorithm which traverses the space, along with the MOJITO experimental results.

Even with the well-structured search space described in theprevious chapter, there
is a need for a highly competent search algorithm because thespace is so large, and
the performance estimation time for an individual can be on the order of minutes (using
SPICE [Nag1973, Nag1975] to maintain industrial relevance, accuracy, and flexibility
with technology nodes). We also need multi-objective results. Some degree of parallel
computing is allowed – industrial setups for automated sizing typically have a cluster of
5-30 CPUs.

The MOJITO search method we implemented is a multi-objective evolutionary algo-
rithm (EA) [Deb2002] that uses an age-layered population structure (ALPS) [Hor2006]
to balance exploration vs. exploitation, with operators that make the search space a hy-
brid between vector-based and tree-based representations[Mic1998, Rot2006]. A scheme
employing average ranking on Pareto fronts (ARF) [Cor2007]is used to handle a high
number of objectives. Good initial topology sizings are quickly generated via multi-gate
constraint satisfaction. Aggressive reuse of known designs brings orders-of-magnitude
reduction in computational effort, and simultaneously resolves trust issues for the synthe-
sized designs, for genetic programming applied to automated structural design.

MOJITO’s combined multi-objective and multi-topology nature means that it gener-
ates a new type of database: Pareto-optimal sized circuits with many different topologies.
Once this database is generated at a given process node, it can be reused for an immediate-



178 Trustworthy Topology Synthesis: MOJITO Search Algorithm

turnaround “specs-in, sized-topology-out” designer flow in the same process node. The
database also opens up the opportunity for new circuit design insights via data-mining, as
the next chapter will explore.

While the application here is analog circuit design, the methodology is general enough
for many other problem domains, from biology to automotive design.

7.1.1 Problem Formulation

The algorithm’s aim is formulated as a constrained multiobjective optimization problem:

minimize fi(φ) i = 1..Nf

s.t. gj(φ) ≤ 0 j = 1..Ng

hk(φ) = 0 k = 1..Nh

φ ∈ Φ

(7.1)

whereΦ is the “general” space of possible topologies and sizings. The algorithm traverses
Φ to return a Pareto-optimal setZ = {φ∗

1, φ
∗
2, · · · , φ∗

NND
} onNf objectives,Ng inequality

constraints, andNh equality constraints.
Without loss of generality, we can minimize all objectives and have inequality con-

straints with aim≤ 0. By definition, a designφ is feasible if it meets all constraints:
{gj(φ) ≤ 0}∀j, {hk(φ) = 0}∀k, φ ∈ Φ. By definition, all the designs inZ arenon-
dominated, i.e. no designφ in Z dominates any other design inZ. A feasible designφa

dominatesanother feasible designφb if {fi(φa) ≤ fi(φb)}∀i, and{fi(φa) < fi(φb)}∃i.
We follow the dominance rules of NSGA-II [Deb2002] for handling constraints: afeasi-
ble design always dominates aninfeasibledesign, and if two designs are infeasible, then
the one with smallest constraint violation is considered dominant.

The next subsection describes the high-level search algorithm, and subsequent sec-
tions describe the supporting algorithms.

7.2 High-Level Algorithm

We use an evolutionary algorithm (EA) as the base of the search algorithm because EAs
can readily incorporate our hybrid tree/vector representation [Mic1998], perform con-
strained multi-objective optimization [Deb2002], naturally support parallel processing
[Can2000], and offer flexibility in overall algorithm design [Mic1998, Gol1989].

A key issue with most EAs is premature convergence. That is, the algorithm con-
verges to a local region of the design space too early in the search without having ex-
plored the global space sufficiently, and returns sub-optimal results. This is certainly
an issue in multi-topology optimization because some sub-blocks may get little chance to
size properly before being filtered out via selection. We need to ensure an adequate supply
of building blocks [Gol2002]. Possible tactics include massive populations [Koza1999,
Koza2003], restarting e.g. [Aug2005], or diversity measures like crowding e.g. [Deb2002];
all tactics are painful or inadequate [Hor2006]. The algorithm could periodically inject
randomly-drawn individuals, which contain new building blocks. However, in a typi-
cal EA, such new individuals would compete against the priorindividuals which had
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been evolving. Therefore the new individuals would almost always die off quickly. To
give randomly-drawn individuals a chance, the technique ofhierarchical fair competition
(HFC) [Hu2005b] segregates individuals into layers of similar fitness, and restricts com-
petition to within layers. Unfortunately, near-stagnation can occur at some fitness levels
because the best individuals per level have no competition.Also, it is unclear what each
layer’s fitness range should be.

Figure 7.1:Structure ofMojitoSynthesis(), which uses a multi-objective age-
layered population structure (ALPS).

To overcome this issue, we use the age-layered population structure (ALPS) [Hor2006],
which segregates by genetic age instead of fitness. The structure and behavior ofMoji-
toSynthesis()are given in Figure 7.1 and Table 7.1, respectively. Each agelayerPk holds
NL individuals. By example,P1 might allow individuals with age 0-19;P2 allows age
0-39, and so on; the top levelPK allows age 0-∞. If an individual gets too old for an age
layer, it gets removed from that layer.

Genetic age is how many generations an individual’s oldest genetic material has been
around: the age of an initial individual is 0; the age of a child is the maximum of its
parents’ ages; age is incremented by 1 each generation. Selection at an age layerk uses
the individuals at that layerk and layerk−1 as candidates, such that younger high-fitness
individuals can propagate to higher layers. EveryNa (“age gap”) generations (Table 7.1,
line 3), a new age layer may be added (lines 4-5), and initial individuals enter layerk=0
as either random individuals or “tuned” random individuals(line 6; InitialCircuit() details
are in section 7.5).



180 Trustworthy Topology Synthesis: MOJITO Search Algorithm

ALPS can be characterized as explicitly handling the exploration-vs-exploitation trade-
off within its search data structure, making it different than most algorithms which try to
handle the tradeoff in behavior in time (dynamics) rather than in structure. Since notions
like “getting stuck” and “premature convergence” are from the realm of exploration-vs-
exploitation behavior in time, ALPS gains an unusual degreeof reliability in global opti-
mization. It just keeps “going and going,” continually improving. Notably, the user does
not have to worry about whether ALPS is stuck, just whether ornot to use the current
best design or to keep going. This is very important in circuit design, because the analog
designer should not have to worry about issues in algorithm dynamics.

Table 7.1:Procedure MojitoSynthesis()

Inputs: Φ,Na,K,NL

Outputs: Z
1. Ngen = 0; Z = ∅; P = ∅
2. while stop()6= True:
3. if (Ngen%Na) = 0:
4. if |P | < K:
5. P|P |+1 = ∅
6. P0,i = InitialCircuit(Φ), i = 1..NL

7. for k = 1 to |P |:
8. (Pk, Z) = OneMOEAGeneration(Pk, Pk−1, Z)
9. Ngen = Ngen + 1
10. returnZ

We designed a multi-objective version of ALPS (only a single-objective ALPS exists
in the literature [Hor2006]). The approach is to have a multi-objective EA (MOEA) at
each age layerk, running one generation at a time (line 9 of Table 7.1). Whereas a
canonical MOEA would select at just layerk, here the MOEA selection also considers
layerk − 1’s individuals (line 8). An external archive holding the Pareto-optimal setZ
is always maintained. Stopping conditions (line 2) can include a maximum number of
individualsNind,max or a maximum number of generationsNg,max.

Table 7.2:Procedure OneMOEAGeneration()

Inputs: Pk, Pk−1, Z
Outputs: P ′

k, Z ′

1. Psel = SelectParents(Pk ∪ Pk−1)
2. Pch = ApplyOperators(Psel)
3. Pch = Evaluate(Pch)
4. P ′

k = Psel ∪ Pch

5. Z ′ = NondominatedFilter(Z ∪ Pch)
6. return(P ′

k, Z
′)
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Table 7.2 shows the algorithm for the MOEA at one age layer, for one generation.
Note how individuals from the lower layer are imported for selection. Key steps are
MOEA-specific selection (line 1) and evolutionary operators (line 2).

A master-slave configuration is used for parallel processing, in which the high-level
routineMojitoSynthesis()is run on the master, and slaves implementInitialCircuit() , Ap-
plyOperators()for parent pairs, andEvaluate()for individuals.

The next two sections elaborate on selection and evolutionary operators, respectively.

7.3 Handling Multiple Objectives

This section describes the MOEA used in MOJITO for the first-round experiments of this
chapter (section 7.6.1.1), and the second-round experiments of the next chapter (section
7.6.2) which overcame issues of the first round.

In the experiments of this chapter, we use NSGA-II [Deb2002], because it is relatively
simple and reliable, is well-studied, and can readily incorporate constraints.

A key part in MOEAs isselection– how to choose theNL selected parentsPsel from
the candidate parentsPk ∪ Pk−1.

NSGA-II Selection. NSGA-II performs selection in the following steps (just as section
4.4.3 described).

Its first step is to sort the candidate parents intonondomination layersFi, i = 1..NND,
whereF1 is the nondominated set,F2 is what would be nondominated ifF1 was removed,
F3 is what would be nondominated ifF1 ∪ F2 was removed, etc.F contains all the
candidates with no duplicatesF1 ∪F2 ∪ · · ·FND = Pk ∪Pk−1; F1 ∩F2 ∩ · · · ∩FND = ∅.

NSGA-II’s second step is to fill upPsel. It first adds all individuals fromF1, if they all
fit, i.e. if if |Psel| + |F1| ≤ NL. If there is space left, it then adds all individuals fromF2

if they all fit. If there is space left, then adds all individuals fromF2 if they all fit. And so
on.

For the third step, once thePsel-filling step reaches anFi wherenot all of Fi’s indi-
viduals can fit, then asubsetof Fi’s individuals needs to be chosen. NSGA-II chooses
this subset as the individuals with the highest distance from otherFi individuals in the
performance space. This selection criteria is known as “crowding”.

NSGA-II Selection Issues. The experiments of the next chapter have five objectives,
which more closely resembles analog circuit design goals [Raz2000]. Unfortunately, most
MOEAs including NSGA-II do poorly when there are more than two or three objectives
[Cor2007].

To improve NSGA-II, we need to understand why it does poorly.The problem is that
with many objectives, most or all of the population is nondominated, i.e. there is just one
nondomination layerF1 = Pk ∪ Pk−1. Therefore NSGA-II uses crowding to filter down
the nondominated individuals. Crowding biases towards thecorners of the performance
space that are the farthest apart; and not the center points which are close to all designs.
That is, it focuses on designs that are excellent on one or twoobjectives, yet terrible at the
rest.For a high number of objectives, NSGA-II degenerates into near-random search.
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ARF Selection.To solve the NSGA-II selection issue, we use the technique of“Adaptive
Ranking on Pareto Front” (ARF) [Cor2007]. Like in crowding,ARF gives preference
to some individuals in the Pareto front compared to others. However, whereas crowding
biases to corners of the performance space, ARF biasesto individuals that do relatively
well on each objective. We now elaborate.

The “Adaptive Rank” (AR) criterion is defined by:

AR(φ) =

Nf∑

i=1

rank(fi, φ, Z) (7.2)

whererank(fi, φ, Z) is the rank of individualφ with reference to the Pareto-optimal set
Z, for objectivefi. For a given objective, the best individual has a rank value of 1, the
second-best has rank 2, etc.

ARF is implemented like NSGA-II in the first two selection steps, but it differs in the
third step: if the Pareto front will fill up all ofPsel, then the AR criterion is used; otherwise
the usual NSGA-II “crowding” criterion is used. That is, useAR only if: |Psel| + |F1| ≥
NL. Therefore ARF is only used to distinguish among Pareto-optimal individuals, not
among the remaining (Pareto-dominated) individuals.

7.4 Search Operators

Each building block in the hierarchical blocks library has its own parameters, which fully
describe how to implement the block and its sub-blocks. Thus, the search space for this
circuit type (e.g. current mirror) is merely the possible values that each of the block’s
parameters can take, as illustrated in section 6.5. Since these parameters can be continu-
ous, discrete, or integer-valued, one could view the problem as a mixed-integer nonlinear
programming problem, which one could solve with an off-the-shelf algorithm, whether it
be a classical MINLP solver or an evolutionary algorithm (EA) operating on vectors.

However, an individual has an intrinsic hierarchy, as illustrated in Figures 6.11 and
6.12. Since a vector-oriented view does not recognize this hierarchy, operations on merely
vectors will have issues:

• One issue is that a change to variable(s) may not change the resulting netlist at all,
because those variables are in sub-blocks that are turned off. For example, a variable
controlling a second-stage device’s parameter has no effect if only the first stage is
active. From the perspective of a search algorithm, this means that there are vast
regions of neutrality [Sch1994, Huy1996]; or alternatively the representation is non-
uniformly redundant and runs the risk of stealth mutations [Rot2006].

• For EAs, another issue is that ann-point or uniform crossover operator could readily
disrupt the values of the building blocks in the hierarchy, e.g. the sizes of some sub-
blocks’ transistors change while others stay the same, thereby hurting the resulting
topology’s likelihood of having decent behavior. From an EAperspective this means
that the “building block mixing” is poor [Gol2002].
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One might ask if this can be reconciled by applying a hierarchical design methodology
[Cha1997, Eec2005]. The answer is “no” becausethere are not goals on the sub-blocks,
only at the highest-level blocks (we could, however, still apply a hierarchical methodology
to the results).

The search algorithm needsboth tree-based and vector-based viewsof the space. Ac-
cordingly, we design novel EAmutation and crossover operators that reconcile both
views. Because crossover (interpolation) needs two or more individuals to operate on,
the population-based nature of EAs makes them a natural choice [Koza1992].

We now describe the individual operators.

7.4.1 Mutation Operator

This operator varies one or more parameters of the genotype,to change the structure
and/or parameters of the phenotype. Continuous-valued parameters follow Cauchy mu-
tation [Yao1999] which allows for both tuning and exploration. Integer-valuedchoice_i
parameters follow a discrete uniform distribution. Other integer and discrete parameters
follow discretized Cauchy mutations.

Mutation can affect either topology choice parameters and /or device-value parame-
ters. A change in a device-value parameter might be, for example a change infeedback_C
from 1.1883e-11 to 1.6814e-11 Farads. Such changes affect the devices’ parameter set-
tings in the SPICE netlist, but not the choice of devices or device connectivity.

A change in topology choice parameter means a change in the topology itself. Con-
sider for a moment the topology from the example in section 6.5, which is reproduced in
Figure 7.2. It has two stages (choice_index=1) and its stage 1 load attaches tognd, not
vdd (loadrail_is_vdd= 0).

Figure 7.2: Opamp where choice_index=1, stage1_input_is_pmos = 1,
stage1_loadrail_is_vdd = 0.

By mutating the variableloadrail_is_vddfrom 0 to 1, the topology will change from
Figure 7.2 to Figure 7.3. We see that the second stage does notchange, but the first stage
is now folded. It still has PMOS inputs, but the load is now attached tovdd rather than
gnd. (More similar operations are illustrated in Figures 6.6 to6.9.)
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Figure 7.3: Opamp where choice_index=1, stage1_input_is_pmos = 0,
stage1_loadrail_is_vdd = 1. This is a single topology-parameter mutation
away from Figure 7.2.

Alternatively, if we mutate the variable (choice_indexfrom 1 to 0, we are effectively
asking for just one stage. The second stage disappears, but the first stage remains identical,
as Figure 7.4 shows.

Figure 7.4: Opamp where choice_index=0, stage1_input_is_pmos = 1,
stage1_loadrail_is_vdd = 1. This is a single topology-parameter mutation
away from Figure 7.2.

Sometimes a change to a genotype willnot affect the phenotype, because the param-
eters being changed are in building blocks that have been turned off by other parameter
choices. For example, if a 1-stage opamp is selected, changes in parameters related to the
second stage will have no effect, regardless of whether theyare topology or device-sizing
parameters. A change to genotype that does not affect phenotype is called a “neutral” op-
eration [Sch1994, Huy1996]. Though such neutral operations (“stealth mutations”) of the
space has been shown to help exploration in some applications [Vas2000, Mcc2006a], re-
sults are mixed. It has been shown that in general, stealth mutations make the algorithm’s
performance more unpredictable [Rot2006]. We prefer predictability, and therefore rely
on other means like ALPS to enhance exploration. Therefore,for MOJITO to avoid stealth
mutations: in a mutation, the change is retainedonly if the phenotype (netlist) changes.
Mutation attempts arerepeateduntil a phenotype change occurs.
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The number of parameters to vary is drawn from a discrete distribution which biases
towards fewer variables, but sometimes allows significantly more variables to change.
The biases are shown in Table 7.3.

