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Abstract

This thesis describes new tools for front end analog dessgatarting with global variation-
aware sizing, and extending to novel variation-aware togyldesign. The tools aid de-
sign through automation, but more importantly, they alsbdasigner insighthrough
automation. We now describe four design tasks, each moergighan the previous, and
how this thesis contributes design aids and insight aidat¢b.e

The first designer task targeted is global robust sizing.s Task is supported by a
design tool that does automated, globally-reliable, vi@maaware sizing (SANGRIA),
and an insight-aiding tool that extracts designer-intetadrle whitebox models that re-
late sizings to circuit performance (CAFFEINE). SANGRIAasghes on several levels
of problem difficulty simultaneously, from lower cheapdwaluate “exploration” layers
to higher full-evaluation “exploitation” layers (structd homotopy). SANGRIA makes
maximal use of circuit simulations by performing scalabd¢admining on simulation re-
sults to choose new candidate designs. CAFFEINE acconeglishtask by treating func-
tion induction as a tree-search problem. It constrainsets $search space via a canonical-
functional-formgrammar and searches the space with grammatically-constrainestige
programming.

The second designer task is topology selection / topologigde Topologyselection
tools must consider a broad variety of topologies such thaa@propriate topology is
selected, must easily adapt to new semiconductor proceesnand readily incorporate
new topologies. Topologgesigntools must allow for designers to creatively explore new
topology ideas as rapidly as possible. Such tools shoulshmise new, untrusted topolo-
gies that have no logical basis. MOJITO supports both tapaaselection and design.
It takes in a pre-specified library of about 30 hierarchicaliganized analog building
blocks. This library definethousand®f possible different circuit opamp topologies from
different combinations of the building blocks. The librasyindependent of process, and
does not require input of behavioral models. Thereforenly das to be specified once.
However, designers can readily add new building block ideas MOJITO efficiently
globally searches this library’s possible topologies anthgs by leveraging the hierarchi-
cal nature of the blocks. MOJITO returns (“synthesizesp)diogies that arérustworthy
by construction MOJITO is multi-objective, i.e. it returns a set of sizegdtogies that
collectively approximate an optimal performance tradeoffve. Once a single MOJITO
run is done at a process node, the results are stored as askatal future queries by
other designers. Therefore MOJITO supports a “specs-gdsiapology-out” workflow
with immediate turnaround.



This thesis also demonstraiasightaids for topology selection and design. By taking
a data-mining perspective on this database, it (a) extasgecs-to-topology decision
tree, (b) does global nonlinear sensitivity analysis orotogy and sizing variables, and
(c) determines analytical expressions of performancestiid.

The third design task combines the previous two: variatiomre topology selection
and design. Thdesigntool is MOJITO-R, which extends MOJITO with structural homo
topy to efficiently handle variation-awareness and retobusttopologies. Thensight
tools take a data-mining perspective on MOJITO-R’s resgltiatabase, so that the de-
signer can explore the relation among topologies, sizipggprmances, angeld.

The final designer task is about novelty. This thesis exglos® tools that can sup-
port designers to create designs with nduelctionalityand/or novetopologies The first
tool is MOJITO-N. It is targeted towards finding novel topgies for classes of circuits
that typically have existing reference designs (i.e. nomehfunctionality). Using “trust-
worthiness tradeoffs”, MOJITO-N only adds novelty to knovapologies when there
is payoff. The other tool is ISCLEs. It finds novel topologies classes of circuits
without recourse to existing reference designs (i.e. nawadtionality). ISCLEsboosts
digitally-sized “weak learner” circuits to create an oveemsemble of circuits. ISCLES
has promise to baaturally robust to process variation, and an area footprint thatscal
with shrinking process geometries.

This thesis had several aims. The first was to bring the rote@tiesigner back into
computer-aided design (CAD) tool design, to provide morpasfunities for designer-
computer interaction such that the strengths of each caxpleited. This drove the
work in knowledge extraction tools, and was the key to a wosthy topology design
tool. The second aim was to chart out a possible roadmap thad guide industrial
CAD tool rollout, starting with the near term goal of globarnation-aware sizing, then
hitting successively farther-out goals such as topologygiteand novel topology design.
Each tool was designed to have inputs and outputs as closesatble to industry, and
to use off-the-shelf simulators for flexibility and accuyad he third aim was to bridge
fields of analog CAD and genetic programming / evolvable waré: both fields aimed
for topology synthesis, but the jargon and the algorithroizls were different, and the
specific problems in topology synthesis needed clarificatiod better designer / indus-
trial context. The final aim was to make contributions thateyalize beyond analog CAD.
It turns out that the roadmap and algorithms developed arergé and can be applied to
many of other fields from automotive design to bio-inforrati
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There’s only one thing that I'm certain of:
If you don't look for uncertainty, it will come looking for yo

—Anonymous
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—Ron Gyurcsik (as Director of Cadence AMS Group)

For the goal is not the last, but the best.
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Chapter 1

Introduction

No sensible decision can be made any longer without takitggancount not only the
world as it is, but the world as it will be.
—Isaac Asimov

1.1 Motivation

The progress of the last half-century can be characterizethd exponential improve-
ments in information technology (IT), due to consistentiyiisking transistors (Moore’s
Law) [M001965/1trs2007] combined with ever-improving aighms and software
[Bro2004]. IT has brought us mainframes, personal computedeo games, cell phones,
the internet, smartphones, and cloud computing. It play@&in almost every aspect
of our lives: we snap photos with cell phones and immediatelyd them to loved ones,
rediscover friends on Facebook, call distant relativedree over the internet, and start
a company with headquarters a continent away and customersdntinents away. IT
is touching every field, from decoding the genome, to braamsag, to developing al-
ternative fuels. Unsurprisingly, the IT / semiconductadustry has grown into a huge
industry, with $255 billion revenue in 2007 [S1a2008]. Theeelerating convergence of
IT with nanotechnology, bioscience, and cognitive scianag have far-reaching benefits
[BaiZ006 [ KurZ005].

An IT-enhanced future promises to be bright if such progs#inues. However,
such progress in IT is far from guaranteed, because the expahimprovement of the
computational substrater of the algorithmscould stop or slow dramatically. Let us
examine potential showstoppers for each.

Exponential improvement of computational substrate couldstop or slow. Uncontrol-
lable factors in semiconductor manufacturing - procesgtians - have always existed.
Up until recently, the effects would cancel out across tHikobs or more atoms in a
given transistor. But now that transistors have shrunkamét scale, Avogadro-size atom
counts no longer apply. Even a single atom out of place cattdf transistor’'s behavior,
leading to worsened circuit behavior and even circuit faillAs of 2008, the variation is
already large, and as Figurell.1 shows, it will continue tovgerse with future process
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technologies. Such variation is particularly problemé&icanalog circuits, which do not
have the abstraction of binary digits to hide small variasioProcess variations are not the
only problem. Layout parasitics, aging/reliability, efiemmagnetic compatibility, proxim-
ity [Dre2006], and other phenomena can affect circuit beravBut because of their
direct impact on circuit yields, addressing process vt is the most urgent. Design
of robustly-behaving analog circuits is difficult and timensuming. This has caused the
analog portion of chips to become the design bottleneckdi®7]. Yet we cannot ignore
or bypass analog circuits, since they are crucial for digiteuits to interface with the
real world. As of 2006, 70% of systems-on-chips (SoCs) otesys-in-packages (SiPs)
have some analog functionality, up from 50% in 2005 and 10%0®9 [Rat2008]. We
need a means to design analog circuits which meet perforengoals, have high yield,
and with an area that shrink as minimum device lengths shimd we need do it fast
enough to succeed in tight time-to-market schedules [®@8ED
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Figure 1.1:Predicted process variations per year [lfrs2007] D is chemical
decompositionV;,, is threshold voltage).

Exponential improvement in algorithms / software could st@ or slow. Advancements
in software design have an odd tendency to originate in the dieartificial intelligence
(Al)(e.g. |[Rus2008]): a computational problem starts autamystery, then some “Al”
algorithm to solve it is invented and refined, the solutiomdyaes ubiquitous, and in
hindsight the problem and eventual solution looks so sintipd it loses the label “Al”
(section 12.11 in[[Poli2Z008]). This exact flow was the case $gmbolic manipulation,
scheduling, compilers, spreadsheets (!), optimizatiegression, and many more modern
computer science fields, for problems ranging from stockipig to facial recognition
[Kur2005]. Perhaps Al's greatest success is in its abititydin out new computer-science
subfields, once they are sufficiently non-mysterious to #tldbel “Al”. But one of the
big problems that Al has aimed to tackle — design of complaxctiires — has only seen
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limited success so far. The greatest illustration of thkifaiis to review what'’s still done
almost wholly manually: design of an internal combustiogiaa, design of an airport,
design of music, design of any software with even a modestegegf complexity, and
design of analog integrated circuit topolodﬂeﬁut there is hope in some well-defined
problems, such as software compilers and digital circuitlsgsis leading to millions of
lines of code or billions of transistors. Can we go beyondléao / digital in breaking
this apparent complexity wall?

Clearly, progress in semiconductors and in Al face issuesetig those challenges
is crucial for the progress of both electronics IT and sofenad, and the future benefits of
IT. This thesis aims to play a role in addressing both isskiesn the perspective of circuit
design, it presents a suite of techniques to deal with pesirely more challenging ana-
log design problems: globally reliable variation-awararsj, variation-aware structural
synthesis, and variation-aware structural synthesis wnitvelty. In each problem, both
automateddesign toolsand knowledge extraction toolare developed, to leverage the
strengths of both the computandthe user. From an Al perspective, this thesis presents
an approach for automated design of complex structurescdnciles designer creativity
with automated design in a computationally feasible fashiy usingfield-specific, hier-
archical building blocks This technique is general enough to be applied to othed@nob
domains.

The rest of this chapter is organized as follows. Sediiohglv@s background on
analog CAD, and outlines this thesis’ contributions frora gerspective of analog CAD.
Similarly, sectiol L3 gives background on Al, and this th'emntribution to Al. Section
L4 describes how analog CAD and Al relate. Finally, sedfidhsketches out the content
of the rest of the thesis.

1.2 Background and Contributions to Analog CAD

1.2.1 Analog CAD’s Context

As Figure[I.2 shows, the semiconductor industry plays a irolmany of the world’s
largest other industries, from consumer products to autweolThe $300B semiconduc-
tor industry can be segregated by type of circuit: whollyi@dilg(25% of market), wholly
analog (10%), or mixed-signal which is a combination of H@®6). The $5B Electronic
Design Automation (EDA) industry is part of the semiconawaéndustry, with revenue
breakdown of 85% for digital and 15% for analog. EDA is deddiz building computer-
aided design (CAD) tools for electrical engineers. Becanfsthe massive size of the
semiconductor industry and the constant changes in desigstraints due to Moore’s
Law, EDA is an active industry, with billions in revenue [E2806].

Analog computer-aided design (CAD) [Gie2002a, Rut2007%hes subfield of EDA
which is devoted to tools for analog circuit designers. Vasrgeneral CAD is crucial
for delivering good designs in a timely fashi@nalogCAD is crucial for delivering good

1To be clear, parameter optimization plays a helpful rolé the design of the structure remains mostly
manual.



Introduction

Consumer products (biggest driver of semi),
automotive, military/aerospace, etc
$Trillions

Semiconductor Industry $300B
Digital 3 ' Mixed-signal, RF { Analog
approx % approx 60% 15%

25% -

Electronic Design
Automation $5.0 B
Digital =Analo

85% x 15%

Figure 1.2:Context of the Analog CAD Industry

analog designs in a timely fashion. We will review the toglég which are considered

part of the standard industrial analog design flows.

1.2.2 Basic Analog Design Flow
For context, we first describe the basic flow that analog didesigners follow, according

to Figure[L.B.
- ~
[ Goals | [ Models |

Topology design
v
Sizing
v
Layout

v

Fabrication

Figure 1.3:Basic flow for analog circuit design (at a node in the hierarch

The designer (or team) is given a set of design goals sucldasigh an opamp with
gain > 60 dB, power < 1mW, and minimizing area” on a targetitairon process such
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as 65 nm TSMC. In a general sense, the transistor models aipthafied process will
be used in conjunction with tools to provide estimates afigirperformance. The design
proceeds through a series of stages.

First, a topology design is determined, either by selecséingnitial topology, or de-
signing a new topology. Then in sizing, the topology’s dewsizes, such as transistor
width, length and biasing, are chosen in a fashion to meatifsgaions. Then, a lay-
out for the design is created. A layout is basically a set @frlapping polygons, where
specific shapes represent specific types of “placed” comqsrand “routed” intercon-
nects and give precise specifications of how to fabricateddegn. Layout is labeled
“back-end” design, and the steps preceding are “front-afefign. Layout used to be
done by manually spreading out polygons on a large surfawe taping down shapes
until completion of the layout — “tapeout”. That’s not priael modern, complex designs,
so computers used instead, outputting the industry-stdri@DS-I1” format of mask in-
structions. Those instructions are sent for fabricatioabri€ated chips are tested, then
shipped as products, where they are typically integratgzhesof an overall system such
as a cell phone.

Of course, things can go wrong, which causes re-loops tieeateps in the flow.
For example, if a designer cannot meet the target specditatn the sizing step, a new
topology will be considered. If issues are caught at theildetdayout stage (e.g. par-
asitics), then backtracking to sizing is needed. If theitabed chips fail the key tests,
then a costly “re-spin” is required which involves re-emgrthe design loop at the front
or back end. Sometimes goals are even changed, if the drigpe&ifications are too
aggressive. Models can change often, as they are refinednertasing knowledge of a
given process node.

Design of highly complex chips can fit into variants of thisafjavhere the front- and
back-end design steps are organized intdedarchical design methodology

1.2.3 Handling Complex Chips via Hierarchical Design

In a hierarchical design methodology, the overall desigleomposed into design of sub-
blocks, and those are further decomposed. Then the bloekdemigned according to a
hierarchical traversal scheme such as bottom-up or tomawoastraint driver [GieZ2005].

Figure 1.4: The multi-objective bottom-up (MOBU) hierarchical design
methodology.
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In the multi-objective bottom-up approach (MOBU) [EecZP@bPareto-optimal per-
formance surface for each lowest-level block is determinsitig multi-objective opti-
mization. The Pareto-optimal surfaces are used to constre design space for the
blocks one level up, where more multi-objective optimiaatis performed to generate
Pareto-optimal performance surfaces at that level. Thigicoes until the top level, as
Figure[L% illustrates.

In a top-down constraint-driven methodology (TDCD) [Ch@1}, the top level is
designed first, which results in specifications for each ©&iib-block. Then, each sub-
block is designed to meet those specifications, and resulipacifications for sub-sub-
blocks. The process repeats until lowest-level blocks asgihed, as Figurle1.5 illus-
trates. Finally, the circuit is verified in a bottom-up fashi The challenge in TDCD is
how to model the feasibility regions going downwards. Itiddoe with manually-created
models, bottom-up generation of models, use the Paretorapsurfaces of MOBU, or
otherwisel[Gie2005, Gra2007].

Many variants of hierarchical design methodologies eris{GieZ2005] surveys. With
the knowledge that an appropriate hierarchical methodatag be deployed, we can once
again focus on how to design at an arbitrary node within teeanchy (Figuré_T13).

constraints

con. con. con. con.

USBTATITUSEYE Y TSBTm Y USBETY

Figure 1.5: The top-down step of the top-down constraint-driven (TDCD)
hierarchical design methodology.

Figure 1.6:The final verification step step of the TDCD hierarchical desi
methodology.
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1.2.4 Systematic Analog Design

The sizing step in FigureZ.3 can be handled in a methodical that emphasizes the
designer’s experience [Gi1e1990, Lak1P94]. The approathgite down equations, set
reasonable/safe values for some parameters, then sygtalyatet constraint values until
all degrees of freedom are removed (therefore setting desizes and biases).

The equations include first- and second-order transistatatso Kirchoff’s laws, and
equations that roughly estimate circuit performance agetfon of transistor parameters.
Places to set reasonable values without overly constigihie design include: values for
gate overdrive voltage,, for each transistor, relative allocation of currents toreaarrent
branch according to the overall current (power) budget, satting device lengths to the
process minimum.

Constraint-setting starts with the known specificationsgikample if gain is specified
> 60dB then the “gain” variable is set to 60 dB, which redut¢esdegrees of freedom in
the overall set of equations. Goals to minimize / maximizelaft until last. If just one
goal is left, the goal can be maximized analytically (assunaionvex). If> 1 goal is left,

a manual tradeoff analysis can be performed. SPICE is usegfification of the design,
which we now discuss.

1.2.5 SPICE in the Design Flow

The SPICE circuit simulator was introduced the 1970s [Na§lI®ag197b]. SPICE takes
in a “netlist” describing the design’s topology, deviceesizbias sources, and device mod-
els, and outputs a computational result according to thiy/sisaype. Common analysis
types are dc, ac, and transient. Dc analysis reports theadcdainditions of each de-
vice. Ac analysis reports the frequency behavior of theutiraccording to small changes
in the signal. Transient analysis reports the dynamic, ipbssaonlinear behavior over
time. The device models allow SPICE simulation to accuyatapture the differences in
behavior from different circuit fabrication processes.

SPICE is crucial in the design flow for engineers to verifyitls&zed topologies. It
also opened the opportunity for a new design style for sizargiterative loop in which
designers tweak device sizes then re-run SPICE to see thgehaperformance. Finally,
computers have become fast enough that automatic callsIOESiPom an automated
design engine, “in the loop”, is feasible.

SPICE has proven to be so important that development of inggr&PICE simulators
continues to this day. Improvements can be in terms of (d)drigpeed or greater capac-
ity, such as||Snps2008a, Cdn20D8d, MenZD08a])), or in tefr(ts) @nhanced functional-
ity such as RF/noise analysés [Snps2008b, Cdn2008d] opsimgpbehavioral models /
mixed-signal desigri.|Cdn2008e].

1.2.6 Beyond SPICE: Other Industrial Analog CAD Tools

Other tools besides SPICE are key to analog design. Wavef@awing tools such as
[Snps2008c] allow designers to visually examine SPICE wtstp.e. the simulated dy-
namic behavior of circuits’ voltages and currents, or theuhes of sweeps over different
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parameter values. Schematic editors such_as [Cdn2008§2868f, Men2008e] allow
designers to enter circuit topology and sizing informatiora visual, intuitive fashion;
with automatic translation to netlists to simulate the wiran SPICE.

Layout editors such as [Cdn2008f, Snps2008e, Men200&fjvadingineers to man-
ually convert a “front-end” design (sized schematic orisétinto a “back-end” design,
a layout. Layout-versus-schematic (LVS) tools like [Cdd@6,[Men2008d, Snps2008g]
allow the engineer to cross-reference the front-end desighback-end design to catch
discrepancies. Design rule check (DRC) tools like [CdnZ)en2008b, SnpsZ20084g]
report if a layout violates any foundry-defined layout coaistts. Resistor-capacitor
extraction (RCX) tools like[[Cdn2008], MenZ2008d, SnpsZilodose the front-to-back
loop: they extract a netlist back from layout. They are usbécause a pre-layout front
end design does not have accurate information about undédpsgasitic” resistances,
capacitances, and inductances that occur naturally amoeg,wevices, and ground.

After layout, a designer can tune an RCX-extracted netistiften the negative per-
formance effects of parasitics. Some designers use sclednaen layout (SDL) tools,
where the schematic and the layout are designed simultahedihis is especially useful
when the relative effect of parasitics is large, such as irdBsign, low-noise design, or
ultra deep submicron design.

Data about the semiconductor process that is relevant igrdesstored in a process
design kit (PDK). A PDK includes the SPICE model files as wslitlze layout rules.
All these tools, plus PDKs, are typically organized into asdjn environment” tool like
[CdnZ2008g, Snps2008d, Men2008e], which facilitates $wiiig among tools and sharing
data among tools. More recently, data-sharing has beeniBadgy industry-standard
databases like OpenAccess [S122008].

1.2.7 Tool Categories and Design Automation

Over the years, these tools have gained broad usage in tlggnedesommunity because
of their almost universally-accepted utility. They can baced into the following cate-
gories:

e Analysis toolge.g. SPICE, DRC, LVS, RCX)
¢ Insight tools(e.g. waveform viewer, schematic viewer)
¢ Design-altering toolge.g. schematic editor, layout editor, SDL)

There is a fourth categoryDesign automatiorools directly change a design to meet
design goals. Design automation tools can be further deosatpintofront-end design
automationtools (for automated topology selection, topology desgiring), andback-
end design automatiotools (for automated device generation, placement, antingu
[Rut2002]. These tools are arguably the hardest to devgkthave potentially high po-
tential payoff in terms of reduced time-to-market, loweweo, lower area, higher yield,
and greater performance in general. Digital EDA tools hawessfully deployed au-
tomation since the late 1980’'s. Their success is bestifitesd by the vendors’ revenues
[Edac2005].
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Because of the challenge and potential payoff, automatatb@rdesign tools have
attracted the bulk of analog CAD researth [Gie2002a, RuiR0The popularity of de-
sign automation tools in the literature probably explairtsywhe label “analog design
automation” only fourth category) is sometimes used to describe all toolsaimafog
computer-aided design” (all four tool categories).

1.2.8 Design Automation Tools: Adoption Criteria

Adoption of analog design automation tools has been varieds a function of how
much pain the designer / customer has with the status quoif(tliee problem matters),
how much improvement the design automation technologygbriand, importantly, how
designer-friendly the tool is. The tool’s “friendlinessbeés not only mean a good GUI
and low setup time. It also means that the tool acknowledgedésigner’s creativity and
experiencel[Wil1991]. The tool should allow the designeleterage those strengths, to
remove the tedious work, while explicitlyot removing the designer’s control.

The axes of problem pain, improvement to status quo, andjdesiriendliness can
guide where certain design automation tool proposals har&ed, and others have not.
For example, modern automated layout device-generataa $olve their target problem
in a fast and reliable fashion, automating a task that wasidered tedious and unchal-
lenging. The same is true for point-to-point automatedemitMany designers (or layout
engineers) have actually beevilling to defer all the layout work to automated tools,
but traditionally the tools have never solved the problenil weough: automatically-
generated layouts were often worse than hand-crafted tayouthe time to set up the
tool was unacceptably long. Perhaps the most recent battomated layout tools will
finally meet this target.

1.2.9 Front-End Design Automation Tools in Industry

As for front-end design, there have been many failures amesmild successes, as re-
viewed in [G1e20024d, Rut200[7, Mar2008]. Tools that did ne¢ $PICE in the loop or
SPICE calibration were too inflexible, and research usiegitlvaned (e.g. [Har19‘9ﬂ])
Topology selection tools have always had too much setupteifiial covered too few topol-
ogy choices (e.g[ IKoh1990]). In general, the “knowledgesdl” research approaches of
the 1980s waned because of the painfully long setup timeskswer more) which needed
repeating with each new process node.

Research proposals for open-ended structural syntheds (.g. [KozaZ003]) take
in possible components and automatically “invent” the @mtiwity and sizings to meet
the design goals. These tools fail the adoption criteria aitiple counts. First, exist-
ing technology is nowhere near solving the problem well gfobecause the tools are
too slow, and the non-standard results are not trustworfigo, “friendliness” gets a
zero because the tools aim to be “creative” in topology desilgich designers justifiably
perceive as a direct threat. We will discuss these tools rimacbaptefb.

10ne exception is the posynomial-template flow of Magma Degigtomation [Mag2008], formerly
of Sabio Labs and Barcelona Design, based on [Hei1998]. kewik remains unclear whether this will
become more widespread.
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Figure 1.7:Evolution of front-end analog design automation tools: reat
state.

Figure[1Y describes the evolution of front-end analoggfeautomation tools which
have had some degree of adoption in industry, and promiseve further adoption.
The common threads are (a) SPICE-in-loop, and (b) for thegiask. SPICE-in-loop
means that the tools can be applied to whatever circuitsddwatbe simulated, which
enhances flexibility. The application to sizing is reasdeasis designers do not consider
the automation of sizing to be a major creative threat. Aleingle is to make the tools fast
enough, and so the bulk of research in SPICE-in-the-loogrsis on designing efficient
algorithms.

Of the industrial sizers, first were local optimizers, on rioah or process-voltage-
temperature (PVT) corners. They were packaged within sitous like Eldd? [Men2008]
and HSPICEM [SnpsZ2008a] from the late 1980s onwards. However, theiofiayas of-
ten too small to justify the up-front setup effort needed.

The global nominal optimizers followed around 2000, inghgdAnalog Design Au-
tomation’s Creative Genitid! (now Synopsys Circuit Explorét’ [Snps2005]), and Ne-
olinear’s NeoCircuit? (now Cadence Virtuoso NeoCirctiif [Cdn2005b]). These had
better GUIs for shorter setup time, and had higher poteptgoff because the global
exploration could avoid the need for initial sizings anctait performance could be im-
proved more. However, one cannot underestimate how quiekberienced analog de-
signers can size circuits; so while there has been a degradogttion, demand has not
been strong.