Table 7.3:Biases to Number of Variables to Mutate.

Number of Variables to Mutate 1 2 3 4 5 6 7 8
Relative Bias 100 15 5 3 2 2 2 1

7.4.2 Crossover Operator

Crossover works as follows: given two parent individuals, randomly choose a sub-block
in parent A, identify all the parameters associated with that sub-block, and swap those
parameters between parent A and parent B. This will preservethe parameters in the sub-
blocks.

For example, we could randomly choose the “ds amp1 vdd/gnd ports” block in parent
A, identify the parameters assocatied with that block in both parent A and parent B, then
swap them. What this amounts to for the circuit is to swap the first stage between parent
A and parent B. But the swapping can happen at any level, from current mirror to “ss
input” (stacked vs. folding cascode) to source degeneration to others.

There will still be some crosstalk because sibling blocks may use those parameters as
well, but the crosstalk is relatively small compared to the 100% crosstalk that we’d have
if we used standard vector-based crossover. This effectively makes the search a hybrid
between tree-based and string-based search (i.e. a cross between a GA and GP).

7.5 Generation of Initial Individuals

This section describes how we generated initial individuals for our first round of exper-
iments (vector-oriented random sampling), the issues it presented, and how those issues
were overcome for the second round of experiments by using tree-oriented random sam-
pling and multi-gate constraint satisfaction.

7.5.1 Initial Individuals: First Round Approach

In the first round of experiments, each initial individual was generated with uniform ran-
dom sampling per variable (Table 7.4). Specifically: recallfrom section 6.2 that a design
at the top block of the library hierarchy can be fully specified by a set ofNd variables (line
1). So, a vectord can define the design pointφ (and correspondingly,ℜNd can defineΦ).
A randomφ is generated as follows: for each variablei (line 3), either draw a value from
a continuous uniform random distributionU([min,max]) in lines 4-5, or from a discrete
set of values with equal biasU({val1, val2, . . .}) in lines 6-7.
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Table 7.4:Procedure InitialCircuit() (First Implementation)

Inputs: Φ
Outputs: φ ∈ Φ
1. d = topLevelVariables(Φ)
2. φ = ∅
3. for i = 1 toNd:
4. if di is continuous:
5. φi ∼ U([di,min, di,max])
6. else: #di is discrete:
7. φi ∼ U({di,1, di,2, . . . , di,max})
8. returnφ

7.5.2 Initial Individuals: First Round Issues

This approach had issues: uneven sampling of topology types, and difficulty in maintain-
ing diversity of topologies. For example, we observed that the algorithm was generating
single-stage amplifiers just as often as two-stage amplifiers, despite the fact that there
are many more possible two-stage topologies. This is because the approach of Table 7.4
views the space “flat”, randomly picking a value for each of the topology choice parame-
ters, with equal bias.

7.5.3 Initial Individuals: Second Round Approach

To fix this the first round issues, we instead give equal bias toeach possibletopology,
which is akin touniformsampling of sentences in agrammar[Iba1996].

When synthesis begins, a one-time computation of the numberof possible topologies
for each part is made, using the rules of section 6.6. The counts c are used as a bias on
corresponding Flexible blockchoice_i values on the top-level part.

Table 7.5 gives the improved sampling procedure, calledRandomDrawCircuit(). The
key difference compared to Table 7.4 is the introduction of lines 4-5, where each choice
variablei’s value is chosen according to a discrete density function (ddf) having a proba-
bility pi,j for each possible valuedi,j; pi,j = ci,j/

∑jmax

j=1 ci,j;
∑jmax

j=1 pi,j = 1; ci,j is th: e
number of sub-topologies if thejth value is used for variablei.

7.5.4 Initial Individuals: Second Round Issues

With further runs, we found that most randomly generated higher-complexity amplifiers
(e.g. folding topologies, 2-stage amplifiers) would die outwithin a few generations of be-
ing generated. While ALPS generated more topologies in later random injection phases,
those would die out too.

Upon investigation, we found that the randomly-generated complex amplifiers’ per-
formances were much worse than simple ones due to poor initial sizing, and that they did
not improve as quickly. This is because the more complex amplifiers have more sizing
and biasing variables to set reasonably in order to reach a minimal performance bar.
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Table 7.5:Procedure RandomDrawCircuit()

Inputs: Φ
Outputs: φ ∈ Φ
1. d = topLevelVariables(Φ)
2. φ = ∅
3. for i = 1 toNd:
4. if di is a choice parameter:
5. φi ∼ ddf({pi,1 for di,1, pi,2 for di,2, . . .})
6. else ifdi is continuous:
7. φi ∼ U([di,min, di,max])
8. else: #di is discrete:
9. φi ∼ U({di,1, di,2, . . . , di,max})
10. returnφ

We also found that the first feasible topology found would overtake other topologies,
further hurting diversity. This is because of NSGA-II’s constraint handling: it lumps all
constraints into one overall violation measure, and alwaysprefers feasible individuals
over infeasible individuals. It effectively does single-objective search until the feasible
individual is found (killing some topology diversity then), and then emphasizes the first
feasible individual excessively (because no other topology gets there quite as fast).

7.5.5 Initial Individuals: Third Round Approach

There are plenty of possible ways to resolve this, as there isplenty of literature (EA
and otherwise) in reconciling multi-objective optimization and constraint handling. How-
ever, for this problem domain, there is an opportunity to notonly give harder-to-optimize
topologies more time to get decent performance, but to simultaneously cheaply optimize
each randomly drawn topology:

• A guideline is todefer competition among topologies until each topology is at least
nearly feasible.It is acceptable to have them compete once they are past feasible,
because each topology will occupy its own niche in the performance space and will
therefore be maintained within the multi-objective framework.

• This guideline is implemented by doing cheap constraint-satisfaction style optimiza-
tion, on a per-topology basis. It is cheap because we deploy aseries of constraint-
satisfaction “gates”. The first gates prunes poor designs with a computationally cheap
test. Subsequent gates do more thorough pruning via successively more expensive
tests. Upon exiting the final gate, the topology can be assured to be competitive with
other topologies.

Table 7.6 describes the algorithm for this improvedInitialCircuit() routine. We now de-
scribe it in more detail.

For the first gate (lines 2-5), we usefunctiondevice operating constraints (DOCs)
(section 6.4), which measure if current and voltage conditions are being met. Function
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DOCs can be measured directly from the design point, becausethe design pointiscurrents
and voltage due to the operating point driven formulation (section 6.4). Since function
DOCs can be measured directly from the design, no simulationis necessary and gate 1 is
extremely fast.

The second gate (lines 6-9) uses DOCs computed from dcsimulation. While slower
than direct examination of an operating point, dc simulation is still much cheaper than
other analyses like transient. It can be viewed as a more accurate version of function
DOCs.

The third gate (lines 10-13) is based on performance constraints across all the circuit
analyses (ac, dc, transient, etc). It is the most thorough, but the most expensive. Failing
simulation DOCs means that the circuit is still not hitting the topology’s implicit design
intent, e.g. for certain transistors in saturation, and others in linear, etc.

In all three gates, themutateSizings()operator is like section 7.4, except only device-
value (non-topology) parameters get changed.

Table 7.6:Procedure InitialCircuit() (Improved Implementation)

Inputs: Φ
Outputs: φ ∈ Φ
1. φ = randomDrawCircuit(Φ)
2. while meetsFuncDOCs(φ) 6= True:
3. φ′ = mutateSizings(φ)
4. if funcDOCsCost(φ′) < funcDOCsCost(φ):
5. φ = φ′

6. while meetsSimDOCs(φ) 6= True:
7. φ′ = mutateSizings(φ)
8. if simDOCsCost(φ′) < simDOCsCost(φ):
9. φ = φ′

10. while meetsPerfConstraints(φ) 6= True:
11. φ′ = mutateSizings(φ)
12. if perfCost(φ′) < perfCost(φ):
13. φ = φ′

14. Returnφ

7.5.6 Initial Individuals: Third Round Observations

In our experiments, we found that the first gate would take about 1000-3000 designs to
pass (very cheap because it requires no simulation), the second gate would take 100-300
designs, and the third gate would take 300-1000 designs. Overall runtime for the proce-
dure was typically less than 10 minutes on a single 2.5-GHz machine. (This compares
favorably with other recent single-topology circuit sizers, e.g. [Ste2007]).

We achieved the aim of this subsection: for the sake of topology diversity, to reliably
generate complex topologies which could compete against simple topologies for multi-
objective search.
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7.6 Experimental Results

7.6.1 General Experimental Setup

The complete search space hadNd = 50 variables which include both topology selection
variables and sizing variables; there were 3528 possible topologies using the library of
Figure 6.10.

MOJITO’s library and search algorithm were implemented about 25000 lines of Python
code [Pyt2008], which uses the libraries Pyro [Pyro2008] for parallel processing and Nu-
meric v24.2 [Pyn2008] for matrix computations.

Table 7.7 gives futher parameter settings. The EA settings are “reasonable” values
in the same range as those used in [Hor2006]. No tuning was done to optimize their
performance.

Table 7.7:Experimental setup parameters.

Technology 0.18µm CMOS
Load capacitance 1pF
Supply voltage 1.8V
Output DC voltage 0.9V
Simulator HSPICETM

Constraints PM > 65◦, DC Gain > 30 dB,GBW > 1 GHz, power <
100 mW, dynamic range > 0.1 V,SR > 1e6 V/s, dozens
of function and simulation device operating constraints
(DOCs)

Objectives See specific experiment
EA settings K = 10, NL = 100,Na = 20, Nind,max = 100,000 for

chapter 7,NI = 180,000 for chapter 8. (Parameter de-
scriptions are in sections 7.3 - 7.5.)

7.6.1.1 Experiment: Hit Target Topologies?

In this section, we aim to validate MOJITO’s ability to find targeted topologies.

7.6.1.2 Specific Experimental Setup

The objectives of the experiment were to maximize GBW, and tominimize power, while
other performances needed to satisfy the constraints from Table 7.7.

Three runs were done, the only difference between them beingthe common-mode
voltageVcmm,in at the input. We know that forVdd = 1.8V andVcmm,in = 1.5V, topologies
must have an NMOS input pair. ForVcmm,in = 0.3V, topologies must have PMOS inputs.
At Vcmm,in = 0.9V, there is no restriction between NMOS and PMOS inputs.
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7.6.1.3 Experimental Results

Each run took the equivalent of overnight on ten single-core2.0 GHz Linux machines,
covering about 100,000 individuals. Figure 7.5 illustrates the outcome of the experiments.
It contains the combined results of the three optimization runs.

Figure 7.5:Combined result plot for the 3 synthesis runs of the first experi-
ment. Set (a) shows a Pareto front forVcmm,in = 1.5 V. Set (b) is forVcmm,in

= 0.3 V. Set (c) is forVcmm,in = 0.9 V. Aim is to minimze power and maximize
Gain-Bandwidth. Each point is a sized topology; each topology has many
different sets of sizings. The expected topologies were found.

Result (a) hasVcmm,in = 1.5V, and has indeed only topologies with NMOS inputs.
MOJITO chose to use 1-stage and 2-stage amplifiers, depending on the power-GBW
tradeoff. Result (b) hasVcmm,in = 0.3V, and MOJITO only returns amplifiers with PMOS
input pairs. For result (c) aVcmm,in = 0.9V has been specified. Though both amplifiers
with NMOS and PMOS input pairs might have arisen, the optimization preferred NMOS
inputs.

The curve clearly shows the switch in topology around GBW≈ 1.9GHz, moving from
a folded-cascode input (larger GBW) to a simple current-mirror amp (smaller GBW).
Note that there would be more amplifiers with folded-cascodeinput at GBW < 1.9GHz,
but they are not plotted here, or actively searched, becausethey are not part of the Pareto-
optimal set. An algorithmic answer is: By definition, the Pareto-optimal set only contains
the designs that are no worse than any other designs. So the apparent “jump” is merely
a side effect of a maximum achievable GBW of≈ 1.9GHz for the simple current-mirror
amp, after which a significantly higher-power amplifier, having the folded-cascode input,
is needed.

To get deeper insight yet, the designer has two complementary options. The first is to
use the topology-performanceknowledge extractiontools introduced in the next chapter,
and the second complementary is to use his expertise and experience in circuit analysis to
manually dive deeper. An analog-design answer for the jump in power is: going from a
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non-folded to a folded input means that one more current branch is needed, which has its
own corresponding current needs (power needs).

Interestingly, the search retained a stacked current-mirror load for about 250MHz
GBW. All in all, this experiment validated that MOJITO did find the topologies that we
had expecteda priori.

7.6.2 Experiment: Diversity?

The aim of this experiment is to verify that MOJITO can get interesting groups of topolo-
gies in a tradeoff of three objectives. The motivation is as follows: whereas a single-
objective multi-topology optimization can only return onetopology, the more objectives
that one has in a multi-topology search, the more opportunity there is for many topolo-
gies to be returned, because different topologies naturally lie in different regions of the
performance space.

7.6.2.1 Experimental Setup

In this experiment, one run was done using the settings and constraints of Table 7.7.
There were three objectives: maximize Gain-Bandwidth (GBW), maximize gain, and

minimize area.

7.6.2.2 Experimental Results

The results are shown in Figure 7.6. We can see that MOJITO found rich and diverse
structures as expected. MOJITO determined the following. Folded-cascode op amps
gave high GBW, but with high area. Also, 2-stage amps give high gain, but at the cost
of high area. The low-voltage current mirror load is a 1-stage amplifier with high gain.
There are many other 1 stage topologies which give a broad performance tradeoff. These
are all results that a circuit designer would expect.

Note that subsequent chapters will have further experiments validating MOJITO.

7.6.3 Comparison to Open-Ended Synthesis

For problems of comparative complexity, status quo GP (i.e.with no reuse) needed 100
million or more individuals [Koza2003, Koza2004a], andthose results were not trustwor-
thy by construction. Recall from section 5.5.5.2 that for status-quo GP to get a reasonable
degree of trust would take 150 years on a 1,000-node 1-GHz cluster. That is, it would
have taken ((150 years * 365 days / year * 24 hours / day) * 1000 CPUs * 1GHz ) /
((150 hours) * 1 CPU * 2 GHz) = 4.4 million times more computational effort than with
MOJITO to comparable results.

The core reason for MOJITO’s efficiency is that unlike GP,every topology in the
MOJITO search space is trustworthyby construction. This is not a limiting factor for
MOJITO, as the number of possible topologies is still massive.

Status quo GP makes the problem artificially hard, by ignoring all the domain knowl-
edge that has been accumulated over the decades. As discussed before, almost every
discipline having any degree of maturity has accumulated structural domain knowledge,
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Figure 7.6:Pareto front for a MOJITO run, for the second experiment, which
has 3 objectives (maximize GBW, maximize gain, minimize area). Individuals
are grouped according to some of their structural characteristics (e.g. 1-stage
vs. 2-stage), to illustrate their diversity.

that could at least be partially codified. By making the effort to codify structural domain
knowledge of analog circuits into a searchable framework, MOJITO not only reduce the
runtime by several orders of magnitude, it returns results that are guaranteed trustworthy.
For the first time, structural analog synthesis can be done with industrially palatable speed
and trust. This proves that there’s a lot to be said for topology reuse!

7.7 Conclusion

This chapter has described the search algorithm as part of the design aid for topology
selection and design, called MOJITO. The key technical challenges in such a tool were to
generate topologies that are trustworthy by designers, in reasonable computer time.

This chapter has shown how aggressivereuseof known designs brings a vast reduction
in computational effort in GP applied to automated structural design. By leveraging pre-
specified hierarchical building blocks, MOJITO automatically designs 100%trustworthy
topologies of industrially relevant complexity, with commercially reasonable computa-
tional effort. MOJITO’s effectiveness has been demonstrated in two separate experiments,
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showing how it hit the target designs as expected, from a library of thousands of possible
topologies.

MOJITO also used state-of-the-art ideas in EA design. It hasa hybridized tree/vector
view of the search space, implemented as operators having those two perspectives. It
has been guided by recent advances in theory of EA representations [Rot2006]. To avoid
premature convergence and to minimize sensitivity to population size setting, it employs
the age-layered population structure (ALPS) [Hor2006], and embedded modern MOEAs
into each age layer of ALPS to make it multiobjective: the popular NSGA-II [Deb2002],
and an ARF variant [Cor2007] to handle a higher number of objectives. Good initial
topology sizings are quickly generated via multi-gate constraint satisfaction.

The next chapter takes MOJITO results to the next level: to help designersextract
further knowledgefrom the results of a MOJITO run.
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Chapter 8

Knowledge Extraction in Trustworthy
Circuit Topology Synthesis

An investment in knowledge pays the best interest.
–Benjamin Franklin

8.1 Introduction

8.1.1 Abstract

Whereas the last two chapters have presented adesign aidfor the designer task of topol-
ogy selection / design, this chapter presentsinsight aidsfor that task.

This chapter presents a methodology for analog designers tomaintain their insights
into the relationship among performance specifications, topology choice, and sizing vari-
ables, despite those insights being constantly challengedby changing process nodes and
new specifications. The methodology is to take a data-miningperspective on a Pareto-
optimal set of sized analog circuit topologies as generatedwith MOJITO [Mcc2007,
Mcc2008a, Mcc2008c]. With this perspective, it does: extraction of a specs-to-topology
decision tree; global nonlinear sensitivity analysis on topology and sizing variables; and
determining analytical expressions of performance tradeoffs [Mcc2008b, Mcc2008d, Mcc2009].
These approaches are all complementary as they answer different designer questions.
Once the knowledge is extracted, it can be readily distributed to help other designers,
without needing further synthesis. Results are shown for operational amplifier design on
a database containing thousands of Pareto-optimal designsacross five objectives.

8.1.2 Background

Analog designers use their experience and intuition to choose, to the best of their knowl-
edge, circuit topologies and to design new topologies. Unfortunately, the topology used
may not be optimal, with possible adverse affects on the related product’s performance,
power, area, yield, and profitability. The suboptimal design may be because the design
has to be done on a new or unfamiliar process node, the designer is too time-constrained
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to be thorough, or simply because the designer just does not have the experience level
to know what might be best. This last point is understandable, as it is well recognized
that the art of analog design takes decades to master [Wil1991]. That said, it still means
that a suboptimal topology may be used. Hence, it is desirable to provide support for the
designer in this critical step of topology selection and design, and ideally to catalyze the
learning process. Prior CAD research has focused on automated topology selection and
design (with nice successes [Rut2002, Rut2007]), but has had little emphasis on giving
insight back to the user. In fact, by deferring control to automated tools, a designer’s
learning might slow. Even worse, the designer could end up poorly-equipped when prob-
lems arise. It is perhaps this last reason – losing control – that explains why most analog
designers have been reluctant to adopt analog circuit optimizers.

Figure 8.1:Target flow. The extracted knowledge is readily available toall
designers, without requiring them to invoke automated sizing.

8.1.3 Aims

This chapter therefore addresses the following question: is there a means to help analog
designers maintain and build expert topology-performanceknowledge, in such a way that
even the most reluctant designers might benefit? The starting point is MOJITO (described
in chapters 6 and 7), which traverses thousands of circuit topologies to automatically
generate a database of Pareto-optimal sized topologies. Data-mining is now applied to
this database.

The contribution of this chapter is twofold:
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• A data-mining perspective on the database to extract the following expert knowledge:
(a) a specs-to-topology decision tree, (b) global nonlinear sensitivities on topology
and sizing variables, and (c) analytical performance-tradeoff models. The techniques
are complementary, as each addresses specific question types as summarized in Figure
8.2.

• A suggested flow in which even reluctant users can conveniently use the extracted
knowledge (Figure 8.1). The database generation and knowledge extraction only
needs to be done once per process node, e.g. by a single designer or a modeling
group. The extracted knowledge can be stored in a document (e.g. pdf, html), and
simply made available to other designers. Figure 8.1 also highlights how the sized
topologies database (DB) is available to all designers, forimmediate turnaround in
specs-to-sized topology queries.

Figure 8.2:Questions addressed by each knowledge extraction approach.

This chapter is organized as follows. The knowledge extraction procedures will be ex-
plained using a reference database, generated as describedin section 8.2. Section 8.3
describes how a specs-to-decision tree is extracted from the database. Section 8.4 de-
scribes the extraction of global nonlinear sensitivities,and Section 8.5 the extraction of
analytical tradeoffs model. Section 8.6 concludes.

8.2 Generation of Database

This section describes the setup to generate the sized-topologies database.
We use MOJITO, which has been described in chapters 6 and 7 along with the de-

tails of the experimental settings used. The problem has fiveobjectives: maximize GBW,
minimize power, maximize gain, maximize dynamic range, andmaximize slew rate. The
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library is the opamp library described in chapter 6, which contains 3528 topologies. Al-
gorithm settings, and the constraints on circuit performances, are in Table 7.7.

A single synthesis run was done on the five objectives, using parameters described in
section 7.6.1. The run took approximately 12 hours on a Linuxcluster having 30 cores of
2.5 GHz each (which is palatable for an industrial setting).180 generations were covered,
traversing 3528 possible topologies and their associated sizings. It returned a database of
1576 Pareto-optimal sized topologies.

Figure 8.3: Grid illustrating the Pareto front. The diagonal entries show
histograms of performance; the rest show two-dimensional projections from
the five objectives. The squares are 1-stage amplifiers, and the pluses are
two-stage amplifiers.

To become oriented with the raw results data, Figure 8.3 shows a grid of 2D scatter-
plots and histograms for the five performance objectives.

From the histograms, we can get a quick picture of the distribution and bounds of
performances. For example, thegain histogram in the top right corner shows that the
majority of gain values are in the 20-30 dB range, and but there are designs with gains
in the range of 40, 50, 60, 70, 80, and even 90 dB. Or, about 90% of the topologies have
a power (pwrnode value)< 30 mW, and a significant portion of those have power< 10
mW.

From the scatterplots, we begin to understand the performance bounds and take note of
trends. For example, let us examine thegain vs. pwrnode subplot (top row, second from
left). Note how the one-stage topologies (squares) occupy the corner having lowest gain
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and lowest power, whereas the two-stage topologies (+’s) spread out across the rest of the
gain vs. pwrnode subplot. In fact, the two-stage topologies spread into two distinct
clusters: one with 70-90 dB gain and 10-20 mW power, and another broader cluster
having 40-80 dB gain and 20-50 mW power.

The tradeoffs are more sharp in other 2d-scatter subplots, such aspwrnode vs. gbwlog
(second row, middle).gain vs gbwlog (top row, middle) is even more sharp. We also see
that some performances onyl return very specific values, e.g. with slewrate.

But examining these scatterplots can only give us some degree of insight. Key ques-
tions remain, such how specific performance requirements guide the choice of specific
topologies. This is where knowledge extraction can help.

8.3 Extraction of Specs-To-Topology Decision Tree

8.3.1 Introduction

We explain the motivation for decision trees with a simple example having two objectives:
minimize power and maximize GBW. Figure 8.4 left shows the power-GBW tradeoff
results from a MOJITO run of section 7.6.1.1. Each point is a different sized topology;
the eight sized topologies (eight points) have two unique topologies, as indicated by the
two ellipses grouping the points.

We can see by inspection that the division between the ellipses (topology choice) is
best done at a power between 34 and 38 mW; here 37 mW is chosen. An algorithmic way
to choose such a division is to sweep all possible values of power, and all possible values
of GBW, and to choose the value and output that gives the best split. That single split to
choose between the two topologies is embodied in the decision tree of Figure 8.4 right:
if a power < 37 mW is chosen, the two-stage amplifier is chosen,otherwise a one-stage
amplifier with folded-cascode inputs is chosen.

Making a topology decision based on inspecting the two-dimensional tradeoff is easy.
But when there are more dimensions, such as the five dimensions of Figure 8.3, it becomes
dramatically harder. Decision trees encapsulate and illustrate the relevant decisions in a
high-dimensional space.

This section describes the automatic extraction of decision (CART) trees [Bre1984]
that map from performance values to topology choice starting from the Pareto-optimal
results DB of a previous MOJITO run. Decision trees have a double use: they can directly
suggest a choice based on inputs, but they also expose the series of steps underlying the
decision. CART trees are in widespread use, such as medicine: “In medical decision
making (classification, diagnosing, etc.) there are many situations where decision must
be made effectively and reliably. . . . Decision trees are a reliable and effective decision
making technique that provide high classification accuracywith a simple representation
of gathered knowledge” [Bre1984].

Decision trees have not gone unnoticed in analog CAD either.They have been pro-
posed as the centerpiece of topology-choosing “expert systems”, such as in the OPASYN
system [Koh1990]. Unfortunately, these trees had to be manually constructed at that time
which took weeks to months of effort, and were based on rules of thumb that became
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Figure 8.4: Left: results of a two-objective run (minimize power, maximize
GBW) which gave two topology choices indicated by the ellipses. Right: cor-
responding a decision tree to guide the topology choice based on the power
input specifications

.

obsolete as soon as the process node changed. In contrast, this chapter constructs the
specs-to-topology decision treeautomaticallyfrom data. This is only possible now, be-
cause a prerequisite to get the data was a competent multi-topology multi-objective sizer
that could output a diverse set of topologies. MOJITO is the first of this new class of
sizers [Mcc2007, Mcc2008a, Mcc2008c].

8.3.2 Decision Tree: Problem Formulation and Approach

We formulate specs-to-topology decision tree induction asa classification problem from a
Pareto-optimal setZ = {φ∗

1, φ
∗
2, . . . , φ

∗
j , . . . , φ

∗
NZ

} resulting from a MOJITO run. Within
Z, there areNT unique topologies (NT ≤ NZ) with corresponding class labelsΥ =
{1, 2, . . . , NT}. For individualφ∗

j , let υj be its topology class label;υj ∈ Υ. Let fj be
the objective function values corresponding toυj: fj = {f1(φ

∗
j), f2(φ

∗
j), . . . , fNf

(φ∗
j)}, an

Nf – dimensional vector. Tree induction constructs a classifier ω that maps fromfj to υj,
i.e. υ̂j = ω(fj). ω can be viewed as a collection ofNR disjoint hypercube regionsRi,
i = 1..NR; where each regionRi has an associated classυi ∈ Υ. This is similar to the
regression form of CART trees (equation 3.6).

Tree construction using the CART algorithm [Bre1984] finds atreeω in the space of
possible treesΩ using a greedy algorithm. It begins with just a root node holding all data
points{fj, υj}, j = 1..NZ and therefore is represented by a single regionR1 covering all
of the inputf space. Each objectivei is a possible split variable, and the valuesfi,j for
that objective comprise the possible split values (with duplicates removed). From among
all possible{split_variable, split_value} tuples in the data, the algorithm chooses the
tuple with the highest information gain according to the chosen split criterion. That split
creates a left and right child, where the left child is assigned the data points and region



8.3 Extraction of Specs-To-Topology Decision Tree 201

A

F

Power < 26mW

C

DR < 1.35V

E

DR < 1.66V

B

GBW < 107

B

ADC < 35dB

Power < 12mW

J N

DR < 0.8V

O

SR < 4.5e6V/s

J

ADC < 80dB

K

M

GBW < 106

H

Power < 20mW

ADC < 80dB

F G

OR

OR

Figure 8.5:A decision tree for going from specifications to topology. Unlike
past approaches, this was automatically generated. The technology is 0.18
µm CMOS,Vdd = 1.8 V.

.

meetingsplit_variable ≤ split_value, and the right child is assigned the remaining data
points and region. The algorithm recurses, splitting each leaf node until the number of
points in leaf node≤ a pre-set maximum. The final set of regions is defined by the leaf
nodes’ regions only.

The tree-constructing algorithm implementation was implemented in Matlab [Mat2008].
The “gini” splitting criterion was used; it selects the{variable, value} that splits off the
most data points [Bre1984]. The max number of points per leafnode was 10, so that a
compact tree would be generated for the example of section 8.2.

8.3.3 Decision Tree: Experimental Results

Figure 8.5 shows the decision tree that was automatically generated from a MOJITO
results DB. It provides insight into what topologies are appropriate for which performance
ranges, and actually even gives a suggested topology (one ofthe leaf nodes), given a set
of input specifications (which guide traversal from the top of tree to a leaf node).
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8.3.4 Decision Tree: Discussion

We see that the low-frequency gain (ADC) is the first variable selected on, and follow-
ing through the tree, we see that all specifications play a role for selecting some topolo-
gies: gain-bandwidth (GBW ), power, slew rate (SR), and dynamic range (DR). When the
specifications require low gain, the tree suggests single-stage topologies; and two-stage
topologies are suggested when a higher gain is required. In cases where a very large
gain is required with a limited power budget, a two-stage amplifier with large degrees
of cascoding is suggested. If power is less of an issue, one can also use a non-cascoded
two-stage amplifier. Since only Pareto-optimal individuals are used to generate the tree,
the choice for the more power-efficient variant implies lower performance for one or more
other metrics (in this case e.g. dynamic range). Also reassuring is that while there were
thousands ofpossibletopologies, just 15 were returned. This is in line with many analog
designers’ expectation that just a couple dozen opamp topologies serve most purposes.
The challenge, of course, is to find out which topologies those are, and for what specifi-
cations they are appropriate.

It is important to remember that the tree is a classifier at itscore, so one must avoid
readingtoomuch into it, such as the meaning of the exact values of the performance split
values. In many cases the split value could increase or decrease by a few percent with no
effect on the classification. There are CART extensions to capture the sensitivities to the
split values, but this is at a cost of additional complexity in the reported tree. This sensi-
tivity does not seem to have affected the deployment of CART trees into other industries
such as medicine. As long as the user understands the sensitivity, no additional action is
probably needed. Another extension is to let the user give preference to choosing certain
split variables first, which may result in interesting alternative trees [Bre1984]. We leave
both to future work.

An additional benefit of tree extraction is based on there being more than 2-3 objec-
tives, which means that the raw data is difficult to visualize, as we find when inspecting
Figure 8.3. The tree gives an alternate perspective among the 5 objectives, highlighting
which topologies cover which performance regions.

8.4 Global Nonlinear Sensitivity Analysis

8.4.1 Introduction

The aim here is to address questions such as: “how much does each topology choice
matter? Should I be changing the topology or the device sizes? Whichblock or variables
should I change?” There may even be more specific questions, such as “How much does
cascoding affect gain?”

8.4.2 Sensitivity Analysis: Problem Formulation and Approach

Our approach to handle such questions is to perform global nonlinear sensitivity analysis.
We need to be global – across the range of variables – because we have thousands of train-
ing points, and one cannot do small perturbations on integer-valued design variables such
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as topology-choice variables. We cannot assume linear because not being local means
a Taylor approximation does not apply; small ad-hoc tests showed that linear models fit
poorly; and topology-choice variables arecategorical(variables which have discrete val-
ues and no relation among the discrete values, such as topology choice variables).

The sensitivity extraction flow we follow for each performance metricy is:

1. Given: a MOJITO-generated Pareto-optimal setZ = {φ∗
1, φ

∗
2, . . . , φ

∗
NZ

}. Let X =
{xj}, j = 1..NZ, wherexj is anNd-dimensional designvectorcorresponding to
design pointφj. Let y = {yj} whereyj is the corresponding scalar performance
value ofφj for the target objective (e.g. GBW)

2. Build a nonlinear regression modelψ that mapsX to y, i.e. ŷ = ψ(x)

3. Fromψ, computeglobalsensitivitiesζ = {ζi}, i = 1..Nd (Table 8.1)

4. Returnζ

Steps 2 and 3 have specific challenges. Step 2, regressor construction, needs to
handle numericaland categorical input variables. This prevents usage of polynomials,
splines / piecewise polynomials, support vector machines,kriging, and neural networks.
CAFFEINE ([Mcc2005a], also see chapter 4) handles categorical variables, but it would
run very slowly on 50 input variables and 1500 training samples. However, a relatively
recent technology achieves the effect of regression on CARTtrees by boosting them:
stochastic gradient boosting (SGB) [Fri2002], which section 3.3 described in detail. SGB
has acceptable scaling and prediction properties, so we employ it here.

Step 3 above needs to compute, from the model, sensitivitiesof the output variable
to each of the model’s input variables. In the computation, it needs the variables to have
global coverage (not local), allow for nonlinearity (versus assuming linear), allow for
categorical and non-categorical variables, and, ideally,make no assumptions about the
nature of the data distributions (i.e. be nonparametric).

The proposed solution defines theglobal nonlinear sensitivity impactfor a variabledi

as: the relative error that a scrambled input variabledi will give in predicting the output,
compared to the errors across the other variablesdj, j = 1..d, j 6= i when those variables
are are scrambled.