We have already discussed the issue of process variati@s2[{01]. Analog design-
ers have actually been handling process variations in waneays for a long time. For
example, differential topologies are a direct responsevtdathe effect of global pro-
cess variations. Local process variations cause mismattheen differential devices
that are intended to have symmetrical behavior. Mismatehlesen a limiting factor in
many designs for a long time, but recently local processatiam has become signifi-
cantly larger and it is getting worse, as Figlrd 1.1 showettotdingly, performance of
analog circuits is threatened. Analog designers have aehbve with the performance
degradation, design more directly for mismatch, or inceem®a. Performance degrada-
tion is unacceptable when there are fixed specifications. eStesigners do design for
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mismatch, e.g. with architectures that do compensationsing calibration. But many
analog designers do not want to spend their precious timegfittie mismatch nuisance,
so they simply make device areas larger. This of course ms@erformance, but hurts
area and chip cost — sometimes significantly when mismatbigis. While excessive
mismatch is a nuisance for designers, it isogaportunityfor analog CAD tool develop-
ers: here is a problem that designers do not want to worry iaf@oinave time to worry
about!), and if a tool allows them to bypass those concehey, tnight adopt it.

Accordingly, as shown in Figuife_1.7, there are recent coraiakofferings for local
yield optimization [Mun2008, Ext2008].

For a baseline of tool inputs, outputs, setup times, rurginaemputational require-
ments that are acceptable by designers, these indusagitsian serve as a useful refer-
ence.

1.2.10 Motivation for Knowledge Extraction

While adoption of automated design tools is slowly incregsver the years, the vast
majority of designers continue to do front-end design mépua the chagrin of hopeful
CAD researchers and managers. If research in automateghde$o have a larger impact,
the tools need to be adopted more broadly.

degree of issues

gap . .
handling of issues by tool

time

Figure 1.8:Unforeseen issues mean that tools are perenially behinid ses
that designers need to solve (from_[Mcc2006b]).

So, itisimportant to understand why manual design perdistg earlier impediments
to adoption were the long setup times, hard-to-use GUIs |@amglturnaround times for
getting results. But with recent tools, those issues haea la¢ least partially mitigated.
However, a more fundamental issue remains: risk exposureernVdesigners use auto-
mated design tools, they risk losing control and insighd thieir designs. If the automated
tool cannot solve the problem, the designer needs to havasight to know how to fix
it. Key tasks do not even have industrial tools yet, such agdang or selecting topolo-
gies. And even if every task had an automation alternativeesissues are not noticed
until one has to design around them, such as with the recem isf well proximity ef-
fects [Dre2006]. Therefore, there are always gaps betwdwt tools can do and what
is needed, as Figufe_1.8 shows. The key way for designersnageahis persistent tool
shortcoming is to maintaimsight

The next question is: how well can designers maintain tmsights? The challenge
is that the design problem keeps changing: every 18 monéms th a new process node
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Figure 1.9:Current mirror mismatch in a 0.13n technology, as a function
of length and width (from_[Dre2003]).

[Itrs2007], where device and therefore circuit behaviddifferent. Or, there are demands
for new types of circuit functionality in which past insightan help little. Robustness
issues in particular can kill designer insights. For exampie traditional rule of thumb
for mismatch is that mismatch is proportional to 1/WL, soreasing W or L will give
proportionate decrease in mismatch. However, the relslipris more complex than that.
Figure[I.® shows a current mirror and its associated magdpang W and L to mismatch.
For a large W and L mismatch is low. But note how decreasing & timy value will
barely hurt mismatch; and decreasing L only starts to haveffatt when the smallest
values are hit. Once in the region of small L and very smalli&ntthe mismatch response
takes off dramatically. So, the traditional mismatch-Wkight is less valid for modern
processes.

degree of robustness issues

_ — - robustness-handling insights
-7 - some techniques lose relevance
-7 - but always creating more

4 time

Figure 1.10:There is an “insight gap” between the time when a robustness
issue becomes significant, and when the necessary ins@hgsdlve it are
developed (fron[Mcc2006b]).

The general trend is shown in Figure.10: the number of rimass-related issues is
increasing, and keeping insights up to date is an everasang challenge.

CAD tools can help. Conceptually simple tools to visualiaer data, such as wave-
form viewers and schematic viewers, are a start. Howeveamego much further: we
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Figure 1.11:The aim of knowledge extraction is to accelerate insightdeo
to close the “insight gap” (from[[Mcc2006b]).

can use automation to extract knowledge from analog cidafi&, such as SPICE sim-
ulation databases. Sudémowledge extractiotools can help to catalyze the designer’s
insight-gathering process, leaving him better equippedadise unforeseen issues. As
Figure[I.I1 shows, accelerated insight via knowledge etitra can close the insight

gap.

1.2.11 Contributions to Analog CAD

Figure[I¥ outlined the evolution of the first three frondetesign automation tools: lo-
cal sizing, global sizing, and local variation-aware sig(tocal yield optimization). This
thesis proposes and implements four new steps in the evplotifront-end analog design
automation, as illustrated in Figure1112. The previousehand four new steps collec-
tively cover a range of use cases. Each case is defined bydkie taputs and outputs,
and the scope and difficulty of the task. In each case theretismly an optimization
component, but alsoknowledge extractionomponent. Knowledge extraction helps the
designer tdoridge manual techniques with automation-aided techrsgbarthermore, it
helps him to build insight and maintain control over inciagly challenging designs.

A first future step of the roadmap is “Globally Reliable Vaiga-Aware Sizing”. The
automated sizing component, SANGRIA, addresses the cag@3 when an initial sizing
may be in a local optima, (b) there is no decent initial sizangilable, and (c) when the
best possible yield or performance margin is needed / desifee knowledge extraction
tool, CAFFEINE, generateshiteboxmodels which map design variables to performance
or Cpk [NistZ006], with near-SPICE accuracy.

A second future step in the roadmap is “Trustworthy Struadt@ynthesis,” using a
tool called MOJITO. This approach is to do topology seletaoross a set dhousands
of possible topologies — a set so massive that the labelctstral synthesis” is appropri-
ate. These topologies remamstworthyso that designers can feel safe when committing
them to silicon. The massive topology count, trustwortegjeand computational fea-
sibility are accomplished by the use of pre-specified hamaal analog circuit building
blocks. Because the blocks are structural-only, they oeddrto be specified once ever (at
relatively low cost), and are portable across process notfaen a multi-objective algo-
rithm searches through this library, it generates a databbsized topologies that collec-
tively approximate the Pareto-optimal tradeoff among genfances. Once generated for
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Figure 1.12:Proposed roadmap in evolution of front-end analog design au
tomation tools (and thesis contributions).

a given process, the database supports an immediatedunthtspecifications-in, sized-
topology out” flow. This is particularly useful for jellybedP — simple, non-aggressive,
off-the-shelf designs where just a solution is needed, ingtfancy. This tool also sup-
ports a flow where the designer wants to try out some new Imgliock ideas within
the context of a larger circuit (or one of many larger cirspitThe insight portion of the
“Trustworthy Structural Synthesis” task the opporturstegened up by this new type of
database, which relates topologies, sizings, and perfacas It extracts (a) a decision
tree for navigating from specs to topology, (b) global noeér sensitivities on topology
and sizing variables, and (c) analytical performancedadidnodels across the whole set
of topologies.

The next future step in the roadmap Matiation-Aware Trustworthy Structural Syn-
thesis.” The use cases from Trustworthy Structural Symshessry over, but with an addi-
tional dimension of havingield as an objective. MOJITO-R and the revised knowledge
extraction approaches perform accordingly.

The final step in the proposed roadmaphoVe| Variation-Aware, Trustworthy Struc-
tural Synthesis.” MOJITO-N starts with trustworthy strucl synthesis, but adds novelty
in a trackable fashion. It is useful when a designer / teane lexhausted topology ideas,
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are willing to take a chance, and are open to topology suggesfrom a computer.
MOJITO-N is also potentially useful for an young, ambitiaemiconductor company
(or grad student) that is willing to take some risks to tryeptally odd new topologies
in order to build up IP or new circuit functionality. ISCLEakKes a different approach: it
uses recent advances from machine learning in a novel tdesign technique where the
circuits actuallyexploitvariation. It has promise to return circuits with area thatirsks
as minimum device sizes shrink (i.e. area that scales witbr®le Law).

1.3 Background and Contributions to Al

Whereas the previous section described the thesis’ bagkdgrand the thesis’ contri-
butions from the perspective of analog CAD, this sectiorcdbss the background and
contributions from the perspective of artificial intelligee (Al).

1.3.1 Challenges in Al

Sometimes an approach to solve a problem can be overlyatgrilimiting its ability to
generalize to other domains. the idea of uscmgnputer programso generalize from
previous approaches. For example, Kolmogorov proposedséocomputer programs
as a general way to measure complexity, with the notion ajdathmic complexity”
[Cav2007].

Closer to our interests here, Arthur Samuel proposed usingpciter programs as a
way to describe the goals of Al: “How can computers learn tvesproblems without
being explicitly programmed? In other words, how can coramibe made to do what
is needed to be done, without being told exactly how to da it&ter, Samuel re-posed
these questions, giving a criterion for success: “The agj.[i to get machines to exhibit
behavior, which if done by humans, would be assumed to ievtle use of intelligence.”

John Koza used these aims as a basis for his work on geneticapning (GP)
[Kozal992 | Koza2004c]: “Genetic programming (GP) is anl@i@nary computation
(EC) technique that automatically solves problems withegjuiring the user to know
or specify the form or structure of the solution in advance. tihe most abstract level
GP is a systematic, domain-independent method for getongpaters to solve problems
automatically starting from a high-level statement of whedds to be done. [Pali2008].

Unlike traditional optimization programs which traverseeztor-valued search space,
GP traverses a space @dmputer programsr structures (e.g. trees, graphs, etc). Thus,
GP is perhaps the most generalized approach to Al. It isiogrteery powerful: even
in his original 1992 book, John Koza systematically wenbtiyghdozenof different Al
sub-problems, and solved each with GP_[Kozal992] with ssellp effort and virtually
no hints on “how” to solve the problem.

1.3.2 GP and Complex Design

GP has emerged as a vibrant research field and many reseahawer enjoyed signifi-
cant success, especially on problems that can be posgduatural synthesigroblems.
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For example,[[Lohn2005] evolved an antenna design for NAS¥civwas successfully
deployed in space! [Spe2004] evolved novel quantum cidesigns, and_[Kor2007]
evolved stock market models which are in daily use for trgdifhese comprise a few of
the 60human-competitiveesults that genetic programming has achieved since tlye ear
2000s ([Pali2008], ch. 12).

Despite this success, there is still a broad range of straictynthesis problems that
GP has not solved successfully enough for widespread indlusse. This is illustrated
by what's still done almost wholly manually: design of autaries, engines, airports,
music of appreciable complexity, software with even a mbdegree of complexity, and
trustworthy analog circuit topologies.

1.3.3 Building Block Reuse in GP

GP researchers have long held the view tleatsemight be important in approaching
challenging problems: “Reuse can accelerate automatedngay avoiding reinventing
the wheel’ on each occasion requiring a particular sequehaeady-learned steps. We
believe that reuse is the cornerstone of meaningful madhtedigence” [Koza2004al].
There have been a variety of GP approaches for achieving rewtsich we now briefly
review.

-
Objectives,
Constrainis

— | Field-Specific, Pre-
Defined Flat BBs

Test Harness

GP Search P Evaluator

=

Figure 1.13:GP reuse: “vanilla” GP implicitly has flat BBs, and no special
BB-handling steps.

First is “plain vanilla” GP; i.e. GP systems based dn |[KoZ#19 In vanilla GP,
the leaf nodes in the tree search (“terminals”) are, in faagtlding blocks (BBs). They
are field-specific, pre-specified by the user, and are flat ¢bere is no pre-specified
hierarchical relationship). GP “functions” are field-sgiecBBs too, but they too are flat
since they do not define a hierarchy of connections. The flosh@avn in Figurd_1T.13.
The inputs are “field-specific, predefined, flat BBs” (terntén@nd functions), objectives
and constraints, and a test harness used in conjunctiontigtlevaluator to measure
performance of a given design candidate (individual). G&de uses feedback from
the evaluator to evolve its design candidates, and evéntelirns the resulting design
candidate(s).

Some GP approaches do automatic discovery of hierarchiBal@ior to the main
GP search, as shown in Figure1.14. In the first step of the fmme routine uses
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o T -
—| Field-Specific, Pre- Objectives,
Defined Flat BBs Constraints

Auto-discover hier. BBs ¥ Evaluator
-
EAuto Hier. Bst
¥
GP Search % Evaluator
<

GP Results ]

Figure 1.14:GP reuse: seeding GP withpriori auto-discovered BBs.

lightweight heuristics to automatically extract potelyiauseful BBs. For example, in
[Kor2006] which does symbolic regression, the first stepisuolve functions with just
1 input variable at a time, and save the best results as BB§AUR0OO03], the authors
enumerate through all combinations of tiny sub-functiond keep the most promising
ones as BBs. “Cultural algorithms” [Rey2008] automatigaliscover decision trees in
this first step. Once the BBs are discovered, they are inpilet& P system.

= =
—*| Field-Specific & Pre- Test Harness
Defined Flat BBs
GP Search with auto hier. BB [¢* Evaluator
discove

—_—
Auto Hier. BBs

—_— ==

GP Resulis

Figure 1.15:GP reuse: automatically discover and re-use hierarchicBsB
during the GP run.

ol
Objectives,
Constraints

Figure[L1.Ib shows a flow where hierarchical BBs are discalaral used within GP
search, but not output. This has been a much-explored mstrgame within GP, with the
main aim of speeding up GP search. Approaches include: aticaily defined functions
(ADFs) [Kozal994], automatically defined macros (ADMs)¢3p9%], generative repre-
sentations such as GENRE [Hor2003], and stack-based GPUi&ke [[Spe2005]. Several
of these approaches illustrated orders-of-magnitudedsgeand/or improvement in final
objective function value.

Of course, if hierarchical BBs are discovered during a rtirg conceivable that they
might be helpful to give future runs a head start, i.e. clgdime loop by using past
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- T
— | Field-Specific & Pre- Objectives,
Defined Flat BBs Constraints

GP Search % Evaluator

Auto Hier. BBs GP Results

Figure 1.16: GP reuse: closing the loop with Run Transferable Libraries
(RTLs) of BBs.

Test Harness

problem-solving knowledge to bias future GP searches. itleis was demonstrated with
the approach of Run-Transferable Libaries (RTLS) [Ryam?08s shown in Figure_1.16.
After 50 iterative GP runs, the effort needed to solve a pobivould be reduced by
2-3 orders of magnitude. The libraries demonstrated arntyald generalize as well.

Using a library from simpler problems as input, similar largproblems were attacked
and demonstrated similar performance improvements.

1.3.4 Contribution to Al: Complex Design

Despite this ample research into reuse within GP, the desdigomplex structureom
automobiles to trustworthy analog circuit topologies ramalusive. Scientific discovery
[Kei2001], in which the aim is to identify equations to dekerbehavior of unknown sys-
tems, has a similar “complexity wall.” Upon closer inspeatiwe see that these problems
are different from the GP successes in several key ways:

e Designs have >5-10 sub-components (e.g. 20, 100, 500).

e The designs may have modularity, regularity, and symmetrythey also have sub-
stantial heterogeneity.

e Crucially, most of the design’s components, sub-components, subesubenents,
etc have been long established in the design’s respectlde fie

For example, in automotive design there are nuts, boltselgheubber, tires, axles, cylin-
ders, pistons, camshafts, engines, chassis, handlesywaéndoors, steering wheel, seats,
hood, body, and so on all leading up to the top level of a cahidiogy / bioinformatics
there is DNA, nuclei, mitochondria, ribosomes, cells,uess, organs, and so on all leading
up to an animal. In analog circuit design there are resistagacitors, transistors, current
mirrors, differential pairs, cascode stages, input stageput stages, loads, and so on all
leading up to a top-level circuit such as an operational gmpbr data converter.

In fact, it is this collection ofhierarchically-compose®Bs which partiallydefines
each respective field. First, it is standard knowledge andit®logy shared by prac-
titioners in the field. Secondjevelopment of new BBanprovements on existing BB
functionality, and gaining further understanding of exigtBBs, are all considerecbn-
tributionsto each respective field.
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<
Objectives,
Constrainis

Test Harness

Field-Specific, Pre-
Defined Hier. BBs

GP Search * Evaluator

GP Resulis

Figure 1.17:GP reuse: enabling complex design via field-specific, haiar
cal, pre-specified BBs.

We have seen that GP research acknowledges the importaneesef, and has pro-
posed several reuse-oriented flows. Yet when it comes toymgpGP to a particular
problem domain, the field’s standard, shared domain-spédeibwledge is beingynored
The result is that GP runs often produce odd-looking desigtts unrecognizable sub-
blocks, using an excessive amount of computer effort. Weetlat this knowledge does
not need to be left on the table:

If we use domain knowledgeaggressively spending the up-front effort to specify the
field’s known structural building blocks, then we can synthesize complex designs
that are trustworthy by construction, using dramatically lower computational effort.

The proposed flow is shown in Figufe 1118. Note how the humanti BBs have
the required characteristics ofteld-specifi¢c pre-defined andhierarchical This thesis
will describe in detail how such a flow is applied to analogdiogy synthesis in the
MOJITO tool. Systems of even greater complexity are posdilyl combining MOJITO

with hierarchical design methodologies (secfion1.2.3).
<

_____ =
Field-Specific, Pre-
Defined Hier. BBs

Multi-Objective GP Search <-b| Evaluator

L 2

GP Resulis (Pareto
imal

Knowledge extraction

- Objectives,

Constraints

Figure 1.18:GP reuse: closing the complex design loop via knowledgaextr
tion to give the user new insights for improving the fieldesfoe hierarchical,
pre-specified BB library.
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Finally, we ask how we mightlosethe loop for field-specific, hierarchical, pre-
specified BBs. Since BBs have to be specified by the user, thémathat the user needs
to be in the feedback loop. Therefore, the user mustigaightinto therelation between
structure and performancé his thesis emphasizes the us&konbwledge extractiofrom
GP run results. Knowledge extraction returns informatioforms that are immediately
recognizable by the user, and are transferable to othetgrab This adds to the user’s
knowledge of the field, and closes the loop because it is go&l#or trying new BBs.
Figure[1I8 illustrates this. This flow can be useful eventfigr automation-averse de-
signers: the designers who embrace automation can perf@synthesis and extraction,
and provide or publish the outputs for their automationrseeolleagues.

1.3.5 Other Contributions to Al

The previous section discussed how this thesis contritbatiee Al problems of (a) struc-
tural synthesis of complex systems, and (b) how users caknems@edge extraction from
synthesis runs to make progress in their field. Besides thistthesis makes two other
contributions of interest to Al: (c) SANGRIA, an efficient @pach to global statisti-
cal optimization (stochastic programming) which graclgfbiandles high-dimensionality
search spaces, and (d) CAFFEINE, an approach for whitelgpggsion that gives human-
interpretable models and outperforms several other stiatee-art regression algorithms.

1.4 Analog CAD Is a Fruitfly for Al

This chapter has discussed how the semiconductor indssimyportant for the progress
of IT, and how variation-aware analog design is importamnttfi@ progress of semicon-
ductors. It has also been discussed how Al is also importarthe progress of IT, and

how GP is important for the progress of Al. In fact, analog CaAm Al are related more

directly: if a fruitfly is considered to be a convenient, repentative test problem playing
surrogate for a grander goal, then we believe that analog @®Res an excellent fruitfly

for Al. This is because:

e Analog circuit design has current and future industriagévahce, being a field within
the massive semiconductor industry and having a continatseam of design chal-
lenges due to changing semiconductor processes [lirs20i7performance require-
ments.

e Candidate designs can be evaluated (to an extent) usirtgesfhelf circuit simula-
tors.

e There can be multiple constraints and multiple objectives.

e There are robustness issues such as process variatiorsnpemental variations, and
there is an industrial incentive to address them.

e Analog circuit topology design is consideredr@ativeendeavor[Wil1991]: design-
ers refer to themselves as "artists", and new topologietiem published in the
scientific literature and/or patented.
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The combination of these characteristics makes analogitdesign a relevant, challeng-
ing application domain for testing Al approaches in generalis is especially true when
simultaneously considering the issues of variation-awlasegn, designer-trustworthy re-
sults, and aiding the creative design process. Evenverewubs$those challenges are
interesting because of their notable industrial relevance

Recall the analog design flow of Figurell.3. This can actuad#lygeneralized to a
broad set of problem domains, as shown in Fidure]1.19. Da®jgan analog topology
generalizes to designing a structure. Sizing and biasingrgdizes to designing param-
eters. Doing layout translates to specifying the impleragon, and circuit fabrication
generalizes to manufacturing. Just like in analog circegign, errors can occur in the
flow, at which point backtracking is needed.

[ Goals ]  (Models |

Design structure
!
Design parameters
!
Specify implementation

!

Manufacture

Figure 1.19: Generalization of circuit design flow of figufe3 to include
many Al / engineering design domains.

1.5 Conclusion

This introductory chapter has discussed the importancafofmation technology (IT),
the role that variation-aware analog CAD and GP can playTpahd has discussed how
this thesis contributes to each. The rest of this thesiseldlborate in several ways.

This thesis is broken into three groups of chapters whichkecawreasing problem
scope. Chapteld[2-4 covmbust sizing & insight: background, a proposed globally-
reliable yield optimizer (SANGRIA), and knowledge extriactfor robust sizing (CAFFEINE).
The second group, chaptéid§s-8, covarsictural synthesis & insight: background, a
proposed trustworthy synthesis search space and algo(M@JITO), and knowledge
extraction for the topology-performance-sizings relasbip. The third group, chapters
@110, covemovel, robust structural synthesis extensions & insight robust structural
synthesis (MOJITO-R), knowledge extraction from MOJITQ€Rults, novel structural
synthesis (MOJITO-N), and finally novel, robust structuswhthesis (ISCLES) which is
also a promising approach for analog designs to scale witbrd®Law .
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Chapter 2

Variation-Aware Sizing: Background

A small leak will sink a great ship.
—Benjamin Franklin

2.1 Introduction and Problem Formulation

2.1.1 Introduction

Chaptefdl discussed how the progress of Moore’s Law leadscteased process varia-
tion, which leads to significantly reduced circuit yieldg$P007]. Yield optimization /
design centering can play a useful role within a statistitesign toolset, to speed a de-
signer’s overall robust-design effort. Accordingly, tedras been much research effort
aimed at building analog circuit yield optimizers. This pker examines the problem,
and reviews past approaches.

This chapter is organized as follows. Section 2.1.2 givespitoblem formulation,
followed by industrial-level specifications in section 3.1 Sectior 212 reviews past ap-
proaches, starting with a baseline direct Monte Carlo amte®ding through several
more advanced algorithms. Sectlon]2.3 concludes.

2.1.2 Problem Formulation

The aim of yield/robustness optimization is to find a ciraesignd* that meets perfor-
mance requirements, despite manufacturing and envirotainariations. One is given a
design spac®, process parameter spagevith distributionpdf (s), environmental space
© and measurable performances with associated specifisaXion

We now elaborate. The aim is to find a vector-valued designtgdi that maximizes
the objectivef, which here is a statistical robustness estimator:

d* = argmaz{f(d)} (2.1)
deD

where design spad® = ®., { D;}. Each variable’s design spaék can be continuous-
valued or discrete-valued, i.€; ons = {R"|d; min < di < dimaz} OF D gise = {di1,dia, ...}
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Design variables include transistor widths, transistor lengthg,, resistances?, capac-
itancesC, biases, and muItipIierMH. The range for each variable is determined by
technology process constraints and the user’s setup.

The objectivef is typically yield, Y, the percentage of manufactured circuits that
meet all performance constraints across all environmeatadliitions. Specificallyy” at
design poinid is the expected proportiof' of feasible circuits) across the distribution
of manufacturing variationgdf (s):

Y(d) = E{5(d, 5)|pdf(s)} = / . H 5:(d, ) = pdf(s)ds (2.2)

where possible manufacturing variatiofis= R+ include variations in oxide thickness
t.z, Substrate doping concentration,,;,, etc. These can be on a per-device level (local),
and / or across the circuit or wafer (global). For an accumadelel, both local and global
variations must be modeled. Sectlon’5.5.3.2 describes faetouing variations furthers
describes the variations in a single manufactured design;grocess corner”. Therefore
the tuple{d, s} is an instance of a manufactured design.

9, is the feasibility of instancéd, s} at constraint. It has a value 1 if feasible and 0
if infeasible:

5i(d, 8) = I(gues(d, 8) < 0) (2.3)

where I (condition) is an indicator function which 1 ifondition is True, and O other-
wise. The quantity,.; is the worst-case constraint value across possible envieotal
conditionso:

Gucild. 8) = min{g(d.s.0)) 2.4)

where® = {RY0; in < 0; < 0;,042;7 = 1..Np}. Environmental variables include
temperaturd’, power supply voltag®’,;, and load resistanck,,.,. @ describes a partic-
ular set of environmental conditions, i.e. “environmertiainer”.

For a wholistic view of the yield optimization problem, we rge equationd{211) to

4):

deD

Ny
d* = argmax {/ ) H ](%zg{gi(d, 5,0)} <0) *pdf(s)ds} (2.5)

Note how this is a min-max optimization formulation, whelne buter objective is a
stochastic quantity.