Table 8.1 gives the algorithmModelSensitivities()that uses this concept to extract im-
pacts (inspired by chapter 10 of [Has2001]). For each variable (line 1), it does repeated
scrambling (lines 3-4) and keeps track of the resulting model error (lines 5-6). It normal-
izes the results (line 6-7) and returns.Nscr is number of scrambles;nmse is normalized
root mean-squared error (equation 3.7).

8.4.3 Sensitivity Analysis: Results and Discussion

With this proposed flow, we extracted the global nonlinear sensitivities for each perfor-
mance. SGB and CART were coded in about 500 lines of Python [Pyt2008]. The SGB
parameters were: learning rateα=0.10, minimum tree depthιmin = 2, maximum tree
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Table 8.1:Procedure ModelSensitivities()

Inputs: X, y,Nd, ψ,Nscr

Outputs: ζ

1. for i = 1 toNd:
2. ζi = 0
3. RepeatNscr times:
4. Xscr = X except randomly permute rowi (for di)
5. yscr = ψ(Xscr) # simulate model
6. ζi = ζi + nmse(y,yscr)

7. ζsum =
∑d

i=1 ζi
8. ζi = ζi

ζsum
, i = 1..Nd

9. Returnζ = ζi, i = 1..Nd

depthιmax = 7, target training erro rǫtarg = 5%. Number of scramblesNscr = 500. The
build time for the SGB on modeling the objective GBW was about15 s on a 2.0 GHz
Linux machine, returning a model containing 282 CARTs. The impact extraction from
the model took about 25 s.

Figure 8.6: Global nonlinear sensitivity of GBW with respect to topology,
sizing, and biasing variables, for the 10 most important variables

Figure 8.6 illustrates the ten variables that impact the GBWmost. We see that the most
important variable ischosen_part_index, which selects one vs. two stages. The variables
that are commonly associated with the GBW of opamps – the biascurrent of the first stage
and the size of the compensation capacitance – also show up. Interestingly, the figure also
indicates a large influence of the length of the transistors in the first stage (input, folding
and load). This can be readily explained: these lengths directly influence the impedance
on the internal nodes, and hence the location of the non-dominant pole. The phase margin
requirement (> 65◦) translates into the requirement that this non-dominant pole frequency
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is sufficiently higher than the GBW (≈ 2x) [San2006]. It is also interesting to see that
for the value of the GBW, only one topology parameter made it into the top ten variables;
sizing parameters comprise the other nine. This means that once one vs. two stages is
chosen, changing the right sizing variables will make the biggest difference to GBW. Of
course, the most sensitive variables can be different for different performance metrics,
and the designer must consider all metrics.

8.5 Extraction of Analytical Performance Tradeoffs

8.5.1 Introduction

Designers often manually manipulate equations that relateperformance tradeoffs [Raz2000].
Equations facilitate understanding because a direct relationship is expressed explicitly.
Furthermore, the model can be easily written, which makes iteasy to manipulate by hand
or in a math program like Mathematica. The problem is that hand-derived analytical ex-
pressions based on1st- or2nd- order approximations may have little relation to the process
technology, which leads to errors of 20% or more.

Some recent work has hinted towards automation. [Sme2003a]did a single-topology
multi-objective optimization run, then generated a blackbox model of the performance
tradeoffs. Unfortunately the model is blackbox (giving no insight), and a single topol-
ogy does not adequately describe the capabilities of the circuit type (e.g. opamp) for
a process technology. The authors of [Vog2003] conducted a thorough manual search
of A/D converter technical publications to get Pareto frontdata across many topologies,
then created a whitebox model for the performance tradeoffs. This, of course, was highly
time-consuming, becomes obsolete with any new process technology. Furthermore, the
models themselves were restricted to a fixed template.

Related work insymbolic modelingalso hints at the motivations here. Recall from
chapter 4 that symbolic modeling uses simulation data to generate interpretable math-
ematical expressions for circuit applications, typicallyrelating the circuit performances
to the design variables. Like symbolic analysis, the applications of symbolic modeling
include knowledge acquisition and educational / training purposes, design space explo-
ration, repetitive formula evaluation, and more. A tool that can help a designer improve
his understanding of a circuit is highly valuable, because it leads to better decision-making
in circuit sizing, layout, verification, and topology design, regardless of the degree of au-
tomation [Mcc2005a]. Symbolic model extraction tools likeCAFFEINE [Mcc2005a]
have demonstrated how useful insights can be found.

Accordingly, the aims of this section are to (a) automatically extract analytical performance-
tradeoff equations that are (b) in agreement with process technology, (c) span a huge set
of possible topologies, (d) without being restricted to a predefined functional template,
and (e) can be automatically generated with each new process.

8.5.2 Analytical Performance Tradeoffs: Approach

To meet the above aims, we propose the following approach:
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1. Given: a MOJITO-generated Pareto-optimal setZ = {φ∗
1, φ

∗
2, . . . , φ

∗
j , . . . , φ

∗
NZ

}.
Let Y = {yj}, j = 1..NZ , whereyj = fj(φj) = {f1(φ

∗
j), f2(φ

∗
j), . . . , fNf

(φ∗
j )}.

Y ∈ ℜNf xNZ .

2. Choose a target performance objective (e.g. GBW) having indexI;
I ∈ {1, 2, . . . , i, . . . , Nf}.

3. LetX−I be all rows inY exceptI. Lety be theI th row of Y . Thereforey has the
data of the target objective, andX−I has the data of the remaining objectives.

4. Run CAFFEINE to return a Pareto-optimal set of analyticalfunctions,M . Each
function mapsX−I to y. The Pareto-optimal set trades off model error vs. model
complexity.

5. Return the resulting functionsM to the user for inspection / analysis.

CAFFEINE (described in chapter 4) automatically generatesa set of template-free ana-
lytical whitebox models, where each model is on the tradeoffof model complexity vs.
modeling error [Mcc2005a]. The CAFFEINE settings used werethe same as in section
4.5. The runtime was about 10 minutes a 2.5 GHz Linux machine.

8.5.3 Analytical Performance Tradeoffs: Results and Discussion

Table 8.2 shows the results for equation for GBW as a functionof the other performances.
We expected the gain to be strongly related to the GBW, and it turns out that a simple lin-
ear relation (first model in Table 8.2) between the two will get < 9% training error. That is,
a linear relation with gain will explain all but 9% of the variation of GBW. But for a better
fit, i.e. to explain the variation with better accuracy, morecomplex nonlinear relations are
needed. The next level is an inverse relationship of GBW with

√
gain. Slew rate must

also be included for reasonable performances-tradeoff model (last model in Table 8.2).
Interestingly, dynamic range and power are not needed to getwithin 4.1% training error.
Cross-examination with the scatterplots (Figure 8.3) confirms that the strongest tradeoffs
are indeed among gain, GBW, and slew rate.

Table 8.2:Whitebox models to capture performance tradeoff.

Train error log(GBW ) Expression

8.7 % 10.28 − 0.049 ∗ gain
7.3 % 5.65 + 86.5/gain+ (2.92e-11) ∗ slewrate
6.8 % 5.72 + 80.2/gain+ (4.75e-6) ∗

√
slewrate

5.7 % 7.30 + 47.76/gain− (3.430e+3)/
√
slewrate

4.1 % 4.48 + 24.9/
√
gain− (8.60e+6)/(gain2 ∗

√
slewrate)
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8.6 Conclusion

This chapter has presented a methodology to help designers maintain or obtain their ex-
pert insights in the topology-sizing-performance relationship, which is a challenge due to
changing process nodes, circuit design advances, and more.

The approach is to take a data-mining perspective on a Pareto-optimal set of sized ana-
log circuit topologies as generated with the MOJITO tool, and apply specific knowledge
extraction techniques to specific question types. They are:extract a specs-to-topology
decision tree (via CART [Bre1984]); do global nonlinear sensitivity analysis on topology
and sizing variables (via SGB [Fri2002] and a variable-scrambling heuristic inspired by
[Has2001]); and generate analytical whitebox models to capture tradeoffs among perfor-
mances (via CAFFEINE [Mcc2005a]). These techniques are allcomplementary, as they
answer different designer questions outlined in Figure 8.21.

Once extracted, the knowledge for a circuit type on a processnode can readily be
distributed to other designers, without need for more synthesis (see Figure 8.1).

Results have been shown for operational amplifier design on adatabase containing
thousands of Pareto-optimal designs across five objectives. As a final note, we must
emphasize once again that these techniques are meant to augment the designer experience,
not to replace it. The designer is key.

This is the final chapter on design and insight aids for topology selection and design...
without considering process variations. The next chapter extends MOJITO to consider
process variationsfor both aiding topology designandgetting insight.

1Since no tool can answerall questions, some unanswered questions will undoubtedly remain. But
being an expert, the designer will undoubtedly find ways to answer all questions that matter.
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Chapter 9

Variation-Aware Circuit Topology
Synthesis and Knowledge Extraction

Divide each difficulty into as many parts as is feasible and necessary to resolve it.
–Rene Descartes

9.1 Introduction

This chapter aims to simultaneously address problems whichprevious chapters attacked
separately. In chapter 3, SANGRIA did variation-aware design (sizing). In chapters 6-7,
MOJITO did topology synthesis (nominally). This chapter does both: variation-aware
topology synthesis. By combining the two features at once, we bias the MOJITO search
towards topologies that are robust, resulting in the MOJITO-R tool [Mcc2008f]. It also
does knowledge extraction on the variation-aware synthesis results, using tools from chap-
ter 8.

The rest of this chapter is organized as follows. Section 9.2gives the problem spec-
ification. Section 9.3 gives background on variation-awaretopology synthesis. Section
9.5 describes MOJITO-R, the proposed approach. Section 9.6gives experimental results
which include knowledge extraction. Finally, section 9.7 concludes.

9.2 Problem Specification

This thesis’ variation-aware sizing work focused on a single objective (yield or Cpk), and
the topology synthesis work of chapters 6 and 7 had multiple performance objectives (but
not yield / Cpk). An interesting thing happens when one treats performancesand yield
as objectives:eachgiven design candidate has its own Pareto-optimal set whichtrade off
performance(s) with yield. For example, let us have gain as one objective (to maximize)
and yield as the other. Then, an unattainably large gain value (constraint threshold) will
give a yield = 0.0%. But yield will rise as we loosen the gain constraint (0.0% < yield <
100%), and eventually the gain constraint will always be met(yield = 100%). This whole
tradeoff of gain vs. yield is possible from a single design. We can generalize to have more
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than one performance objective too. From the perspective ofa product manager, yield-
performance tradeoffs are highly useful, as some slightly arbitrary specifications can be
loosened in order to enhance yield.1

This chapter treats both performances and yield as objectives. Therefore, each design
candidate will have its tradeoff curve, and all design candidates’ tradeoffs are merged to
form the overall tradeoff.

The algorithm’s aim is formulated as a constrained multiobjective optimization prob-
lem:

minimize fi(φ) i = 1..Nf

s.t. gj(φ) ≤ 0 j = 1..Ng

hk(φ) = 0 k = 1..Nh

φ ∈ Φ

(9.1)

whereΦ is the “general” space of possible topologies and sizings. The algorithm traverses
Φ to return a Pareto-optimal setZ = {φ∗

1, φ
∗
2, · · · , φ∗

NND
} onNf objectives,Ng inequal-

ity constraints, andNh equality constraints. Note that this setZ may contain multiple
topologies.

f1 is the objective to maximize yield, andf2, f3, · · · , fNf
are the circuit performances

(λ’s in the notation of chapter 2) which are being maximized / minimized (e.g. maximize
gain, minimize power, etc.). The remaining performances are treated as constraints. As
discussed, the value of yield for a givenφ is dependent on the values off2, f3, · · · , fNf

.

9.3 Background

This section is a brief review of the literature in robust circuit topology synthesis, from
the perspective of analog CAD, and of genetic programming (GP).

9.3.1 Robust Topology Synthessis in Analog CAD

First, we review work in the analog CAD literature. To our knowledge, there is no prior
research which simultaneously does topology search and considers process variations, let
alone using SPICE in the loop. So, we resort to examining the work in variation-aware
automated sizing, as covered in depth in chapter 2, because some of the techniques there
may generalize to non-vector search spaces.

The global commercial optimizers (e.g. [Snps2005, Cdn2005b]) as well as some aca-
demic research [Phe1999] use FF/SS model corners which, as has been mentioned in
chapter 2, is less accurate. On-the-fly automated corner discovery like [Och1999] is too
slow .

Plain Monte Carlo sampling with SPICE is also too slow, unless a faster performance
estimator is used [Deb1998], which is then inaccurate.

1An elaboration of this concept is “yield binning” in which a single design’s manufactured chips are
binned into several performance categories, e.g. CPUs meeting clock speeds of >3.0 GHz, >2.5 GHz, >2.0
GHz, >1.5 GHz, and throwaway. To maximize revenue, each die is put into the highest-performance bin
possible, where it has the highest price point.
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One could use safety margins [Phe2000], but this means overdesign, and the degree to
set safety margins is unclear. One could build regression models [Sch2001], but in general
structural synthesis search spaces, the notion of input vector is poorly defined. That said,
in section 8.4 we have shown how the MOJITO tree search space can be viewed as a
vector-valued space. Unfortunately, for variation-awaresynthesis we must also consider
process variables as input dimensions, which causes the number of input variables to
be too large to build sufficiently predictive models. One could do nominal synthesis to
generate a tradeoff of designs, and after that take small steps in a manufacturing-aware
space [Sme2003b], but that only works if there is tight correlation between nominal and
robust designs.

9.3.2 Robust Topology Synthesis in Genetic Programming

We also review robust synthesis techniques from genetic programming (GP).
The technique of [Tel1997] could be applied to robust design: in a tournament selec-

tion scheme, only take as many Monte Carlo samples as needed to have confidence that
one design is better than another. The problem is, two nearly-identical individuals have
a “racing” effect where each individual needs to get fully evaluated in order to differen-
tiate from its neighbor. This means that there are have expensive competitions between
two relatively unfit individuals. And, in general, all attempts to refinedesigns will be
computationally expensive.

Another approach is robust hierarchical fair competition (robust HFC) [Hu2005a].
Recall that HFC segregates individuals by layers of different fitnesses. RobustHFC, eval-
uates all individuals at all layers nominally,exceptit takes 10 Monte Carlo samples for
individuals on the top, highest-fitness layer. It has issuesas follows. First, there may be
significant distance from a design region which does well on nominal evaluations only, to
a design region which does well when accounting for statistical variations. In robust HFC,
all the individuals entering the top layer start in the good-at-nominal region. They must
each make that journey from the good-at-nominal region to the good-at-robust region,
which will be a computationally expensive journey requiring many steps if the distance
between the design regions is large. The effect is even worsethan that. Because HFC seg-
regates by fitness layers, the first reasonably good individuals to enter the top layer will
get refined. The vast majority of new individuals that enter the layer afterwards will do
poorly because they are in the good-at-nominal region, and will die out when competing
against the older individuals. The effect is that robust HFCcould easily get stuck in a
local optimum, despite its fitness-layering scheme to avoidexactly that.

9.4 Towards a Solution

The next section will present our approach, MOJITO-R, whichovercomes the issues of
robust topology synthesis that we see in analog CAD and in GP.In some ways MOJITO-R
is similar to robust HFC, in that a distinction is made between the degree of Monte Carlo
evaluation in different population layers. But it is different in order to overcome the issues
of robust HFC:
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• First is the robust HFC issue of having a sharp jump from nominal to robust evalua-
tions at the very top layer, which hinders the ability to globally explore robust design
regions. MOJITO-R overcomes this by having asmoothtransition from nominal to
fully-evaluated Monte Carlo designs: the lowest population layer has just nominal
evaluations, but subsequent higher layers have a gently increasing number of Monte
Carlo samples, until the top layer which has the full number of samples. This is
an instantiation of the “structural homotopy” concept introduced in chapter 3 for the
SANGRIA algortihm.

• The second robust HFC issue, that nominal individuals entering the top layer almost
always lose out to existing top-layer individuals, is naturally handled by the combi-
nation of the structural homotopy framework and segregating individuals byage, not
fitness (ALPS). The structural homotopy framework means that there is no dramatic
change in the objective function, so up-and-coming individuals are not assaulted by
dramatically-better individuals that were already in the layer. The ALPS framework
helps further: stagnant individuals will get removed from each age layer once they
become tooold for the age layer (we saw this effect happening often in SANGRIA’s
experimental results of section 3.6 ).