Each constraing; corresponds to a performance specificatigrwhich has an aim
and a threshold, and can be directly translated into an alégwonstraint. For example,
A1 = {power < (le =3)W} — {g1 < 0; 91 = power — (le — 3)}, and Xy = {gain >
60dB} — {g2 < 0; 92 = —gain + 60}. A = {1, Ag, ..., An, }-

1These are variables at cell level in a sizing-driven vagdbrmulation. Variables will be different at
system level, or another formulation such as operatingghiven in sectiofL6l4.
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Performances can be measured by industry-standard SRy&Eescuit simulation,
equations, or other means. SPICE simulates a text-basélisthevhich can be gen-
erated from a “testbench”, design, process point, and enriental point. A testbench
¢ specifies how to extract 1 performance measures at a given circuit design, process
point, and environmental point. It includes current / vgitayenerator circuitry as stimuli
into the design, load circuitryz 1 analysis instructions (e.g. ac, dc, transient with asso-
ciated parameters) which return scalars or waveforms, anddsure” statements which
extract scalar performance values from the waveforms amer scalars. Testbenches are
typically specified by the tool provider's “template” testixhes or the designer. All test-
benches taken together &fe= {&1,&,,...,¢&;, .-, &N, }, and measure all performances
A

The environental space is actually testbench-dependent= F(¢;). For exam-
ple, some testbenches may have loads that other testbedchest have. Each test-
bench¢; often has a representative set of environmental cor@rs\% ©(&;) where
é; = {0k}, k = 1.N.(j). O is usually sef priori, either by the designer (typical)
or via computation.

Each testbencly, measures a subset of all circuit performances: = A(§;) =
{\i1,N\j2,...} € A On process point, testbencly, with the testbench’é™ environ-
mental corner and” constraint, we have scalar performangg ;. ; and corresponding
scalar constraing; ; ;.

“Process capability”’@'pk) [Nist2006] is alternative to yield as a statistical rolmests
estimator to optimize (objectivg). Cpk simultaneously captures the worst performance’s
spread and margin above/below its specification. Thergtdméke yield, C'pk can distin-
guish between two designs having yield of 0%, or between ®gighs having (estimated)
yield of 100%.

Cpk is defined as the worst caé&; across all constraints:

Cph(d) = _min {Cpi(d)} (2.6)

whereC'p; is:

Cpi(d) = (E(giwe(d)) —0)/(3 % 0(gi,we(d)) (2.7)

where £’ is the expected value af; ,,. acrosss, ando is the corresponding standard
deviation. The numerator captures how the design comparéset specification (= 0
here), on average; and the denominator captures spread.

2.1.3 Yield Optimization Tool Requirements

To be appropriate for industrial use, a yield optimizer mhesticcurate, efficient, scalable,
flexible, and globally reliable. We now elaborate.

Accuracy: For dependable results, the optimizer must not make anysiouplifying
assumptions that can lead to large error margins. Thatesnibhdel of the yield problem
must be correct:
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¢ Results (evaluation of objective) must be SPICE-accurate.

e Uses an accurate statistical modeling approach, su¢h a&9989], even if that means
having10z more process variables.

e Handles environmental variations (changes in temperataagl, etc). If treated as
corners, there are typically¥.(j) = 5 — 10 corners per testbeneh, though there can
be 50 or more.

e Given that circuit performanceX are random variables themselves, the shape of
pdf (A) is unknown. We cannot assume a Gaussian distribution, oerasgumptions
about the correlation structure among performance vagbl

e The objective functionf(d) can be nonconvex or discontinuous. There is no free
access to derivatives.

e \We cannot make assumptions about the nature of the feasigitiion{d|i(d, s) >
0}. For example, it may be disjoint.

Efficiency: The optimizer must run fast enough to be useful in an indalstontext.
e Return good results overnight, or over a weekend for biggesilems. And of course,
faster is even better.
e Exploits parallel computing if available.

e Can refine results; i.e. can make small incremental impre@reatof (d) via typically
small changes td.

Scalability: The optimizer must be effective for circuits that have oaliew devices, up
to circuits with hundreds of devices. It should also allowession to support system-
level design, in the context of a hierarchical design methagly, to extend to thousands
of devices or more.

e It must handleV,; = 10 — 200 or more design variables

e It must handleV, = 5 — 50 general performance constraints, plus up to hundreds of
device operating constraints; therefavg can be> 100.

Flexibility :
¢ Design variables may be any combination of continuous asctelie / integer / binary

e The optimizer must readily adapt to new types of circuitg, going from opamps to
bias generators to system-level designs.

e The optimizer must painlessly adapt to changes in SPICE gddeluding statistical
models. Therefore, as models improve the accuracy of thitsesan improve without
significant new setup time each time. This also allows foy gascess migration.

e Continues to do meaningful optimization once yielcdkol00% is reached

Global / Reliability :
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e The user should not need to worry about whether or not thermoptir needs “restart-
ing”.
e The optimizer should not get stuck in local optima.

e The user should not need to supply a starting point. Howéwie user does supply
one, the optimizer can use it as a hint.

¢ If the supplied initial design point has yield of 0%, the taoll still optimize.

e In a given run, the optimizer will eventually converge to thest solutiof. (And,
practically speaking, in less than infinite time.)

2.1.3.1 Local vs. Global Optimization

This section highlights the importancegibbal statistical optimization.

Many approaches assume a flow of (a) get initial sizing bycééag across global
design space, evaluating on nominal, then (b) starting ani#ial sizing, perform yield
optimization with a local optimizer, i.e. “yield tuning”.

Unfortunately, this approach misses out on yield / perfarogaopportunities. Figure
2.1 shows a simple yield optimization problem setup, whieeenbminal performance is a
multimodal function of W1. Process variations are modebledimply adding a Gaussian-
distributed random variable to W1, leading to a mapping oftdAlield as shown in Figure
2.2 bottom.

performance 4

metric
(e.g. AV) _

SPEC: AV> 60 —|= = = = = \e m — — A o oo oo C NI feasible
( /;\L

] >

For purposes of illustration, say nominal distribution W1
that random variation is Gaussian value of of W1

noise on a nominal W1 value Wi

Figure 2.1:A simple yield optimization problem setup.

If a local yield optimizer is given the nominal optimum poas the starting point, it
will return that as the optimum yield point as well, ratheanhthe true optimum point
which is at a very different value of W1. The problem can altyuae far worse, when
design variables and process variables do not have suchpesadditive relationship
towards performance.

lwith a caveat: there is still a chance that “eventually” &aa impractically long time.
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V'S
performance

metric
(e.g. AV)

feasible

>
yield
/I_\ ] >
best W1 value for nominal optimization best W1 value in
= starting point for local optimization vield optimization

Figure 2.2:Multimodality in performance space can lead to multimotyah
yield space and / or disjoint feasible regions. In this cqtoal example, the
global nominal optimum will lead to a local optimum for yield

This example also illustrates the sensitivity of the prabke the actual value of the
performance specification: at some values the problem imaal, and at other values
the problem is multimodal. In practice it will be very diffituo determine beforehand
what the nature of the search space is like.

In sum, constraint sensitivity makes it surprisingly eas\cteate local optima in a
yield optimization problem. More importantly, we saw thaglabal nominal optimum
could readily lead to éocal yield optimumIf we do not want to compromise optimality,
i.e. we want to hit theglobal yield optimumthen the search algorithm cannot merely do
global nominal followed by local yield optimization.

2.2 Review of Yield Optimization Approaches

2.2.1 Direct Monte Carlo on SPICE

This can be considered a “baseline” approach, because Mzarte (MC) sampling is
understood by both designers and CAD engineers, and tygoainercial optimizers use
SPICE in the loop]Cdn2005p, Snps2005]. The general ideatis ¢valuate a candidate
design poind by doing a full MC sampling opdf (s), invoke SPICE simulation on each
s (and environmental corner), compute performances fronsitihelation results, then to
estimate yieldfj\fcw:im.

An outer-loop yield optimization algorithm explores thes@g spaceD:
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—

d* = argmaz(Yyc sim(d)) (2.8)
deD
whereY]\;é:im is estimated with MC sampling and simulation.

In MC sampling,N,,c process points are drawn from the process distributiep ~
pdf (s). Simulation is done at design poidt for each process poist, for each testbench
¢;, for each environmental poid; .., giving performance vectork, ; , and correspond-
ing constraint-value vectoks ; .

From the simulation data,fjv;;;m is the average estimated feasibilﬁ,yacross sam-
ples:

Yirc,sim(d) = £ >0 (2.9)

wheres; is the feasibility of sample;. It is computed across testbencHes}Vj, j =
1..N§:

0 =0(d, s;) = | ] 6 (2.10)

where&fijj is the feasibility of sample; on testbenclg;. It is computed across;’s envi-
ronmental corners and constraints:

R Ny()

5.5 = 0(d, i, &) = ] Imindgi i} <0) (2.12)
=1

Let us examine a typical runtime for direct MC on SPICE:

e Assume that simulation time takes 1 minute for one randomait® of one circuit on
all testbenches at one environmental corner.

e Assume that on average, there &fe= 8 environmental corners per testbench.
e There areV,,;c = 50 samples of process points.
e There are 5 simulators, each running on a different CPU.

e Therefore, the total simulation time to evaluate 1 desigd m{nute) *8 *50/5 =
80 minutes.

e Itistypical for a relatively well-performing optimizatioalgorithm to explore 1,000 -
10,000 or more designs. Let us say it examines 1,000 designs.

e Then, if we apply direct MC sampling, total optimization &#ns (80 min / design *
1,000 designs) = 80,000 min = 1,333 h = 55 days.

The advantage of direct MC on SPICE is simplicity and acourdaesults. The major
disadvantage is runtime, which makes the approach inflestsiluse in practice. Another
disadvantage is the inability to refine results because efithited number of samples
possible.
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There are really two versions of direct MC on SPICE, whicHedifvith respect to
whether blocking is used. In the blocking version, the 30pgB8cess points are only
drawn once. After that, just these process points are ugeithéowhole run. The non-
blocking version draws new process points for each new desigdidate. The advantage
of the blocking version is that there is a better chance tmeefiesigns because there
is no noise between design candidates’ objective functalnes. Also, if the mapping
from {d, 6, s} to performance is differentiable, then the statistical piag, fromd to the
statistical estimatoyf, remains differentiable. The disadvantage is that the filegsign
getstunedto those 30-50 points, such that the yield estimate on thamddwe overly
optimistic. The non-blocking version has opposite virtubg yield estimate stays unbi-
ased, but it is difficult to refine design candidates becalsenbise caused by different
process points overwhelms neighbors’ differences in divjetunction values — it breaks
differentiability.

2.2.2 Direct Monte Carlo on Symbolic Models

One might consider direct MC if something faster than SPIE€Hsed to evaluate circuit
performance. In the AMGIE systern [PlasZ002] for examplst-&valuating symbolic
expressions were used in combination with direct MC sanggindirectly optimize for
the symbolic-model estimate of yieldw/c:;ym:

—_—

d* = argmaz(Yyc,sym(d)) (2.12)
deD

Because circuit evaluation is chedp,,- >> 50 process points can be drawn. The
non-blocking (unbiased) choice of points can be used, [scthe noise is reduced by
such a largeV,,c.

The runtime for direct MC on symbolic models is reasonablefddunately, symbolic
models are quite inaccurate which means that the final desgobably not optimal. Ex-
tracting the symbolic model is not always edsy [Gie2002l$0Athe final yield estimate
is not accurate, though that can be mitigated by doing a gotaization MC sampling
on SPICE.

2.2.3 Direct Monte Carlo on Precomputed Regression Models

In this approach, the first step is to compute performancessgpn models using SPICE
simulation data. In the second step, direct MC on the modeisiformed, to returd™:

d* = argmax(YM/C;eg(d)) (2.13)

deD

In detail, the flow is:

1. Do space-filling sampling across the design, processeamilonmental variable
spacer; € (DU S UO).

2. Do SPICE simulation at each sample paipto measure performances.
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3. For each performance, build a regression madehapping the{d.s, 6} variables
to performance value\; = ().

4. Optimize for yield using the mode{s); } Vi as “cheap” statistical simulators.

5. Validate the final desigd* with MC sampling on SPICE.

Space-filling sampling can be done by uniform sampling,riLelypercube Sampling
[Mck2000], or another Design of Experiments (DOE) [Mon2p&gproach.

The flow owes its origins to the DOE literature, in which it &led the Response Sur-
face Method (RSM) and assumes use of polynomials for thessgn models [Maon2004].
Based on the analog CAD literature on building regressoth imput d, one can imag-
ine variants using linear models [Gra2007, MccZ2005c, L&)0posynomiald[DaeZ2002,
Dae?008| Dae200%, Agg2Q007], polynomiéls [Li200[7b, Mc&])0 splines [[Wol2004,
Mcc2005¢], neural network$ [Van2001, Wol2003, Mcc200bcjpsted neural networks
[LiuZ2002,/Mcc2005c], support vector machines [Ber2(00%2004, Ding2005%, DingZ200kDb,
Mcc2005¢], latent variable regression [SIn2007, Li2008&bping [Mcc2005¢, Yu2007b],
and CAFFEINE template-free functiors [MccZ20D5a][cha@ler One could even com-
bine regression models of performance with classificatimdets of feasibility, as in
[Ding2005Hh/ Dae2005].