The next section will describe MOJITO-R in more detail.

9.5 Proposed Approach: MOJITO-R

MOJITO-R [Mcc2008f] can be viewed as a combination of MOJITO[Mcc2007] and
SANGRIA [Mcc2008e]: it uses the search space and core multi-objective algorithm of
MOJITO, and the “structural homotopy” idea of SANGRIA to handle variation issues.
MOJITO-R returns a Pareto-optimal set of sized topologies,which trade off yield and
performances. There is an opportunity to extract knowledgefrom this Pareto-optimal set,
which we also explore.

The high-level structure of MOJITO-R is shown in Figure 9.1.The high-level algo-
rithm and sub-algorithms are identical to that of MOJITO in section 3.5.2, except:

• Evaluations at higher levels get progressively tightened as they progress towards the
top level (i.e. structural homotopy).

• For each design (sized topology), a yield-performances tradeoff is generated by (1)
sweeping through all combinations of specifications, and computing yield for each
vector of performance values, then (2) applying nondominated filtering on the result-
ing combined yield-performance vectors.

• At every generation, the final nondominated set is updated bymerging the tradeoffs of
the fully-evaluated individuals (top two layers), then applying further nondominated
filtering.

To demonstrate the generality of structural homotopy, for MOJITO-R we set the pre-
scribed evaluations for each age layer slightly differently than in SANGRIA. In SANGRIA,
there were two axes on which to tighten the objective function: (1) ac/dc vs. ac/dc/transient/other,
and (2) nominal vs. corners. In MOJITO-R, there is just one axis: number of Monte Carlo
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Figure 9.1: MOJITO-R combines SANGRIA’s structural homotopy strategy
with MOJITO’s multi-objective search across the topology space.
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samples (process points). Each layer in MOJITO-R simulatesat all testbenches: ac, dc,
transient, and other. The breakdown of process points is: nominal vs. 4 process points vs.
7 process points vs. 21 process points vs. 30 process points1.

This generality is important for real-world use of SANGRIA and MOJITO-R, because
it is not always clearwhowould determine which simulations are done at the lower levels,
and which simulations are done on all layers. The choice could be the user, or the tool
provider, or both. For a reasonable tradeoff between usability and control, the default
could be set by the tool provider, but the users who would liketo have the extra control
would have access to it. And in fact it can be easily auto-determined for certain ap-
proaches, such as MOJITO-R’s approach where each layer has merely a different number
of “corners” acrossall testbenches.

We can readily calculate the additional simulation cost of running MOJITO-R versus
running MOJITO. For simplicity, let us assume one testbench, for one generation at algo-
rithm steady state when all age layers exist, with equal population size per age layer. To
start with, we also assume that generating initial individuals come for free. For a base-
line, we assign a cost of 1 evalution-unit / layer for a singleage layer with MOJITO, and
therefore with (1 + 1 + ... + 1) = 1 * 10 = 10 evaluation-units forMOJITO. In MOJITO-
R, upper age layers cost more, giving a cost of: 1 + 1 + 4 + 4 + 7 + 7 +21 + 21 + 31
+ 31 = 128. Therefore MOJITO-R is 128 / 10 = 12.8 times slower than MOJITO from
these assumptions. However, we cannot ignore the cost of generating initial individu-
als: in our experience it takes on average 500 simulations togenerate a decent initial
individual (using the algorithm in Table 7.6). If initial individuals are generated every
Na = 10 generations, this brings the cost of MOJITO to 500/10 (for init. gen.) + 10
(baseline) = 60 evaluation-units, MOJITO-R to 500/10 (init. gen.) + 128 (baseline) = 178
evaluation-units, and thereforeMOJITO-R is only 3.0 times slower than MOJITO . For
comparison: a brute-force Monte Carlo implementation in which all individuals are eval-
uated on 30 Monte Carlo samples is 30 times slower than MOJITO, and 10 times slower
than MOJITO-R.

9.6 Experiments

This section describes experimental results from running MOJITO-R, including knowl-
edge extraction, on operational amplifiers.

9.6.1 Generation of Database

This subsection describes the setup to generate the sized-topologies database using MOJITO-
R, having tradeoffs across both performances and yield. We use the same experimental
settings as section 7.6.1, with some values updated as in section 9.5.

1These numbers were chosen using the following reasoning. 30process points gives reasonable accuracy
for the context of a yield optimizer, and is the value we also used in SANGRIA (chapter 3). The jump from
nominal to 4 process points, and from 4 to 7, adds three process points each time which is not a giant jump
computationally, but starts to account for process variations. Additional process points have diminishing
returns, but 21 is a reasonable middle ground to manage the jump from 7 to 30 process points.
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The problem has seven objectives: maximize yield, minimizepower, minimize area,
maximize GBW, maximize gain, maximize dynamic range, and maximize slew rate.

The MOJITO-R run took approximately 48 hours on a Linux cluster having 30 cores
of 2.5 GHz each (which is palatable for an industrial setting). 242 generations were
covered, traversing 3528 possible topologies and their associated sizings. It returned a
database of 78,643 Pareto-optimal points, composed of 982 sized topologies having var-
ious specification combinations. 284 of those sized topologies have 100% yield (esti-
mated).

9.6.1.1 Performances on Whole Pareto Front

Figure 9.2: Box plots summarizing the performance distributions across
whole Pareto front.

To begin with, we will get a rough feel for the distribution ofthe performances of the
Pareto front. Figure 9.2 gives a box plot for each metric. We see that gain has a range
from about 55 dB to about 115 dB, with the bulk of designs having values between 75 dB
and 110 dB. For power, some designs get as low as 2 mW, most designs are between 2.5
mW and 10 mW, and some designs consume more than 20 mW. The minimum GBW is
around106.7 = 5.0 MHz, and the maximum is about107.6 = 39.8 MHz. The distributions
for area, dynamic range, and slew rate are also shown.

Let us now examine the database more directly by looking at each raw point’s per-
formance, in 2-D scatterplots which also give insight into overall tradeoffs between two
performancesand yield, at once. Figure 9.3 illustrates. Each diagonal coordinate gives
a histogram for a performance metric (or yield), and other entries in the grid give a 2-D
scatterplot of performance / metric values.

We can note many interesting things. The histogram for gain indicates a bimodal
distribution of gain values, with one peak around 55 dB and another around 110 dB. These
two clusters of data appear in other plots where gain is on oneaxis; for example in the



216 Variation-Aware Topology Synthesis and Knowledge Extraction

Figure 9.3:2-D scatterplots and histograms of the whole Pareto front. Each
“+” is a different nondominated entry in the Pareto front. There are 78,643
entries in total.
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gain vs. power plot we see one distinctly higher-power group, and one distinctly lower-
power group, plus some outliers. We cannot ignore the outliers as they are also points on
the Pareto front, and are therefore “best” in their own specific way. Interestingly, it is the
higher-gain cluster which has lower power, indicating thatthere is not a strong tradeoff
between gain and power. On the other hand, the plot of GBW vs. gain indicates a strong
tradeoff: one can have either high GBW or high gain, but not both. There is also a strong
tradeoff between area and gain: higher gains typically takemore area. The tradeoff is
softer for lower-gain circuits, in which going to substantially lower gain values does not
buy much more area. We also see that there is a strong tradeoffbetween power and area,
especially for the lowest-power circuits. Dynamic range and power do not exhibit strong
tradeoffs; and in general dynamic range does not have strongtradeoffs with any metric.

Figure 9.4:Histogram of the yield values for whole Pareto front.

Having the yield dimension affects what all these insights mean, so it is important
to consider yield versus the other specifications. First, weexamine the yield histogram,
which is the upper left of Figure 9.3, but which is also zoomedinto more detail in Figure
9.4. Note that all points are not 100% yield, therefore the performance tradeoffs we just
examined mean that in some cases to hit the extremes of performance, power, and area
shown, one will have to settle for a yield of <100%. Also, we see that the histogram peaks
at a yield of 10% to 20%, and tapers off to both sides; and the bulk of points have a yield
of less than≈ 50%. So the 2-D scatterplot tradeoffs of Figure 9.3 are actually on many
points with≪ 100% yield. Note that some points even have 0% yield, in whicheach
point barely doesnot meet the performance specifications.

Let us re-examine the 2-D scatterplots of Figure 9.3, and in particular the subplots
where yield is the x-axis. At first glance, these plots seem surprisingly uninteresting
because the yield value does not seem to strongly affect the distribution. But what that
means is that each performance value on its own is achievableno matter what the yield
requirement is, though there of course will be tradeoffs with other performance values.
One notable exception is slew rate vs. yield (bottom left): it shows that the only way to
achieve significantly higher values of slew rate is to have yields of <10%.
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Figure 9.5:On the whole Pareto front, with the 100%-yield points highlighted
by squares.

We might consider interpreting the 2-D scatterplots on non-yield dimensions accord-
ing to the following intuition: wherever the tradeoff is strong, the most aggressive edge
of the curve has the 0%-yield points, and the least aggressive edge of the curve has the
100%-yield points. In fact, we can test this insight. Figure9.5 illustrates the whole Pareto
front, and highlights the 100%-yield points with squares. We see that boxes are not just on
the edges of clusters in the 2-D plots, but throughout each 2-D plot including some of the
outliers. However, one must remember that the tradeoffs arenot just in two performance
metrics but in six; so in six dimensions the 100%-yield points are on the least-aggressive
edge and the 0%-yield points are on the most aggressive edge.Put in another way, the
performances tradeoff curve represented by the 100%-yieldpoints are less aggressive than
the performances tradeoff curve represented by the 0%-yield points.

9.6.1.2 Topologies on the Whole Pareto Front

In the Pareto front, there were nine different topologies. They are illustrated in Figure
9.6. 982 sized versions of the topologies expanded into 78,643 Pareto-optimal points. All
the topologies are two-stage with NMOS inputs, but their differences end there. In the
first stage, some topologies had cascode inputs and some did not. Some topologies had
source-degeneration and some did not. The first stage’s current-mirror load was either
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a simple current mirror, a cascode current mirror, or a low-voltage current mirror. The
second stage was either pmos input or nmos input, sometimes had source degeneration,
and sometimes there was a bias transistor in parallel with the input stage.

Some topologies turned out to cover much more of the Pareto front than others.
Specifically, topologies 4 and 7 had about 44,000 and 30,000 points respectively, while
topologies 2 and 6 had just 98 and 25 points respectively, andthe rest are in between.
Table 9.1 gives a complete count per topology in the whole Pareto front (second column).

Table 9.1:Topology Count in Pareto front

Topology Label Number of Instances Number of Instances
in Whole Pareto Front in 100%-Yield Pareto Front

1 1165 5
2 98 0
3 169 0
4 44037 177
5 346 1
6 25 0
7 29687 89
8 219 0
9 2717 12

9.6.1.3 100%-Yield Pareto Front

We have briefly discussed the 100%-yield points, but this section examines them more
closely. Aiming for 100% (estimated) yield is common in analog circuit design; usually
designers just view this as solving at all corners. Correspondingly, we can filter down the
points of the Pareto-optimal front down to just the 100%-yield designs. Of the 78,643
Pareto-optimal points which were composed of 982 sized topologies having various spec-
ification combinations, 284 of those sized topologies have 100% yield (estimated).

Whereas Figure 9.5 showed the 100%-yield designs highlighted among the whole
Pareto front, Figure 9.7 shows just the 284 100%-yield designs. There are a few notable
details. First, the plot is far simpler since the 284 points are only 0.36% of all the points.
Second, the general trends are largely the same, including the clusters. Third, the perfor-
mance values are less aggressive; most notable is the slew rate with a maximum value
that is about three times smaller compared to when <100%-yield designs are allowed.
Some tradeoffs are more refined, such as the tradeoff betweenarea and GBW. The slew
rate tradeoffs (for lower-performing slew rates) are now more visible; we see that slew
rate has a loose tradeoff with gain and with dynamic range, and a relatively tight tradeoff
with power. But it has little tradeoff with GBW and area: higher slew rates turn out to be
correlated with larger GBW and smaller area values.

The third column of Table 9.1 gives the count for each topology. Note that some
topologies never achieved 100% yield. This is interesting because it means that when
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Figure 9.6:Topologies in the MOJITO-R run’s Pareto front.
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Figure 9.7:The 100%-yield points in the Pareto front.

yield matters, fewer topologies are needed. Also note that the topologies with the most
100%-yield entries (third column) are the ones with the mostany-yield entries (second
column).

9.6.1.4 Per-Topology Highlights on 100%-Yield Pareto Front

So far in this section, we have examined performances and topologies separately. Since
it is highly useful to learn how they relate, we now examine the topology-performance
relation by highlighting a specific topology in the 2-D scatterplots. To that extent, Figures
9.8, 9.9, 9.10, 9.11, and 9.12 give the highlights for topologies 1, 4, 5, 7, and 9, respec-
tively. In each respective plot, the squares are the highlight topology and the pluses are
the other topologies.

As hinted before, the topologies break into two clusters of performance. Topology
7 defines the cluster with the higher gain, lower power, lowerGBW, higher area, higher
dynamic range, and higher slew rate (Figure 9.11). Topologies 1, 4, 5, and 9 define
the other cluster (other figures). The different clusters are most notable in the power
dimension, where there are effectively two different possible powers: 5 mW (for topology
7) or 10 mW (for the rest). We can ask how topology 7’s schematic is different from the
other topologies; we see from Figure 9.6 that unlike topologies 1, 4, and 5 its input-
stage current mirror is a low-voltage variant, whereas the other topologies have a simple
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Figure 9.8:The squares highlight topology 1 in the 100%-yield Pareto front.

Figure 9.9:The squares highlight topology 4 in the 100%-yield Pareto front.
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Figure 9.10:The squares highlight topology 5 in the 100%-yield Pareto front.

Figure 9.11:The squares highlight topology 7 in the 100%-yield Pareto front.
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Figure 9.12:The squares highlight topology 9 in the 100%-yield Pareto front.

current mirror. Unlike topology 9, it has cascode inputs. So, it is the only topology with
a combination of input-stage low-voltage current mirror with cascoding.

Topologies 1, 4, and 5 occupy the most similar performance niche. Topology 4 com-
prises the bulk of the Pareto front, as evidenced by its high count compared to topologies
1 and 5. Topology 1 is similar to topology 4; the only difference is that topology 1 does
not have source degeneration on the inputs. Topology 5 is also very similar; the only
difference is that topology 5 has a source degeneration at the output.

Topology 9 occupies a couple niches of the performance spaceas part of the perfor-
mance cluster dominated by topology 4. Topology 9 gives the best GBW and dynamic
range values of any topology, at relatively low areas.

9.6.1.5 Decision Tree Extraction on 100%-Yield Pareto Front

Recall the knowledge extraction technique of section 8.3, in which decision trees are
used to summarize the performance choices between different topologies. The trees give
insights that viewing raw data cannot give, especially whenthere are more than two or
three performance metrics (and here we have six). So here, weextract a decision tree
from the 100%-yield data following the flow of section 8.3. The tree has performances as
input, and topology “class” as output.

The tree extraction took < 5 s. Figure 9.13 shows the resulting tree. There is some
pruning in order to give a concise description of the key performance decisions leading
to the topology choices. We see that, at the top node, a power requirement of of < 6.4
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Figure 9.13:Decision tree for topology choices in the 100%-yield data; min-
imum number of entries per leaf = 5.

mW will lead to selection of topology 7. Otherwise, further decisions are needed. We see
that topology 7 has a low-voltage current mirror load in its first tage, and its second stage
is very simple. The next decision is to examine dynamic range, and if it must be≥ 1.72
then topology 9 is chosen. There are a series of decisions to usually distinguish between
topology 9 and topology 4, and in one case to select the use of topology 1.

The decision tree of Figure 9.13 has only four of the five topologies. To include the
fifth topology we turn off the pruning, to get Figure 9.14. This decision tree includes
topology 5, which is at the bottom left corner of the tree, andgoes through the most
performance decisions to get to. What this means is that topology 5 occupies a tiny region
of the performances tradeoff space; which is in line with Table 9.1 in which topology 5
has only a single entry.

In summary, once again we have seen how decision trees can provide a complementary
perspective into the relationship between topology and performances – here with the twist
that all the sized topologies are process-variation-aware.
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Figure 9.14:Decision tree for topology choices in the 100%-yield data; min-
imum number of entries per leaf = 1.

9.7 Conclusion

This chapter has described MOJITO-R [Mcc2008f], a system which combines SANGRIA’s
structural homotopy approach to yield optimization with MOJITO’s trustworthy, multi-
objective approach to structural topology synthesis. The result is an algorithm and system
that generates a set of sized topologies which give tradeoffs across several performances
and yield. We ran MOJITO-R across thousands of possible topologies (plus associated
sizings) to generate a tradeoff database holding 78,643 Pareto-optimal points composed
of 982 sized topologies, of which 284 have 100% yield. We thenexamined this database
through visualization, and through decision-tree knowledge extraction to learn about per-
formance tradeoffs, topologies which proved useful, and the relationship between topolo-
gies and performance.

In the series of successively more-general designer tasks,this thesis covers one more
beyond MOJITO-R: variation-aware topology selection and design ofnovel topologies
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and functionality. It is embodied in two tools, MOJITO-N andISCLEs. These tools are
discussed in the next chapter.
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Chapter 10

Novel Variation-Aware Trustworthy
Circuit Topology Synthesis

No great discovery was ever made without a bold guess.
–Isaac Newton

10.1 Introduction

This is an exploratory chapter which makes tentative first steps towards flows for analog
circuit design in which the tool helps in designing novel circuit functionality and / or novel
topologies.

Previous chapters showed how much flexibility there is in choosing fully-trustworthy
topologies, using the MOJITO flow. But sometimes there may bea need for truly novel
functionality, or novel topologies. Because of the costs offabricating a design, the mo-
tivation for a new topology has to be strong. New topologies only come about if there
is no other way, if the idea has possible orders of magnitude payoff such that it’s worth
the money to try, or if there is some way to make trying it zero risk. That said, some-
times these motivations exist, and therefore it is of interest to see what sort of effective
algorithms can be created, to have the computer generate newtopologies.

This chapter describes two approaches to novelty:

• MOJITO-N [Mcc2008a] finds novel topologies for classes of circuits that typically
have existing reference designs (i.e. non-novel functionality). MOJITO-N builds off
MOJITO, and adds novelty to known topologies only when thereis payoff.

• ISCLEs [Gao2008a, Gao2008b] finds novel topologies for classes of circuits without
recourse to existing reference designs (i.e. novel functionality). ISCLEs uses the
machine learning technique of boosting, which does importance sampling of “weak
learners” to create an overall circuit ensemble. ISCLEs haspromise to benaturally
robust to process variations, and to scale with shrinking process geometries.

The rest of this chapter is organized as follows. Section 10.2 gives background. Sec-
tion 10.3 describes the MOJITO-N approach and results. Section 10.4 describes the
ISCLEs approach and results. Section 10.5 concludes.
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10.2 Background

Table 10.1 shows synthesis approaches, by capability [Gao2008a]. The approach includes
prior approaches, the MOJITO approach of chapters 6-7, and the two new approaches of
this chapter, MOJITO-N and ISCLEs).

First, we give some definitions corresponding to the table’scolumns. “Novel function-
ality” means that the approach can be set to a new problem justby changing testbenches,
which allows for new types of analog circuit functionality.“Novel structures” means that
the approach may invent new structures. “Reasonable CPU effort” is for the context of
industrial use by a tool user (semiconductor company). “Trustworthy” means that the
results are either designer-trusted by construction, or the new structural novelty is easily
identifiable by a designer. “Topology variety” means that the set of possible topologies is
sufficiently rich that it contains appropriate solution(s)to the target functionality, includ-
ing problem variants with different objectives and constraint settings.

Table 10.1:Topology Synthesis Approaches

Approach Novel
function-
ality?

Novel
struc-
tures?

Trust-
worthy?

Topo-
logy
vari-
ety?

Reasonable
CPU
effort?

Open-ended yes yes no yes no
Open-ended with tighter con-
straints

yes yes no yes borderline

Flat pre-specified BBs no no yes no yes
Hierarchical pre-specified BBs:
MOJITO

no no yes yes yes

Hierarchical pre-specified BBs
plus novelty: MOJITO-N

no yes yes yes yes

Boost pre-specified BBs:
ISCLEs

yes yes yes yes yes

The early approaches of row 1 ([Koza2003], [Lohn1998], [Shi2002]) were very open-
ended, having few constraints. Unfortunately, they had prohibitive CPU effort, and results
which were not only untrustworthy, but the results often looked strange. More recent
efforts of row 2 ([Sri2002], [Das2005], [Mat2007]) added tighter constraints using do-
main knowledge to improve efficiency and trustworthiness, but there is still no guarantee
of trustworthy results or trackable novelty. Early CAD research of row 3 ([Kru1995],
[Mau1995]) focused on searching through sets of known topologies, which gave both
speed and trustworthy results. Unfortunately, the building block (BB) combinations were
specified “flat”, which severely limited the number of possible topologies; and there was
no clear way to generalize the approaches to more problem types. More recent work -
MOJITO [Mcc2007](of chapters 6-7) merges ideas from both fields: it searches through
combinations of hierarchically-organized designer-specified analog building blocks, thus
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giving a large set of topologies that can be readily applied to common analog design
problems which are trustworthy by construction.

The final two rows contain the goals of this chapter. MOJITO-N[Mcc2008a] allows
for more open-ended structural novelty, but tracking the novelty explicitly and only re-
warding novel individuals that actually improve performance. But since MOJITO-N is
constrained to problems that analog designers have attacked, it does not address problems
with novel functionality. This gives rise to another opportunity: to determine topologies
that can be novel in both functionality and topology, yet trustworthy, and in reasonable
CPU effort. This is where ISCLEs [Gao2008a, Gao2008b] comesin.

The rest of this chapter is organized into two key sections. Section 10.3 describes
MOJITO-N and its experimental results, and section 10.4 describes ISCLEs and its ex-
perimental results. Section 10.5 concludes.

10.3 MOJITO-N Algorithm and Results

10.3.1 Target Workflow for Designers

MOJITO-N [Mcc2008a] is a system for multi-objective and topology sizing, that adds
novelty as needed. MOJITO-N fits (with MOJITO) into the designer flow of Figure 10.1
as follows.

Figure 10.1:Designer flow for massively multi-topology sizing with novelty.
MOJITO is used for auto multi-topology sizing, and MOJITO-Nis used for
auto multi-topology sizingwith novelty.

When the designer starts the design process, he enters his design goals (performance
constraints and objectives) into MOJITO. Because MOJITO has a massive DB of possible
topologies, the designer does not need to be concerned with defining them. He runs
MOJITO to do the “auto multi-topology sizing.” In fact, MOJITO may not even need
running if a prior MOJITO results DB exists, which is likely because a multi-objective
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results DB for a circuit type only needs to be generatedonceon given a process node.
Using a prior DB allows an immediate-turnaround “specs-in,sized-topology out” flow.

If the best topology from MOJITO hits the target goals, then the process is done. If the
goals were not hit, then “auto multi-topology sizingwith novelty” must be invoked, i.e.
MOJITO-N. This will help the designer to explore novel topology designs, to augment
the manual effort for creative novel topology design.

10.3.2 MOJITO-N Aims

The specifications for the MOJITO-N system, beyond (the non-novelty) MOJITO, are:

• If a topology that is known to be 100% trustworthy will meet the goals, then the tool
should return that.

• Only if no existing known topology can meet the goals should the tool resort to adding
novelty.

• If it does add novelty, it should be easy to track where and howthat novelty is added,
and what the payoff is.

Figure 10.2:Left: MOJITO inputs and outputs. Right: MOJITO-N inputs and
outputs, in relation to MOJITO.

10.3.3 MOJITO-N Inputs and Outputs

MOJITO’s inputs and outputs are shown in Figure 10.2 left, while those for MOJITO-N
are shown in Figure 10.2 right. Note how a MOJITO results DB isused as input to the
MOJITO-N tool. This makes a big difference in computationaleffort, because it means
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that MOJITO-N only needs to expend effort searching for, andtuning, novel building
blocks, not in topologies that only have pre-specified building blocks.

10.3.4 MOJITO-N Algorithm

We have described the target designer workflow for which MOJITO-N is intended, then
its specifications and inputs and outputs. So, we can now describe MOJITO-N.

MOJITO-N is composed of the following elements.

• Use MOJITO [Mcc2007] as the algorithmic baseline.

• Use trustworthy designs as the structural starting points.In fact, do a long 100%
trustworthy run first (using MOJITO); then add novelty in a follow-on run.

• Create novel designs in the following fashion: copying an existing part within the
parts library, mutating the copy, and then getting a new individual to use that mu-
tated copy. In order totrack novelty, remember which parts and choices are novel,
and what sort of novelty-mutating operator is used. These altered libraries can be
subsequently reused in future runs, therefore closing the loop in the style of run-
transferable-libraries [Ryan2005].

• Have a multi-objective framework to managetrustworthiness tradeoffs: Let trust =
−1.0∗novelty, wherenovelty = number of times that a novel part is used, and anovel
part is one that has had random structural mutations from a pre-existing part. Then,
the trust measure is added explicitly as another objective (to maximize) in the multi-
objective search algorithm. In this framework, only novel designs thathelp will be
returned. Put another way, if novelty does not actually help, it will not show up in the
Pareto-optimal front (but it will not necessarily be kickedout of the population; that
is up to the multiobjective algorithm). The only changes to the MOJITO pseudocode
are to measure novelty, and to support the novelty-inducingEA search operators.

• A novel design will almost certainly be initially worse off than a non-novel design,
until it has been sized well enough to be competitive. If not handled explicitly in
the EA framework, the novel design will almost certainly dieoff before its benefit
is discovered (if it has a benefit). So, for novel designs to have a fighting chance,
MOJITO-N only creates novel designs for theeasiest-competitionage layer, i.e. layer
0. Rather than randomly generating the whole individual from a uniform distribution,
choose a parent from any age layer, and novelty-mutate it forplacement in layer 0.
So that novel individuals only compete against novel individuals, all of layer 0 is
populated with novel individuals. (Note: many other possible schemes exist here too,
but a key enabler is the ALPS structure).

10.3.5 MOJITO-N Results

This section describes preliminary results for MOJITO-N [Mcc2008a].
The experimental setup was the same as for the non-novelty MOJITO of chapter 7.6.1,

except for the following differences. The 100% trustworthyresults from the MOJITO run
were used as the inputs to the MOJITO-N run, in line with the flow of Figure 10.2 right.



234 Novel Variation-Aware Trustworthy Topology Synthesis

MOJITO-N was run for 15 more generations (15 * 10 * 100 = 15000 more individu-
als) on one 2.0 GHz CPU, which took about 25 hours on a single 2.0 GHz CPU. The
novelty-mutating operators were: add two-port series, addtwo-port parallel, add three-
port parallel, and add transistor with channel in series. The two-port parts available for
adding were: capacitors, resistors, NMOS/PMOS diodes, andbiased NMOS/PMOS de-
vices (a biased MOS is merely a transistor with a pre-set voltage bias). One more search
objective was added: minimize novelty.

Figure 10.3:Circuit which MOJITO-N successfully re-invented. The circled
resistor in the feedback path was not in the library; MOJITO-N added it. This
is a well-known design technique.

With the results, we output the nondominated set, and first examined if any novel
individuals existed. Some did. With each novel individual,we queried its data structure to
find which parts were novel, and how they were than their original part. It turns out that so
far in this run, they all had the same change: the feedback capacitorCc had been mutated
to include a resistor in series. Figure 10.3 illustrates. This is actually a well-known design
technique that one can find in many analog design textbooks [Lak1994, Raz2000]: it is
a “zero-compensation” resistor which increases the effective gain from feedback; it does
not help the feedforward gain as much because the feedforward path does not get its gain
amplified.

10.4 ISCLEs Algorithm And Results

10.4.1 Motivations

ISCLEs has two motivations, one from analog circuit design and one from the general
goal of structural synthesis:

• Analog Area Problem. As Moore’s Law [Moo1965][Itrs2007] captures, the mini-
mum size of the transistors in integrated circuits has been decreasing at an exponen-
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tial rate for several decades. For digital design, the incentive to shrink geometries is
high: it means simultaneously smaller area, higher speed, and lower power. How-
ever, scaling is less beneficial to analog circuits because mismatch, which limits per-
formance of many analog circuits, worsens as geometries shrink [Itrs2007]. To cope
with mismatch, analog designers increase device area [Pel1989], use many circuit-
level techniques like feedback and differential design [San2006][Joh1997][Raz2000],
and more recently, shift functionality to digital, and apply calibration and compen-
sation [Fay2006]. But these only partially scale with Moore’s Law because large
analog-sized transistors must form the core signal path. Asa result, the analog por-
tion of mixed-signal chips risks dominating the area [Rut2004]. There is a further
concern: these approaches all start with a circuit that performs well functionally,
then adapt, tune or average out the variations caused by mismatch. While this is rea-
sonable, some fear that analog will hit a brick wall when there is simply too much
process variations and time-dependent degradation to tunearound [Gie2005b]. An
illustration is for the gate oxide layer: at three atoms thick [Itrs2007], one or a few
atoms out of place can significantly affect the performance.In this chapter, we ask:
is it possible to design analog circuits that are simultaneously (a) naturally robust
to variations without needing tuning, yet (b) scale with Moore’s Law, i.e. use the
smallest-possible transistors?

• Trustworthy Novel Structural Synthesis. As described in Table 10.1, there is no
analog circuit structural synthesis approach that can return trustworthy (or trackable-
trustworthy) circuits on novel functionality.

Towards finding a solution, we point out two opportunities:

• Tiny Digital Transistors. Moore’s Law is not only a hindrance; it may also be a
help. IC transistor geometries have exponentially shrunk so much that each individ-
ual minimally-sized transistor has become virtually free.This means that in design,
as predicted decades ago, we canwaste transistors[Mead1980]. However, this only
holds if the transistors are near-minimal for the process. Digital circuits obey this,
but currently not analog – as discussed, designers have keptanalog circuits larger
as a key way to reduce the effects of process variation-induced mismatch.

• Machine Learning Ensembles. Recent advances in the machine learning field
point to a new way for designing analog machines – learning ensembles [Pol2006,
Fri2002, Has2000].

In his 2008 keynote at the Design Automation Conference, Intel CTO Justin Rattner
described how designing circuits for analog functionalitycould (and should) be viewed
as a computational problem, paving the way for development of wholly novel approaches
to circuits to realize such functionality [Rat2008]. ISCLEs follows such a paradigm: it
starts with the view of analog functionality as a computational problem, then maps it into
a specific computational problem:regression. Machine learning is a recent and pow-
erful approach to regression, so ISCLEs leverages a machinelearning approach called
boosting. Specifically, ISCLEs stacks together dozens or hundreds of minimally-sized
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circuit topologies using the machine learning framework ofboosting, to get analog func-
tionality. ISCLEs returns novel topologies that are trustworthy by construction, robust to
mismatch, and show promise in maintaining an area footprintthat scales with Moore’s
Law. The stochastic boosting approach that ISCLEs employs makes it mathematically
equivalent toimportance sampling[Hes2003], on circuits. This is where ISCLEs earns
its label: Importance Sampled Circuit Learning Ensembles.

The rest of this chapter is organized as follows. Section 10.4.2 reviews machine learn-
ing and importance sampling, and proceeds to describe the ISCLEs boosting algorithm
developed specifically for circuit assembly. Section 10.4.3 describes the ISCLEs-specific
library of digital-sized circuit blocks. Section 10.4.4 briefly describes the multi-topology
sizing approach. Section 10.4.5 describes experiments in the design of a sinusoidal func-
tion generator and an A/D converter. Section 10.5 concludesfor both MOJITO-N and for
ISCLEs.

10.4.2 Machine Learning and ISCLEs

This section starts with a discussion on machine learning, and how its evolution as a field
can be emulated in circuit design (Figure 10.4). Then, ISCLEs is described in detail.

Two major sub-problems in machine learning [Has2001] are regression and classifi-
cation; the key challenge for each is to find an input-output mapping that predicts well on
unseen data. For decades, the prevailing approach was to come up with a single model
(bottom left of Figure 10.4). Single models almost always had overfitting issues, perform-
ing well on training data but generalize poorly to unseen data. That is, good training error
but poor testing error.