The major challenge of this approach is the large number pdtivariables,n =
N, + Ny + Ny, which the regressor needs to handle. Accurate models aEpsovaria-
tions can need 8 or more random variables per device [Dre199fus, in a 100-device
circuit, there can béV, = 8 %« 100 = 800 process variables plus thg,; ~ 100 design
variables and a few environmental variables; hes 1000 input variables. This poses a
giant problem for scaling in most regression approache® ®cent quadratic-modeling
approach([Li2007b] has better scaling: it can build a modéDbik x n) time wherek is
the rank of the matrix approximating tli&n?) coefficients of the quadratic model. How-
ever, because the quadratic’s functional form is seveediricted, it cannot handle many
types of nonlinearities, such as discontinuities (e.g. wadransistor switches operat-
ing regions). Section’4.3.4 will show how inaccurate quachiaased prediction can be.
There are potential alternative regression approacheshwgtiale inO(n) build timeand
handle arbitrary nonlinearities (e.@. [Fri2002]), butstaxtremely difficult formnymodel
to build a sufficiently predictive model in jugk(n) with n ~ 1000 variables without an
unreasonable number of SPICE circuit simulations.

2.2.4 Adaptively Updated Regression Models

To overcome the issues of precomputed regression modedsidea is to do artera-
tive loopof sampling, simulation, and model building. New samplemimdel the input
space are chosen based on maximizing the model’s uncgﬁa‘lﬁtis approach has var-
ious labels, including “evolutionary DOE”, “active leang”, and “adaptive sampling”
[WoI2004,[Ber2003, DingZ2006]. Unfortunately, none of tigpeoaches demonstrated an

INot minimizing uncertainty. The aim is to find where the model isakest, i.e. high-uncertainty
regions.
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ability to scale to significantly larger problems; they oglwve proportional improvement
compared to a non-active sampling approach.

Another approacH [Dae2005, Yu2007b] is similar, exceptaigerithm chooses new
samples by maximizing the predicted performance(s) of itoelit. The issue here is that
one can readily get stuck in a local optimum, due to the medidihd spots, as sectignB.2
elaborates. Furthermore, [Yu2007b] used kriging, whick paor scalability properties.
Arelated set of approaches is density estimation from ssjoa models, as sectibn 2.2.12
will discuss.

Even better is an approach that accounts for both model tamerand predicted
performance, as sectién B.2 also discusses. Unfortunatedy that may not scale well to
the 50, 100, or 1000 input variables that such an approaclhdwaed for our application.

2.2.5 FF/SS Corners

The core idea of all corners-based approaches is: if coarersepresentative” of process
and environmental variations, and all corners can be “siijtben the final design’s yield
will be near-100%:

d* = argmax( H i(d, =) — Y(d*) =~ 100% (2.14)
deD

Z,eE

where to “solve at a corner” means to find a desie D which is feasible across all
constraints at the corné&t;, i.e. §(d, Z;) = 1. To “solve at corners” means to find a design
that is feasible at all those corndi&(d, =) = 1,6(d,=2) = 1,... }.

A corner-based problem formulation is more familiar to desirs (“solve at corners”),
rather than a statistical formulation, which many desigrdo not have deep experience
with. A corner-based formulation usually means a simpldimojzer design. One can
actually view direct Monte Carlo optimization (with blocig) as a corner-based approach
in which a very large number of corners is naively picked, paned to other corners-
based flows which try to find a smaller number of represerdatorners. There are many
possible interpretations of “representative”; one forrapée is “well-spaced along on the
3-0 contours of performance space”.

Typical commercial performance optimizers (elg. [CdnAf)(Bnps2005]) as well as
early-2000’s academic research such as ANACONDA [Phe2@@atlle both environ-
mental and process variations as corners. Environmentilticans are pre-specified as
corners®©, as described in sectid@ Z11.2. More dimensions are addétetoorners to
handle manufacturing variations as “FF/SS” corners of &Pibdels. FF/SS process
corners (F = “fast”, S = “slow” for NMOS/PMOS) are typicallygplied by the foundries
as part of process design kits. However, FF/SS corners aigrael for digital circuits’
key performances, not for analog. The SS comgs aims to bracket worst-case circuit
speed (i.e. slow speed), and the FF comgf brackets worst-case power consumption
(because fast circuits consume more power). However, gr@ouits have a greater va-
riety of performance goals, which are dependent on cirgpét(e.g. opamp vs. ADC).
Therefore FF/SS corners do not properly bracket analogppeence variations.
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The runtime of FF/SS corners is reasonable, because theanahtorners is reason-
able. But the optimization is not accurate because the coare not representative of the
yield optimization problem.

2.2.6 3¢ Hypercube Corners

Rather than having FF/SS corners, one could instead usetiieene+3-0 value of each
process variable to construct corners. The total numbeowfass, if just extreme values
are used, i@MNe+Ns) - Such an approach might be considered if there were few rando
variables. For exampley, = 3 environmental variables andl;, = 3 random variables
would lead to2° = 64 corners. But accurate randomness models may have 8 or more
random variableper device[Drel999], which would mean a 40-device circuit would
have N, = 320 random variables and therefore ab@dt’ corners. Furthermore, the
corners are extremely pessimistic because the probabfliach corner is far lower than
the probabilities of most random points from a typical MC géing. To reduce the
corner count, one could do fractional factorial samplingiM004], but this will remain
pessimistic and may not give adequate coverage of the mepeses.

2.2.7 Inner-Loop Corners

Another approach is to auto-discover some of the “meanestiers on-the-fly for each
performance, keeping the corner count low and keeping comepresentative. The ap-
proach [Och1999] performs a semi-infinite programming peob an outer optimization
loop traverses the design spaeen the current set df s, 8} corners to maximize perfor-
mance; periodically, it is paused and an inner optimizatieverses{ S U ©} on a fixed
d, minimizingperformance to find a neyus, 8} corner, which is then added to the outer
loop’s problem. This can be viewed as “outer approximatiohniorst-case performance.

This approach is actually extremely pessimistic, becalisanner optimization can
find process points that are highly improbable, due to thernobjective being worst-case
(as opposed to statistical). Also, the inner optimizatiorcpss to discover “mean” cor-
ners is computationally expensive. This is probably whyaphproach was never demon-
strated beyond circuits with a few transistors.

2.2.8 Inner-Sampling Corners

This approach, present in [Cdn2005c], also auto-discaberSmeanest” corners on the
fly for each performance, during temporary pauses of an datgr optimization. But
instead of a periodic inner-loop optimization, a MC samglia performed on the best
design point so far. Then, more corners are extracted framéw MC results: for each
performance, thés, 8} giving the worst performance value is added to the overaibte
corners.

This is an improvement compared to Inner-Loop Corners bsxdloe inner corner-
discovery is more efficient and less pessimistic. A bonusasintermediate MC-sampled
designs are returned, so that progress can be ratcheteddgowedisadvantage is thai,
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corners are added with each inner invokation, afds typically > 10 so the approach
quickly slows down after even just 1 iteration.

2.2.9 Device Operating Constraints

Device operating constraints (DOCs) are topology-specditstraints to ensure that de-
vices are operating in the intended region (e.g. transistost be in saturation), and
building block behavior is as expected (e.g. currents imesurmirrors must match).
While this is obvious to an analog designer, it is not obvitmuan optimization algorithm
unless explicitly measured and enforced. DOCs have beamustted in many places,
most notably[[Gra2001] and also described in [PlasP00Z2 @&, Ding2005k, Das2005,
Mcc2006d/ Gra2007], under various labels including “fbdisy guidance”, “operating
point constraints” and “structural constraints.”

DOCs by themselves are not used for yield optimizapen se but rather as a step
to take prior to yield optimization, to get a starting desthat has a higher chance of
being robust. Unsurprisingly, [GraZz001] found that yieklng DOCs in optimization is
significantly better than yield not using DOCS. [Sch2001dwé that using them within
the context of a yield optimizer will improve the optimizeiconvergence. Iri_[Ste2003,
Ste2007] a faster variant of optimization under DOCs wasgmted: the optimal design
is the maximum-volume ellipsoid bounded by linearly-medieDOCs in design variable
space.

2.2.10 Device Operating Constraints Plus Safety Margins

The authors of [Phe2000] suggested putting safety margiii3@Cs, because transistors
would stay in their target operating region even under slgginturbations in their operat-
ing point due to manufacturing variations. The upside i$ tiezent yield is maintained,
runtime is the same as nominal. The downside is that therepissaible reduction in
circuit performance, because high-performing analogudiscoften perform on the edge
of their operating envelopes, and safety margins wouldgmethat. Also, because DOCs
with safety margins are not directly optimizing on yieldeld analysis can only be done
as a post-processing step; there is no clear relationshigelea yield and safety margins.
Finally, an open issue is how to choose the size of the safatgins.

2.2.11 Density Estimation from SPICE Monte Carlo

The idea in this approach is to speed up yield estimationoanahprove accuracy at a
given design poind using density estimation. The steps are: (a) take a relgtsreall
number of Monte Carlo samples dtvia SPICE simulation, (b) estimate the probablllty
density function across the performances sppdﬁa()\) then (c) estimate yleIaFDE by
computing the volume of the pdf that is within the performafeasibility region:

Ng
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whered;(A\;(d)) is 1 if \; is feasible, and 0 otherwise. If the pdf construction works
well, then the yield estimateg;)\E can be more accurate than yield estimation based on
counting the number of feasible samplé@. Intuitively, this works because it uses the
information at a finer degree of granularity. The upper/loeenfidence intervals for a
density estimator’s yield estimate can theoretically @ge more rapidly than confidence
intervals using a binomial distribution that merely couiaasibility.

There is a tradeoff based on the number of simulations: tosyrsamulations is too
computationally expensive, and too few simulations givesnaccurate yield estimate.
Unfortunately, with more performance metrics, more sirtiatzs are needed for an ac-
curate estimate; and if we include DOCs there camiedredsof performance metrics.
Furthermore, estimates pflf (A\) make strong assumptions about the nature of the distri-
bution. For example, the approac¢h [Tiw2006] finds 10 randaints “which make the
distribution the most Gaussian”. This is clearly not repraative of the true distribution.
Or, the approacH_[Li2007a] models the frequency distrdouts a linear-time-invariant
(LTI) system, which makes it subject to oscillation (ring)rat sharp drop-offs in den-
sity. Also, [LiZ007a] could not handle multivariate dismtions, though that now has a
workaround in[[Li2003].

2.2.12 Density Estimation from Regression Models

This approach builds regression modg¢)snapping{d, s} to each performancg;. Then,
on a candidate design poidt it does Monte Carlo sampling on those performances,
simulates each modéi; to get performance estimate, and finally estimates yield using
density estimation rather than counting feasibility. Tkegression models can be built
beforehand, or on-the-fly (which gives this approach sintdahe approaches of sections
223 andZ2.214.

An example of this approach in practicelis [LI2Z007b] where tigression models are
quadratics built on-the-fly, and the density estimator sdobon an LTI system [LiZ007a].

The key problem is building accurate regression models én{th s} input space,
as discussed in section ZJ2.3. Approach [L12007b] aims tuwaby the problem by re-
stricting the search to be highly local, which has the oplitys@ompromising problem
discussed in sectidn 2.1.8.1. We actually have difficultgaeratanding the motivation of
using density estimation on cheap models, because thehetk is in SPICE simulation,
not in doing Monte Carlo sampling on regression models. gdiensity estimation adds
complexity, and introduces the additional issues of sa@i@.11.

2.2.13 Spec-Wise Linearization and Sensitivity Updates

In this approach [Ant2000, Sch2001, Gra2007], the optimiees a different perception
of the yield optimization problem. As shown in Figurel2.3 tptimizer's goal is to find
a design poind that shifts the performance contours in process spatand therefore
feasible region) to align favorably with the fixed distritmut pdf(s).

“Favorable” can be:
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e “Maximum worst-case-distance” (WCD) [Anf2000]: maximunstance from center
of the pdf to the closest feasibility boundary. This can lewad as a design centering
formulation.

e “Maximum yield” [Sch2001]: maximum volume under the pdf tlgin the feasible
region.

The spec—wisAe linearized approach models each perforrisafezesibility 6; as a linear
classifiery;: ¢; = ;(d, s,0). Each classifier is built from a sensitivity analysis and
SPICE simulations. The linear models are concatenatedto 4o approximation of the
overall feasibility reglortS N:{vi(d, s, 0)}. By definition, 3 is a convex polytope. Us-

ing 3, the algorithm finds a sizing that shifts the polytope appration to align “favor-
ably” with the fixed pdfg). The algorithm then repeats with further sensitivity gsals,
etc. Figurd 2B illustrates.

feasible region

contour lines are a performance metric (e.g. AV) at different
values of process parameters s1,s2 for a given sizing

jpdf of s1,s2 (fixed)
S2 a

change sizing to
get different
s1 contours

S2 & change sizing

Figure 2.3:A spec-wise linearized approach to yield optimization,nrigeal
case.