However, a new approach has emerged in the last decade:ensemblesof models
[Pol2006], which combine the output ofmany learners (bottom right of Figure 10.4).
Ensembles inherently overfit less because the errors made bysub-learners are averaged
out over the ensemble (assuming the sub-learners’ outputs are not correlated). In “bag-
ging”, each sub-learner learns the full input-output mapping. Alternatively, a series of
“weak learners” (WLs) can be “boosted” into a “strong learner” that captures the over-
all mapping [Fre1997]. Weak learning is much easier to do than strong learning of one
model: each learner only needs to do better than random, rather than fully capture the
mapping. The outer boosting algorithm takes care of combining the many WLs together
in order to get the target mapping. Boosting does importancesampling [Hes2003] in
the model space, therefore earning the label Importance Sampled Learning Ensembles
(ISLEs)[Fri2003]. Section 3.3 discusses the SGB approach to boosting.

In analog circuit design and in analog synthesis, almost allexisting approaches do the
equivalent of designing a single “strong” circuit realizing the target functionality (top left
of Figure 10.4).

In contrast, ISCLEs take a cue from progress in machine learning. Whereas ISLEs are
on regressors, ISCLEs is oncircuits. An ISCLEs circuit is anensembleof “weak” circuits
which are boosted to collectively realize the target functionality (top right of Figure 10.4)
[Gao2008b]. Crucially, these weak circuits each have smallarea (via near minimally-
sized transistors) so that total area footprint is not prohibitive. The overall architecture of
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Figure 10.4: ISCLEs shows how analog circuit design can shift from one
“strong” model to ensembles of “weak” models, just as machine learning
has.

an ISCLEs circuit is shown in Figure 10.5, and each WL is one ofthe possible topologies
in Figure 10.6.

Figure 10.5:An ISCLEs circuit combines many weak learner circuits (WLs)
to achieve a target analog functionality. (Offset voltage is not shown.)

Each topology is trustworthy by construction because the overall architecture, and
each WL is trustworthy. The overall architecture merely does weighted addition of the
WLs’ outputs plus an offset voltage. Each WL topology is alsotrustworthy, as all the pos-
sible weak-learner topologies are in the set of hierarchically-organized designer-specified
building blocks (these are described further in section 10.4.3).

Table 10.2 describes the high-level ISCLEs algorithm [Gao2008b]. The key input is
an overall target waveformyoverall,target, and the output is an ensembleELchosen to realize
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the waveform. At each ISCLEs boosting iteration, a weak learnerWLcand topology and
sizing is chosen, and if it improves overall correlation,rcurrent, then it is added to the final
ensemble with a weighting factorα, and the target waveformycurrent,target gets updated.
The call to “find-weak-learned” ispreciselya call to MOJITO search, where MOJITO
searches over the weak learners library. Over time, the target waveform shrinks, zooming
in on the hardest-to-capture parts of the mapping - i.e. ISCLEs does importance sampling
of circuit learning ensembles. The loop repeats until the stopping criteria is hit, at which
point the ensemble is returned. The whole process is automatic.

The main boosting parameter isα (learning rate), which governs the learning rate,
and, by the definition of how the ensemble is constructed, is also the weighting factor for
each WL in the ensemble. We setα to 0.10, meaning that on each iteration, 10% of the
newest WL’s output is used to update the overall target waveform. This setting strikes a
compromise between the risk of overfitting (higherα), and slower convergence (lowerα).
Target correlationrtarget is set to 0.95.

Table 10.2:ISCLEs Algorithm

Inputs: yoverall,target, rtarget, α
Outputs: ELchosen

ycurrent,target = yoverall,target

rcurrent = 0.0
ELchosen = ∅
while rcurrent < rtarget: #for each boosting iteration

WLcand = find-weak-learner(ycurrent,target)
ELcand = ELchosen + α ∗WLcand #(as a circuit ensemble)
ycand = simulate(ELcand)
rcand = correlation(yoverall,target, ycand)
if (rcand > rcurrent): #improved
rcurrent = rcand

ELchosen = ELcand

ycurrent,target = yoverall,target - ycand

returnELchosen

10.4.3 ISCLEs Weak Learners

This section describes the ISCLEs library of weak learner (WL) topologies, and their
parameterization. Note that this library is adifferentlibrary than the opamp library which
was used in the other MOJITO experiments.

10.4.3.1 Weak Learners Library

A central challenge in this work was to design a competent library of possible WLs.
Some applications may only need a simple inverter, and others may need more complex
topologies. We designed three WLs: an inverter, an inverterwith I-V amplifier, and
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Figure 10.6:Weak learners library.

an inverter cross-coupled differential pair. Together, these form the library of possible
topologies that MOJITO searches through. We now describe each WL.

1. Inverter Learner. This is the simplest WL. A top-level inverter can instantiate into
one of four possible sub-blocks shown in Figure 10.6 (a) to (d).

2. Inverter With I-V Amplifier. Instantiations of this WL are in Figure 10.6 (e) and
(f). Its core idea uses the fact that the current flow in an inverter is not a monotonic
function of the input voltage. While the input sweeps from 0 toVdd, the current will
increase because the NMOS is gradually turned on, but after acertain threshold
point, the PMOS switches off and the current will reduce to 0 again. This will form
a current peak, and its position and width are determined by the sizing of the two
transistors. If the aspect ratio of the NMOS is increased, the peak position will be
lower, and vice versa. We then use an I-V amplifier to convert this current peak
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into a voltage peak; and by sizing it, we have controllable voltage peak waveforms.
The peak’s minimum width is limited by the finite gain and sensitivity of the I-
V amplifier. A peak simulation result is shown in Figure 10.7,which shows how
different waveforms between any transition point and the higher transition point are
realizable by using different transistor sizes.

3. Cross-Coupled Differential Amplifier. This WL circuit, shown in Figure 10.6 (g),
is composed of a cross-coupled differential pair and several current mirrors. The
input signal is connected to one of the input pins of each differential pair. The
other input pins are connected to different bias voltagesVb1 andVb2. These two bias
voltages set two fixed threshold points [Joh1997]. The size of input transistor pairs
controls the threshold points, such that the output transfer curve will be similar to
Figure 10.7.

Figure 10.7:Negative voltage peaks (generated by an inverter with I-V am-
plifier using parameter sweep simulations).

10.4.3.2 Weak Learner Parameters

Table 10.3 enumerates the parameters for all WLs. Note that the maximum device size is
just 20 times the minimum feature size, which forces the building blocks to be as small as
digital circuits, i.e. to enableanalog circuits scaling.

10.4.4 Multi-Topology Sizing

Each weak learner (WL) is found with MOJITO [Mcc2007](chapter 7) searching the
possible topologies and sizings. MOJITO views the search space as a parameterized
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Table 10.3:Parameters for Weak Learners Topology Choice and Sizing

Weak Learner Parameter Names Parameter Range

Inverter Learner Win,Wload, Lin, Lload [Wmin, 20∗Wmin],
[Lmin, 20 ∗ Lmin]

Inverter with I-V W1, W2, W3, W4, W5, L1, L2, L3,
L4, L5

[Wmin, 20∗Wmin],
[Lmin, 20 ∗ Lmin]

Cross-Coupled
Differential Pair

W1,W2,W3,W4,W5,W6,W7,W8,
L1, L2, L3, L4, L5, L6, L7, L8

[Wmin, 20∗Wmin],
[Lmin, 20 ∗ Lmin]

Topology choice choice_index 1,2,3,4,5,6,7

grammar, then finds the optimal “sentences” with grammatical genetic programming
[Koza1992], [Whi1995]. MOJITO’s objective is to maximize the correlation between
the current target waveform(s) (as specified by the boostingloop) and its candidate cir-
cuit’s waveform(s). By optimizing on correlation rather than squared error, MOJITO’s
problem is easier because correlation ignores the difference in offset between waveforms;
the outer boosting loop takes care of this with an offset voltage. [Kei2004b] uses a simi-
lar trick for regression. MOJITO’s constraints are device size constraints and DOCs (see
section 2.2.9). MOJITO returns the highest-correlation individual to ISCLEs, which will
be incorporated into the ensemble if it improves the overallensemble.

MOJITO was configured to maximize search efficiency yet avoidgetting stuck, using
the following setup. At a given WL target, the population size was set to 10, and 50
generations were run. If the resulting circuit reduced the ensemble’s overall error, then
that WL was considered complete, and added to the ensemble. But if the overall error
did not improve, then the population size was doubled and MOJITO was re-run. This is
a strategy similar to [Aug2005]. In practice, we found that no doubling occurred in early
iterations, but a few rounds of doubling occurred in later iterations. All other MOJITO
settings were the same as in chapter 7.

10.4.5 ISCLEs Experimental Results

We applied ISCLEs to two different kinds of problems: a sinusoidal function generator,
and a 3-bit flash A/D converter. The circuit simulator was HSPICETM [Snps2008a], us-
ing a 0.18µm TSMC CMOS process technology; other settings were provided in section
10.4.2. The runtime for each was under 8 hours on a Linux machine with a single-core
2.0 GHz Intel processor.

10.4.5.1 Sinusoidal Function Generator

In this example, ISCLEs is applied to generate a DC-in DC-outsinusoidal function gener-
ator. Specifically, the aim is to minimize the squared error difference between target DC
response and the synthesized circuit’s DC response, for several different input DC values.

Figure 10.8 shows the result of 40 boosting iterations, resulting in an ensemble of
40 WLs. Sub-figures (a) to (e) show the ensemble’s output response waveform (lower
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Figure 10.8:ISCLEs sinusoidal waveform learning response; bottom right is
convergence of nmse vs. boosting iteration.

waveform) and the target waveform (upper waveform), where the input voltage is the x-
axis and the output voltage is the y-axis. We see that as the boosting iterations progress,
the ensemble’s output response waveform converges to matchthe target waveform. Figure
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10.8(f) shows the evaluation parameter NMSE (normalized root mean squared error) vs.
boosting iteration1. We see that after 40 iterations, only a few percent error remains
between the target and the ensemble circuit’s responses. This example demonstrates that
the core idea of ISCLEs – applying boosting to structural circuit synthesis – is promising.

Further validation that ISCLEs is behaving as expected, i.e. boosting circuits, is found
by comparing Figure 10.8 (ISCLEs - boosting circuits) to Figure 3.3 (SGB - boosting
decision trees). We see that despite one boosting approach being on circuits, and the other
on decision trees, their convergence to solve the sinusoidal mapping hasnearly identical
behavior.

10.4.5.2 3-bit “Flash” A/D Converter

The aim of this example is to target A/D conversion; we specifically aim for a 3-bit flash
architecture. Flash A/Ds are quite sensitive to process variations, due to the matching
property of the resistor ladder and the comparator [San2006]. We approach this problem
by designing one bit at a time. For each bit, the aim is to minimize the squared error
difference between target DC response and synthesized circuit’s DC response, for several
different input DC values. Runtime for all three bits was twodays.

While the bits could have been synthesized separately, we added some dependence
so that the responses would be more in sync. First, the least significant bit (LSB) was
synthesized. Then, the 2nd LSB was synthesized, using the output of the LSB as one of its
inputs, as a “hint” to help it guide its output signal and morereadily be synchronized with
the LSB on the clock transitions. Then, the most significant bit (MSB) was synthesized,
using the output of the LSB as one of its inputs, for the same reasons as the 2nd LSB.

Just like in the sinusoidal mapping, the overall boosting loop’s objective was to min-
imize NMSE between the target signal and the candidate design’s signal; and the inner
MOJITO loop’s objective was to maximize correlation between those signals.

Figure 10.9 shows the results. The top row is for the LSB, middle row is 2nd LSB, and
bottom row is the MSB. For each row (bit), the left figure showsthe output vs. input DC
voltage, for both the target and the synthesized output response; and the right figure shows
the convergence of NMSE vs. the boosting iteration. We observe that all the waveforms
of the three output bits match target waveform within certain error margin. The LSB has
the most complex input/output mapping, but ISCLES still achieved 13% NMSE, with 131
weak learners. To our knowledge, no prior (“strong learner”) analog synthesis approaches
have ever successfully synthesized a DC-DC mapping as complex as this. The 2nd LSB
reached 9% NMSE with 126 weak learners. The MSB also reached 9% NMSE with
145 weak learners. Note that for the actual implementation,the bits’ outputs are usually
passed through an inverter that would rail the outputs to thehigh or low voltage value (i.e.
V dd andgnd), thus making the DC-DC mapping even tighter yet.

1NMSE is used in the outer, boosting loop, whereas correlation is used to guide the inner MOJITO
search loop
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Figure 10.9: ISCLEs 3-bit A/D converter outputs (left column) and corre-
sponding convergence plots (right column). The top row is for the MSB, mid-
dle row is for the 2nd LSB, and bottom row is for the LSB.
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10.4.5.3 A/D Converter Simulation With Process Variations

Recall that the key challenge of using (near) minimally-sized transistors for analog cir-
cuits was to reduce sensitivity to process variations. So, we investigate the effect of vari-
ations here, with the hypothesis that the importance-sampling nature of ISCLEs might
have some natural resilience to process variations. So, in order to test the tolerance of an
ISCLEs circuit to process variation, we inject a differnt randomly-drawn variation ineach
transistor’s model parameterVth (threshold voltage) into the already-synthesized A/D cir-
cuits, and measure the response.

Figure 10.10 shows, for 4 random samples, the A/D’s LSB (railed) simulations with
Avt

= 5mVµm. The overall response changes only slightly from sample tosample; that
is, our ISCLEs-synthesized circuits have graceful tolerance to process variations. We
acknowledge that it is likely safer to account for variations more directly by incorporating
process variations into the boosting loop iself; we leave that to future work. These initial
results are in any case promising.
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Figure 10.10:3-bit ADC’s LSB with smaller process variation injection.

10.4.5.4 ISCLEs Scaling Potential

This section uses the A/D results to explore the potential ofISCLEs for scaling analog
with Moore’s Law. The ENOB of this 3-bit ADC @100kHz is 2.78. The estimated
active chip area is 14e-9 m2 (in 180nm CMOS) and 10e-9 m2 (in 90nm CMOS). Then we
predict the area of a conventional A/D [Pla2003], which should tolerate resistor matching
(1%) andVT variation (Avt

= 5mVµm), and achieve similar ENOB. By rough estimation
this chip should be larger than 1e-9 m2 (in 180 nm CMOS) and 0.8e-9 m2 (in 90 nm
CMOS). According to the ITRS roadmap [Itrs2007],AV T will stop shrinking, but the
analog area will not shrink anymore. (The chip will still slowly get smaller because of the
shrinking of the digital part). With ISCLEs, mixed-signal chips can continue shrinking
because the “analog” side can use minimally-sized transistors. By extrapolating as shown
in Figure 10.11, we see that when the technology shrinks to lower than 18nm, ISCLEs
will become beneficial in chip area compared to conventionalapproaches. We believe,
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however, that ISCLEs may be useful even sooner if additionalmeasures are taken: (1) the
MOJITO weak-learner synthesis within the boosting loop makes area minimization to be
an additional objective, rather than ignoring it, and (2) ISCLEs is combined with other
variation-handling schemes such as calibration or compensation [Fay2006, Li2007c].

Figure 10.11:Prediction of the chip area for 3-bit ADC using a standard
design approach, versus using the ISCLEs approach.

10.5 Conclusion

This chapter has presented MOJITO-N [Mcc2008a] and ISCLEs [Gao2008a, Gao2008b],
as initial explorations into automation-aided novel analog topology design. An underlying
theme for both MOJITO-N and ISCLEs was to remain as trustworthy as possible, or to
track the design’s novelty (trustworthiness).

MOJITO-N is an extension of MOJITO which adds novelty to the trustworthy designs.
It returns a Pareto-optimal set of circuits that trade off novelty with performance, and does
it in commercially reasonable computational effort. The novelty is fully trackable, so all
changes can be readily understood. As part of the algorithm’s verification, MOJITO-N
successfully re-invented a known design of industrially relevant complexity.

ISCLEs is a promising technique to synthesize novel functionality, trustworthy, variation-
robust analog circuits that may scale with Moore’s Law, using reasonable CPU effort.
ISCLEs extends the machine learning method ofboosting[Fri2002] to circuit design.
Boosting’s “weak learners” (WLs) are designer-trusted topologies that are sized and cho-
sen by MOJITO multi-topology sizing. The overall boosting ensemble ties together all
the WL circuits with a weighted adder circuit. We designed a library of trusted WL
topology choices for MOJITO to search. ISCLEs’ effectiveness was demonstrated on
two problems: a sinusoidal function generator, and a 3-bit A/D converter learning. By
demonstrating promising resilience to process variationsyet using minimally-sized de-
vices, ISCLEs has promise as a way for analog circuits to scale with process technology,
unlike traditional analog implementations.



Chapter 11

Conclusion

If one takes care of the means, the end will take care of itself.
–Ghandi

11.1 General Contributions

Over the years, analog CAD has progressed from SPICE simulators, to schematic and
layout editors, to recent nominal global optimizers and local variation-aware optimizers.
This thesis has proposed and demonstrated a roadmap for the next several steps of tool
evolution (Figure 11.1). The roadmap starts with global variation-aware optimization,
then progresses totrustworthystructural synthesis, and then adds variation-awareness
and novelty to the structural synthesis.

Along the way, this thesis has also demonstrated techniquesto use automation for
knowledge extractionso that the designer can maintain and build his insight. Techniques
include the extraction of template-free symbolic performance models, topology decision
trees, and nonlinear impact analysis of topology vs. sizing/biasing variables. The tech-
niques developed apply not only to analog CAD, but to a whole host of other AI problems
related to the robust design of complex systems.

11.2 Specific Contributions

Besides the general contributions mentioned, this thesis has made the following specific
contributions:

• Comprehensive reviewsof variation-aware circuit sizing approaches (chapter 2),
analog structural synthesis (chapter 5), and variation-aware analog structural synthesis
(chapter 9), with a unified perspective across the CAD and EA communities.

• SANGRIA : [Mcc2008e] For the first time, a variation-aware circuit sizing algorithm
has been presented which has reliableglobal convergence, having full SPICE accu-
racy yet reasonable runtime. SANGRIA is enabled by an algorithm structure that
simultaneously explores on loosened statistical goals, exploits on tightened statistical
goals, and the levels in between, i.e. it has “structural homotopy”. To make the most
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Figure 11.1:Proposed roadmap in evolution of front-end design automation
tools (first seen in Figure 1.12).

use of valuable simulation data, SANGRIA uses model-building optimization with
state-of-the-art nonlinear regression (SGB ensembles).

• CAFFEINE : [Mcc2005a, Mcc2005b, Mcc2005c] For the first time, a means has
been presented to generate scalable, template-free, symbolic performance models with
near-SPICE accuracy; and a first step to a related means to generate interpretable, non-
linear behavioral models. CAFFEINE is enabled by searchingthrough a grammar-
defined space of canonical-form functions to relate SPICE-simulation input/output
data.

• MOJITO : [Mcc2007] For the first time, a multi-objective analog topology synthe-
sis approach has been presented. MOJITO has industrially palatable accuracy, setup
requirements, runtime, generality, and results. MOJITO isenabled by:

• A framework to define a structural synthesis search space that is (a) trustworthy,
(b) flexible, (c) specified by structural information only, and (d) leverages readily-
transferable building-block domain knowledge.

• An example amplifier topology space using the framework, which is qualitatively
richer because it is 50x larger than past trustworthy structural-only spaces.
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• A structural synthesis EA that has reliable convergence, and handles many objec-
tives

• Topology-performance knowledge extraction: [Mcc2008b, Mcc2008d] This is a
tool which for the first time, allows automated extraction ofexpert knowledge relat-
ing structures, performances, and sizes has been presented. It is enabled by a data-
mining perspective on MOJITO synthesis results. Specifically, techniques have been
presented for automatically extracting: (a) a decision tree for navigating from specs to
topology, (b) global nonlinear sensitivities on topology and sizing variables, and (c)
analytical performance-tradeoff models across the whole set of topologies.

• MOJITO-R : [Mcc2008e] This variation-aware extension to MOJITO was presented,
which embeds structural homotopy into MOJITO in order to automatically generate
tradeoffs across performancesandyield.

• MOJITO-N : [Mcc2008a] This is an open-ended novel-topology search extension to
MOJITO which this thesis presented. MOJITO has novelty-inducing search operators,
and the resulting topologies are managed viatrustworthiness tradeoffsin a designer-
trackable fashion.

• ISCLEs: [Gao2008a, Gao2008b] This method has been developed to synthesize cir-
cuit topologies which are novel in both functionality and topology, yet trustworthy,
and within reasonable CPU effort. ISCLEs uses machine-learning “boosting” to con-
struct an aggregate of digitally-sized circuits. By demonstrating promising resilience
to process variations yet using minimally-sized devices, ISCLEs has promise as a
way to implement analog circuits in a way that scales better with shrinking process
technology.

• Experimental resultshave been presented for each of the above techniques to demon-
strate their validity and applicability.

11.3 Future Work

This thesis opens up fertile ground for future work, so this section discusses the oppor-
tunities from several angles: industrial deployment and circuit design (section 11.3.1),
CAD research (section 11.3.2), and AI research (section 11.3.3).

11.3.1 Industrial Deployment and Circuit Design

Future possible work from an industrial and design context is in deployment and usage of
the tools inspired by the roadmap of Figure 11.1. This is possible because all the research
maintained an eye on the specifications needed for industrial deployment, such as SPICE
accuracy and scalability to larger circuits. There are several opportunities for major CAD
vendors, CAD startups, semiconductor CAD groups, universities, and even fabs. We now
describe the specific opportunities.

CAD Tools. SANGRIA would be deployed as a global yield optimization CADtool, by
CAD vendors or CAD groups, for direct use by design engineers. It would be comple-
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mentary to a local yield “tuner”. Some designers may use a nominal variant of SANGRIA
for global nominal sizing, or a multi-objective version foryield-aware performance ex-
ploration (akin to MOJITO-R). CAFFEINE would be deployed asa CAD tool directly to
design engineers; as well as to modeling groups found withinfabs, semiconductor com-
panies, and universities. ISCLEs could also be deployed as aCAD tool for synthesizing
specific circuit types, especially under extreme process variations. Finally, there is a CAD
tool opportunity for browsing IP results of MOJITO/MOJITO-R runs, and for extracting
insight from those results (but not for running MOJITO directly, as we will explain next).

Jellybean IP.MOJITO and MOJITO-R have runtimes that are too long for a design engi-
neer on a typical design, so they are not suited to be run directly within the analog design
flow. However, since only one run is needed per process node (per circuit type), they fit
a “jellybean IP” flow nicely. Specifically, with each processnode, (a) a fab, vendor or
CAD group would run MOJITO on each circuit type, then (b) makethe results database
IP easily accessible to design engineers through an IP-browsing tool. This database would
support queries based on specifications, to immediately return a sized topology. It would
also have a means to browse the performance tradeoffs, e.g. with parallel coordinates.
And of course, it would also output specs-to-topology decision trees, variable impacts,
and analytical performance tradeoffs. In short: whilerunningMOJITO / MOJITO-R is
not suitable for a typical design flow, using the resulting IPis.

There are several ways to view how browsers for analog jellybean IP might fit in.
They can be viewed as an extension to analog environment library managers (e.g. in
[Cdn2008g]), as an analog version of digital standard cell libraries supplied by digital
synthesis vendors, or as an analog IP library supplied by analog IP vendors.

Topology Development.MOJITO, MOJITO-N, and ISCLEs fit usage by topology design
groups in semiconductor/IP companies and universities, with homebrew versions of the
code. They will likelynot get deployed as topology-development tools by CAD vendors,
because the market is too small to justify the effort. Instead, we believe that the following
flow will be particularly fruitful:

• The designer conceives of a new building block.

• He enters new block into the MOJITO building blocks library,and runs MOJITO.

• Finally, he inspects the run results to determine what performance ranges the block is
useful for, and what other building blocks it combines best with. He can browse the
raw data or use the knowledge-extraction techniques.

This flow allows the designer to focus on the core creative aspect of analog design, and
leaves the rest to MOJITO. In fact, we have already found thisflow to be useful in EMC-
aware current mirror design [Loe2009].

MOJITO and MOJITO-N topology design research will prove most interesting where
the greatest circuit design issues, challenges and opportunities lie. Design issues found in
ITRS [Itrs2007] and elsewhere include worsening process variation, parasitics, proximity
effects, packaging issues, high analog area, and more. Design challenges include achiev-
ing extreme low power, extreme high frequency, extreme low noise, and more. Design
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opportunities include exploiting new design techniques (e.g. by incorporating recently
published inventions into the MOJITO blocks library), qualitatively new device behavior
(e.g. digital transistors that switch fast enough to have analog functionality; e.g. memris-
tors); and qualitatively new target circuit behavior.

Fabricating and testing a new design will be a turning point in using AI for topology
development [Mcc2006d], because it will demonstrate that apalatable flowdoesexist.
Since masks on modern geometries are extremely expensive ($millions), the most prag-
matic way to test a new MOJITO-aided topology design is on an older (cheaper) process,
as part of a multi-project wafer (MPW) to further divide the cost.

11.3.2 Possible Future CAD Research

This section describes possible directions for future CAD research, building on the work
in this thesis.

System-Level Design.SANGRIA could be adapted for multi-objective sizing, returning
tradeoffs between performances and yield (akin to MOJITO-R). It could also be extended
to system-level design. For example, the tradeoffs could beused in a multi-objective
bottom up approach [Eec2005, Eec2007], or to do bottom-up computation of feasibility
regions, which would be followed by top-down design as outlined in [Gie2005]. A related
approach is in [Rut2007].

MOJITO / MOJITO-R can be extended to system-level design in asimilar multi-
objective fashion, as outlined in [Mcc2007]. The resultingperformance tradeoffs will
likely be far better than tradeoffs from merely optimization, because such as large number
of topologies is considered. There is also an opportunity tounify the system’s hierarchical
decomposition with MOJITO’s hierarchical building blocks, and exploit this unified view.
Specifically: (a) the MOJITO library would get extended upwards beyond op amps into
ADCs and DACs, and higher; (b) performance goals are attached to the nodes in the
hierarchy where they can be measured, including transistorDOCs, op amp {gain, GBW,
etc.}, and ADC {ENOB, power, etc.}. Finally, (c) a hierarchical design methodology such
as [Eec2005] is applied. Interestingly, [Mar2008] can be viewed as one instantiation of
this idea, in which abstraction via behavioral modeling becomes a critical element.

Reconciling Layout.High-frequency, low-power, and low-noise design require consider-
ation of layout parasitics. SANGRIA and MOJITO-R could be extended to handle this in
one of many ways. One possible way is as follows.Layout-awareperformance evaluation
would (a) convert the netlist to layout via layout synthesis, (b) from the layout, extract a
parasitic-annotated netlist, and (c) simulate the extracted netlist. The paper [Van2001]
used a similar flow for layout-aware optimization. We must note that that modern simu-
lator options (e.g. the “+parasitic” option in [Cdn2008d])means simulation of extracted
netlists is no longer excessively expensive. For further speed, the ALPS framework could
be exploited, by only performing layout-aware evaluation on higher age layers, and not
on the lower exploratory layers.
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More Circuit Issues, Related Design Tactics.SANGRIA and MOJITO-R handled en-
vironmental, global statistical process variation, and local statistical process variation.
Layout parasitics are one more issue to handle, but there also upcoming issues: proxim-
ity [Dre2006], electromagnetic compatibility (EMC) [Paul1992], aging/reliability effects,
and more. There are also more tactics to handle variation, such as post-manufacturing
calibration [Fay2006, Li2007c], body biasing, and more.

Further Novel Synthesis. The work done in ISCLEs and MOJITO-N were only initial
tentative steps. There is tremendous opportunity to explore results and ideas for each of
these more deeply, with corresponding payoff. (And this is only really possible now, as a
prerequisite to both was development of MOJITO.)

Further Knowledge Extraction. The idea of using CAD for knowledge extraction has
been around since symbolic analysis [San1989], but there have been few examples besides
symbolic analysis. This thesis demonstrated several new techniques where knowledge ex-
traction could give useful insights to the designer. Knowledge extraction is fertile territory
for further exploration, especially because there continue to be new developments in the
fields of visualization and human-computer interaction.

CAFFEINE Applications. CAFFEINE could be extended to model order reduction
(MOR). Recall from section 4.8.1 that CAFFEINE was applied to behavioral model-
ing without supplying state variables. However, in many industrially-relevant behav-
ioral modeling / simulation problems, the state variablesare available; which makes the
problem approachable by MOR techniques (see [Rut2007] for asurvey). Many MOR
techniques use regression at their core, e.g. piecewise polynomials [Dong2008]. Since
CAFFEINE can generate compact nonlinear models, it should apply nicely here.

CAFFEINE could also be applied to MOS modeling, where the aimis to write SPICE-
simulatable models describing transistor dynamics, whichsimulate quickly yet accurately
capture the silicon measurements. Once again, this fits CAFFEINE’s ability to generate
compact nonlinear models. There is also potential interplay between CAFFEINE and
LVR techniques [Sin2007, Li2008b], which may be useful for modeling process variation
performance models having≈ 1000’s of input parameters.

Speed / Scalability / Usability Improvements.There is always room to further improve
the speed and scalability of SANGRIA, CAFFEINE, MOJITO, andISCLEs. However,
we remind the reader that this thesis targeted industrial design flows, which had specific
speed and scalability requirements for each problem, and the approaches hit those targets.
If one improves these further, there ought to be a clear reason. One possibility: a 10x
or 100x speedup could mean qualitatively new ways to use the tool. For example, if
MOJITO-R were sped up to return good results overnight on onemachine, then it could
be directly usable by designers. It would also be highly interesting to find out how big
the MOJITO library could get, e.g. by systematically addingmore building blocks from
a variety of sources.

Developing the MOJITO library was somewhat tedious; thoughfortunately the result
can be directly transferred to different process nodes. There are ways to improve library
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development. First, we could exploit the platform of a standard schematic editor (e.g.
[Cdn2008f]) to have a GUI-based approach to block / hierarchy design. Second, because
the blocks have currents and voltages as independent designvariables, there should be
a way to avoid needing to explicitly define them, which will simplify their definition.
Finally, for propagating parameters upwards in the hierarchy, it would be beneficial to
allow grouping of parameters.

11.3.3 Possible Future AI/General Research

This section describes possible directions for future research in AI and other fields, build-
ing on the work in this thesis. In many cases this is the application of developments in
this thesis to fields beyond analog CAD, and in remaining caseit involves combining with
other promising techniques.

Global Optimization. The combination of ALPS with MBO/SGB could turn out to
be highly effective for large-scale global optimization problems in general. Structural
homotopy would apply to many problems in stochastic optimization and robust design.

Regression & Symbolic Regression.CAFFEINE was highly competitive with state-
of-the-art blackbox regressors on our problem domain. It could likely be competitive
to the other regressors in in a variety of other domains, suchas financial modeling or
chemical sensor fusion. The canonical functional form (as agrammar, or otherwise) could
be combined with other state-of-the-art GP symbolic regression techniques to improve
their speed or scalability.

Structural Synthesis & Insight. This thesis showed the payoff of usingfield-specific,
pre-defined, andhierarchical building blocks (BBs), as a means of exploiting a field’s
knowledge base to quickly synthesize trustworthy structures (within MOJITO). The idea
is general, and applies to any field where (a) there is a significant body of knowledge
which can be captured as hierarchical building blocks, and (b) a design’s quality can be
measured. This includes software design, automotive design, mathematical theorems,
biological reverse engineering, and music design.

The BBs technique / MOJITO can also be combined with a hierarchical design method-
ology. In the spirit of MOJITO-N, new building blocks can be discovered and incorpo-
rated into the library. This might prove to be particularly helpful for fledgling field, as
a means to accelerate the field’s knowledge base. We might also considerautomatically
re-incorporating new building blocks back into the library, akin to Run Transferable Li-
braries [Ryan2005].

We can also extract decision trees, relative impacts, and analytical performance trade-
offs. For example, an automotive decision tree would input specifications like top speed,
cost, and mileage, and return a suggested car design. An impacts plot might report engine
displacement and aerodynamic drag as the largest impacts ontop speed. The analytical
performance tradeoff might relate cost with top speed and mileage.
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11.4 Final Remarks

This concluding chapter reviewed the general and specific contributions of this thesis,
then described possible future work in terms of industrial deployment / circuit design,
possible CAD research, and possible AI research.

As described in the introduction, the progress of the last half-century can be character-
ized by the exponential progress in information technology(IT). An IT-enhanced future
promises to be bright if such progress continues [Bai2006, Kur2005]. But potential show-
stoppers include (a) process variations hindering development of computational substrate,
and (b) an apparent “complexity wall” in the automated synthesis of structures.

This thesis aimed to play a role in addressing both issues, via (a) a suite of tech-
niques to handle variation-aware circuit design problems,and (b) an approach for struc-
tural synthesis that breaks through the complexity wall by reusing field-specific, hierar-
chical, building blocks.

The future is bright.
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