One issue is that the approach can only do local optimizatignto its sensitivity-
analysis nature. The assumption of linearity has some gifmting ramifications. The
authors justify the linear feasibility classifiers with @araphrase) “in a DOC-compliant
space, circuits are either linear or weakly nonlinear” [26{10] which draws on their re-
sults from 1994[[Ant1994]. 1994 is certainbgveralprocess generations ago. To test the
assumption’s validity oomodernprocesses, we performed an experiment using TSMC
0.18:m models. We used two circuits shown in Figukes 3.7 [andl 3.2116-@ansistor
amplifier and a 50-transistor amplifier, respectively. Faclecircuit, we picked “reason-
able” sizings that met the DOC constraints. We took /;f latin hypercube samples



2.2 Review of Yield Optimization Approaches 37

[Mck1979,[Mck2000] in a union of théd, s, 8} space, wheréV, is the number of in-
put variables, each; could vary by 2% of its total range, and eaghwas within+3c.
On each point, we simulated across 3 testbenches spannipgri@mances. For each
performance\; of each circuit, we built both a linear model and a nonlineadsi (SGB
[En2002]; see also sectidn 3.3). We used 75% of the dataaasirtg data, and the re-
maining 25% of the data for testing.

Table[Z.# shows the results, which shows the normalizedmaatn squared error on
the testing data (see equationl3.7). We see that the linedelsbave average predic-
tion errors of 19.0% for the 10-transistor design, and 18f8ft4he 50-transistor design.
On several performances, the linear models have errorediug 40%. In contrast, the
nonlinear SGB models have an average error than is aboutizalbf the linear models;
and a maximum error that is also half. Secfion4.5.4 has iadditexperiments that show
how poorly linear models capture the mapping from desigratsdes to performance.

10 transistor opamp prediction error |50 transistor opamp pred. error

{15 design / 89 process / 4 env. vars) | {68 design / 340 process / 4 env vars)

Performance |Linear model |Nonlinear model Linear model |Nonlinear model

AV 39.1% 15.7% 7.6% 76%
BW 40.3% 17.8% 21.7% 13.8%
CMRR 4.8% 4.8% 10.9% 7.1%
FU 24.0% 13.1% 14.0% 11.9%
GBW 23.8% 13.1% 13.6% 10.8%
GM 25 7% 10.8% 8. 7% 7 6%
IS 8.7% 52% 14 9% 9.9%
PM 29 3% 10.5% 16.5% 10.2%
PSRR 32 6% 12 5% 7.3% 7.3%
PWR 8.4% 4 4% 14 9% 9.5%
THD 16.9% 7 5% 23 4% 13.0%
0s 16.1% 11.3% 46 2% 4 3%
SR 92% 0.9% 41 8% 4 2%
ST 14 8% 4 8% 40 8% 36%
VOH 0.3% 0.3% 13.3% 5.1%
VOL 10.0% 3.0% 5.2% 3.4%
Average 19.0% 8.5% 18.8% 8.1%
Max 40.3% 17.8% 46.2% 13.8%

Figure 2.4: Experimental results to test validity of linear versus nioear
modeling.

A final concern is that we have only seen the algorithms$ of PB€&’] demonstrated
on a process variation model in which threshold volt&@eis assumed to be a varying
process parameter. As [Drel1999] elaborates, that meahsahation in the parameter
( is accounted for twice. We have not seen the approach deratetsion more accu-
rate models of process variations, which have >10x moreandariables and would
therefore slow down this sensitivity-analysis-based apph by >10x.
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2.2.14 Maximum Volume Ellipsoid

The maximum volume ellipsoid (MVE) approach [Xu2005] hasghHevel perspective
of the optimization problem similar to that of spec-wiseelmization, in which the aim is
to shift the performance contours to fit within an approximaof the feasibility region,
a(s).

Whereas the spec-wise linearization approach of seEfA® modeled as a con-
vex polytope, MVE models it as an ellipsoid. The approachsaimmaximize the volume
of the ellipsoid. The optimization is performed as follows) different design points
are sampled, each returning a different ellipsoid volurbea(posynomial mapping from
design point to ellipsoid volume] — V/, is automatically constructed, and (c) the opti-
mal desigrd* is found via geometric programming in a convex optimizafimmulation
[Boyd2004], usingd — V for feedback.

A related approach from the process control literature igmpamial chaos expansion
[Nagy2006]. Here, the spec-wise linearization is geneealito higher order via either
power series or polynomimal chaos. We refer the reader tgyRa06] for details.

The main issues with this approach are its modeling assomgtiFirst, an ellipsoid
can be a poor approximation of the feasibility region. Faaraple, it assumes convexity,
which cannot handle disjoint feasibility regions. Secopdsynomials can have poor
accuracy in modeling analog circuits, as seclion #.5.3 @xasrin depth.

2.2.15 Tradeoff Response Surface

In HOLMES [Sme2003b], the authors first generate a set of oomdated candidate
designs via multiobjective optimization, ignoring stétal variations. Then, they au-
tomatically build a polynomial model mapping design valésito performances, using
the nondominated designs as samples. Then, a robust oatiomzs done, using the
polynomial models in place of simulations, and incorpargtiandomness. The problem
with this approach is that the polynomial performance medeke unaware of random
variations; there is no way that the robust optimizatiomp stan reconcile this because it
continues to use those performance models. In other wdrdsapiproach assumes, and
relies upon, a tight correlation between nominal and roblestigns. [[Tiw2006] has a
similar approach, with similar issues.

2.3 Conclusion

In this chapter, we have reviewed the problem formulatianyield optimization, and
identified a set of requirements for an industrially usefiglgy optimizer. Then we re-
viewed the existing approaches to yield optimization.

None of the optimization approaches that we reviewed hdd daturacy and reason-
able efficiency. The approaches either (a) sped up the yieldlation via faster but less
accurate approximations, (b) optimized on a goal that sdméworrelated with yield
(e.g. worst-case distances) or (c) most commonly, madenpally dangerous simpli-
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fying assumptions. Additionally, some of the optimizatpproaches only worked for
small problems, orimposed constraints on the way circuitdctbe designed or modeled.
Finally, none of the approaches gave reliable global cgarmse in yield optimization.
The next chapter proposes our approach, which overcomss thsues to meet the
target tool requirements.
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Chapter 3

Globally Reliable, Variation-Aware
Sizing: SANGRIA

Monte Carlo? | don't know how you design, but my workflow di@svolve gambling.
—Anonymous

3.1 Introduction

In this chapter, we present SANGRIAtdiistical, @curate, ad globally reliable szing
algorithm [Mcc2008k]. SANGRIA was designed with industrigse in mind, to achieve
the yield optimizer tool requirements of chadiér 2: accyrafficiency, scalability, flexi-
bility, and global reliability.

To be accurate and flexible, SANGRIA uses SPICE in the loogh paraccurate model
of manufacturing variatiori [Dre1999]. To be efficient inHigof expensive circuit simula-
tions, SANGRIA follows the mantra “every simulation is getd. The mantra is carried
out with a combination omodel building optimizatio@VBO) andstructural homotopy
We now elaborate on each.

In MBO [Jon1998], regression models are built on-the-flyinigieach iteration of the
optimization and used to propose new designs. However, aglhsee, MBO algorithms
in the literature have issues that need to be overcome imr dodeork for industrial-
strength yield optimization. Part of the solution lies iretbhoice of regressor, which
needs to have excellent scalability properties withouhgpeionstained to a pre-set func-
tional form. A recently-developed approach called stotihagadient boosting (SGB)
[En2002] meets these goals.

Homotopy algorithms [Noc1999] work by starting with an egsgblem with an ob-
vious solution, then gradually transforming it into thednoroblem while simultaneously
maintaining the solution to the problem. Whereas typicahbtopy algorithms tighten
dynamicallytowards the true objective function, SANGRIA's “structlin@motopy” em-
beds problem loosening into the dateuctureof the search state, in which searches at var-
ious problem difficulty levels are conducted simultanepasid linked via a recent devel-
opment in evolutionary algorithms (ALPS: age-layered gapon structure([Hor2006]).
For SANGRIA, a “full” problem does full simulation acrosd tdstbenches and {process,
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environmental} corners; and loosened problems have feegbénches and / or corners.
Therefore SANGRIA can do exploration cheaply, while prangsdesign regions get
evaluated more thoroughly. ALPS has the characteristieabgically exploring wholly
new regions of the search space, in a fashion that shelterseggons from more opti-
mized designs; it is this characteristic that gives SANGRlIdbal reliability.

For shorter runtimes, SANGRIA leverages parallel progessi

In order to handle infeasible designs, and to perform megduimptimization beyond
~ 100% yield, SANGRIA optimizes on Cpk (equatidn{2.6)) rattiean yield.

SANGRIA is benchmarked on a suite of circuit yield optimirpatproblems, to demon-
strate its accuracy, efficiency, scalability, flexibiliagnd global reliability.

The rest of this chapter is organized as follows. SectioBs[Z3, and_314 review
SANGRIA's foundations: model-building optimization, st@astic gradient boosting, and
homotopy, respectively. SectibnB.5 describes the SANG&Rgarithm in detail. Section
3.8 shows experimental results on a variety of circuits, nts®me circuits have hundreds
of variables. Sectioh~3.7 discusses how system-levelitsravpuld be handled. Section
3.8 concludes.

3.2 Foundations: Model-Building Optimization (MBO)

3.2.1 Introduction to MBO

MBO [Jon1998] is an approach to optimization, in which regien models are built on-
the-fly during each iteration of optimization, and used togmse new designs. MBO is a
suitable choice for optimization when the cost of evaluptirdesign is expensive (e.g. >
10 s, and definitely when > 1 min or 1 h), so that the cost of mbdéting and model
simulation does not dominate the optimizer runtime. A tgpMBO problem formulation
is:

d* = argmaz{f(d)}
st. de€D

where f is the objective function to be maximized, andis the bounded design space,
e.g. D = {RN|d; jpin < di < dismas;i = 1..Ngz}+. While not shown here, MBO can
also apply to optimization problems with other types of d¢aaiats and with multiple
objectives. MBO is similar to what we termed “adaptively afetl regression models” in
sectioniZZM, except in we take MBO formulation to be mogenous, especially in its
accounting for uncertainty.

(3.1)

3.2.2 MBO Description

The general MBO algorithm is given in Tallle3.1. In line 1,idagpoints are generated
to “fill out” the design space, e.g. with uniform sampling,tioaHypercube Sampling
[Mck2000], or another Design of Experiments (DOE) [Mon2p@gproach. Typically,

the number of initial samples is a linear function/gf, with a lower bound. For example,
Ninit(Ng) = maz(20,2 % Ng). In line 2, each initial pointl; is simulated:f; = f(d;).
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Table 3.1:Procedure ModelBuildingOptimization()
Inputs: f, D
Outputs: d*
1. D = generatey;,,;;(N4) space-filling points inD
2. f = simulateD)
3. while stop()}£ True:
4. 1+ = build model with{ D, f} training data;f = ¢(d)
5. dpnew = Optimize oy according to an infill criterion\(¢/(d), u(d))
6.  frnew = Simulated,,c.)
7
8
9.

addd,.., to D; add f,,.,, to f
d* = d; in D with highestf
returnd*

Line 3 begins the iterative loop. At each iteration, a newigled,,.., is proposed with
the help of regression and an inner optimization (lines .4h6)ine 4, a regressor is built
(e.g. aneural network). In line 5, an inner optimizationésfprmed by simulating on the
regressor at candidate design points. The inner optinozaims to find ad to balance
the overall MBO'’s exploitation with exploration, by using anfill criterion” objective,
A. Specifically,A combines maximizingf(d) with reducing the model’s blind spots, i.e.
maximizing model uncertainty(d):

dpew = argmax{A(Y(d),u(d))} (3.2)
deD
where problem[{3]2) is solved with an off-the-shelf singlgective optimizer such as
[Yao1999]. The efficiency of this inner optimization is ndtgeat concern here, because
the cost of simulating the regresspfd) = f(d) is typically at least a few orders of
magnitude cheaper than evaluating the objective functiel) through simulations.

Step 7 updates the best design so d&it, MBO returnsd* once a stopping criterion
is hit, such as the maximum number of simulations being ed@gemaximum runtime
being exceeded, the target objective being hit, or converg@aving stagnated.

A conceptual illustration of MBO in action is given in Figei8.1 and_3]12. There
is a single design variablé, which is the x-axis. Each diamond is a training datapoint
{d;, f;} from steps 1-2. The smooth curve interpolating the traimpioigts is the regressor
y’s predicted values acrogk Here, the regressor is a feedforward neural network with
one hidden layelf [Amp2002]. The infill criteriak is the curve of “mountains” sitting on
top of the regressor’s curve. Here, uncertainty is compatetherely the distance to the
closest training pointu(d) = min{abs(d — dy), abs(d — d>), . .. }H

The infill value is a weighted sum of regressor value and uacdy:

A(d) = (1 - we:cplore) * @D(d) + Wezplore * U(d) (33)

INote that using distance is jusheway to compute uncertainty; as we will see later there argebet
ways.
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wherew,.ior iS the relative weight for exploration compared to exphdia; we,piore €

[0, 1] and a reasonable choice is[in2, 0.8]. Therefore at each training point, uncertainty
is 0 and the infill curve intersects with the regressor’s euftvottom of each mountain
valley). As one moved away from a training poind;, the uncertainty:(d) grows, and
with it the infill curve A(d), until a mountain peak where the closest training poind to
changes.

Line 5 of Tabl€_3]l chooses a neiwalue to maximize\. In Figure[31, this newd-
value is indicated by the vertical bar@t.., ~ 1.6. Notably,d.,,.., is not at the maximal
value of merelyy, but instead a combination gf andu to account for the model’s blind
spots (high-uncertainty regions). Once chos&p,, is simulated ory, the training data
is updated, the best point is updated, and a new model isftuiith incorporates the new
data. That updated model is shown in Figurd 3.2. Note how &t 1.6, the simulated
value is much higher than the first model (Fig.]3.1) had ptedic This demonstrates
how accounting for model blind spots viais crucial. Now, the nextl is chosen at
d,.ew =~ 2.6, and the loop repeats.

Many variants of MBO algorithms exist in the literature. €da&al quasi-Newton-
style optimization algorithm$ [Noc1999] can be consideas®BO algorithms, in which
the regressor at each iteration is a quadratic model, thi éniierion only considers
model optimality (ignoring model uncertainty), and theenoptimization has extra trust-
region bounds. More recent quadratic-modeling approachieisch have less reliance on
a cheaply-measured derivative (e.g. NEWUQA [Pow2006]h akso be viewed as an
MBO algorithm. But one does not need to restrict the regmregsguadratics, nor the
infill criterion to solely exploitation. Furthermore, wiblut trust-region restrictions on the
inner optimization, the optimizer gains the property oftgdbsearch.

The paper(lJon1998] gives a particularly good account of MB@ses a kriging re-
gression model which naturally reports prediction undetyaand an “expected improve-
ment” (EI) infill criterion that balances exploration andpéoitation. The dissertation
[Sas200R] analyzes kriging-based MBO more thoroughlyirt@sarious infill criteria ap-
proaches combininj(d) optimality with model uncertainty.(d). An important lesson
was that El constructed@— A mapping characterized by large plateaus with periodic
spikes. This mapping is very difficult for the (inner) optiar to search across.

In contrast, the “least-constrained bounds” (LCB) criergave better-shaped map-
pings, which directly led to more reliable convergence ef hBO algorithm [Sas2002].
The LCB criterion was, in fact, already presented as our g@tenin equation[{313).

3.2.3 MBO Shortcomings

MBO algorithms are promising because they make maximum Laeadable data. How-
ever, the versions in the literature have several issugsecedly in light of the yield
optimizer requirements (secti@n 211.3):

¢ Inadequate regressorsThe typical regressor used, kriging, has terrible scalirpp
erties: the model build time is exponential in the numberiofehsions, limiting it to
fewer than~ 10-15 dimensions. The regressor needs to scale well witkasing in-
put dimension and increasing number of samples. While Giadoased MBOs like
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[Pow2006] can scale to more dimensions, they only managedonavent the non-
flexible structure of quadratics by limiting their applicat to local search, whereas
we want to do global search for reasons discussed in s€ciIoB. 2.

e Issues in uncertainty. Most regressors do not have a natural way to compute uncer-
tainty. Linear models do, but we need to account for nonlinegppings. Kriging also
does, but it scales poorly with input dimension. Densitynesation reframed into re-
gression also reports uncertainty, but density estimatigarithms scale poorly with
input dimensionality. Aregressor-independefdshion is to make uncertainty a func-
tion of the Euclidian distance from the closest trainingnt(), as the example in
sectiorlC3.Z2 had described, leading to the triangle-gsh&peuntains.” This is fine
for a few dimensions, but past 10-15 dimensions, each psiassentially far away
from each other point[HasZ2001] which renders the Euclide@asure ineffective.
Furthermore, it is unclear whdtstance — uncertainty mapping works best.

e Sensitivity of infill criterion. While LCB is relatively robust compared to El and
other criteria, it still shows sensitivity to 8., Setting [Sas2002]. We do not
want a poonv..,i.-. t0 constrain the ability to achieve the global optimum.

e Too few samples for high-dimensional prediction.Even if we overcome the other
issues, ifN; > 100 dimensions, and the number of simulations is limitedrehs
simply too little data to make any meaningful prediction lat bn such cases, MBO
will degenerate to random search.

3.3 Foundations: Stochastic Gradient Boosting

3.3.1 Introduction

The choice of regressor makes a crucial difference in MBQoperance, as sectign 3.2.3
found. The regressor must be able to handle arbitrary neatities, be constructed
quickly, simulate quickly, scale well with high input dimsan, perform well with few as
well as with many training samples, and provide an uncegtaimeasure.

After considering several modeling approaches, we foungcant technique called
stochastic gradient boosting (SGB)_[Fri2ZD02] becauseét &l the criteria (except one).
SGB handles arbitrary nonlinearities because it is a coegboSpiecewise-constant func-
tions — an ensemble doostedClassification and Regression Trees (CARTS) [Brel1984].
CARTSs are recursively-constructed piecewise constantaisothat divide the input space
in hypercubes along variable axes. SGB constructs and atesuuickly because CARTs
construct and simulate extremely quickly, and the CARRjag part of SGB (a sum) is
computationally-cheap. SGB handles high input dimengitgnhand fewor many train-
ing samples because the successive-decomposition appoddART quickly prunes
dimensions and training data.

SGB hits all the criteria but one: it does not directly repprédiction uncertainty.
Therefore, aootstrapped ensembtd SGB modelsy), is used. The predicted output
from the whole ensemblegst (v, d), is merely the average value across the SGB models’
outputs. Uncertainty.(¢, d) is the standard deviation across the models’ outpMs.
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does not need to be large, because the uncertainty only eeedgh fidelity to roughly
distinguish regions of uncertainty (e.y.,, = 5 is reasonable).

Due to its desirable properties, SGB is also used elsewhetes thesis: sectidn 8.4
uses it for global nonlinear sensitivity analysis, and tBEILEs algorithm of sectidn_10.4
can be viewed as an adaptation of SGB that replaces CARTsawiditial circuits.

The rest of this section is organized as follows. SeclionZ3d®scribes the form
of SGB ensembles, SGBs, and CARTs. The remaining secticswide how to build
each: section-3.3.3 describes SGB ensemble (group of S@GBs)raction. Section 3.3.4
describes a single SGB model (group of CARTS) constructibmally, section3.315
describes single-CART construction.

Following that, we return to the more general discussion®NSRIA foundations,
and then SANGRIA itself.

3.3.2 Form of SGB Ensemble Model
An SGB ensemble takes the form:

1

¢(w> a NB?’LS

x> V() (3.4)

i=1

wherez is an input vectory)¥) is thei** SGB model in the SGB ensemble, aiNg,, is
the number of SGB models.
A single SGB model)¥) takes the form:

NS,

V(@) =) ax ) (a) (3.5)
j=1

wherey @ is thej** CART model in the SGB model.2; is the number of CART models
in SGB ensemblé anda is the weight per CART (becausewas the learning rate during
SGB construction).

A single CART regression model”) is apiecewise constaritinction, where a dif-
ferent constant value is output depending on the regidhthat input vectote is in:

oW if x e RY
o if @ e RY

9 () = (3.6)

o) if x € RY

where the region$R§j), Réj), -+ - } are each defined by a hypercube in input space accord-
ing to the CART construction algorithm. The regions arealigjand collectively cover
the whole input space.
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3.3.3 SGB Ensemble Construction

An SGB ensembile is constructed bgotstrappingSGB models. We now give details.

Table3P describes construction of SGB ensenibleX — y, whereX = {x;},j =
1..N are the training inputs, angl= {y,},j = 1..N are the training outputs.

Line 1 is the outer loop of ensemble construction, encompgsshoosing training
data (line 2), building an SGB model (3), and updating the SfBBemble (line 4). It
repeatsvV,, times, resulting in an ensemble holding,,;, SGB models.

One can draw sample lists from an unseen distribution of,ldespitebeing only
givenonelist as input. This rather surprising ability is due to thehtrique ofbootstrap-
ping [Efr1979]. The implementation of bootstrapping is meredyrgpling with replace-
ment. Accordingly, line 3 generates a “sample lisX ), y(¥} from the list{ X, y} via
bootstrapping.

Bootstrapping has another useful property: with each saitigtf X (¥ (1 higher-
order computations can be performed to get higher-ordenfdes”. Here, our computa-
tion is to build an SGB model from the MC sample list, therebiting an “SGB sample”
@ (line 4; details in sectioi’3.3.4). The final modelis merely a collection of SGB
samples (line 5). Simulating the SGB ensemble can be viewddrther higher-order
computations on the original bootstrapped data.

Table 3.2:Procedure BuildSgbEnsemble()
Inputs: X,y
Outputs: ¥
1.¢=0
2. fori=1..N,
3.  {X® y®} =N samples with replacement frofiX , y}
4.  ® =BuildSgh(X ®, y®)
5
6.

w:wuw(l)

returny

The simulation and construction of Random Forests [BreP@0dimilar to SGB en-
sembles, except Random Forests bootstrap-sample CAREsihsf SGB models.

3.3.4 SGB Construction

An SGB model is constructed yoostingCARTS in a stochastic fashion. We now elab-
orate.

Table[3.8 describes construction of a single SGB model. Tdieihg inputs and
outputs are{ X @y}, as called fromBuildSgbEnsemble()(For use elsewhere, the
inputs can be any X, y}.)

In line 1, the SGB model is initialized as an empty set. In [ehe current target
outputy ® is initialized to the overall target outpgt”. y{9 can be regarded as the
portion ofy® which still needs to be learned (residual) . Lines 3-7 areS3& boosting
loop. At each iteration, training data is selected (linead;ART ¥'\%) is built (lines 5-6,
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Table 3.3:Procedure BuildSgb()

Inputs: X ® 4@

Outputs: )

2. y&) =y®

3. repeat

4. {X@ y@Y = |4+ ND| samples without replacement frof X @, y.,.,.c) }
5. L~ U tmins tmin + 1, bimaz })
6

7

8

9

=

V) = BuildCart(X @, y@ 1)
Yl = (X @) =yl — ax (XY

until (@) < €14
10. returm)®

details in sectiof 3.3.5) and added to the ensemble (Iin&nb)ygﬂ,r is updated (line 8).
Line 10 returns the final model. Unless stated otherwise, S&Bngs arek,,, = 0.01,
b, = 2, bmax = T, @anNda = 0.1.

The loop stops (line 9) when measured erg@p® hits target training errot,,,,.
(v is measured as normalized root mean squared error:

N (@)

4 @) (DY _ () 2
e(@b(l)): Nl(l)*z< PO (z”) —y, )) (3.7)

— maz(y®) — min(y®

whereN® is the number of samples, afid!”. 4"} is a given {input, output} samplé
from the sample dataX (¥, y®},

SGB converges robustly because it takes an importance san{[$) [Hes2003] per-
spective of modeling space. In typical (Metropolis) Mont&lG sampling, the sampling
distribution is identical to the target distribution. In, itBe sampling distribution isiased
towards the regions which will give (approximately) the miogormation for the statisti-
cal estimator. Many boosting algorithms do IS implicitlymodel space [Fri2003]; SGB
is designed to do xplicitly. The sampling bias is exactly the difference betwgeand
Yarget, SINCE @n unbiased sampler would simply always tagget

With this IS perspective, the SGB algorithm takes measuremhance the effective-
ness of the sampling (model building):

¢ SGB mitigates unwanted biases due to greedily-built CARTigjecting randomness
via choosing a different fraction of training data to train each CART (line 4).

e SGB injects further randomness by randomly choosing theammanum CART depth
¢ at each iteration (line 5), so that sometimes shallow CAR&dailt, and sometimes
deep CARTSs are built. These so-called “weak learners” aeéulibecause thegnly
need to be better than randomthe iterative loop “boosts” them into one overall
“strong learner” (hence the label “boosting” for the itévatloop).
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e SGB follows an IS tactic to avoid premature convergence tdagtimal model: have
aslowupdate of the sampling bias. Specifically, it updajgs.4.: by a factora (e.g.
0.1) rather than a full 1.0 factor (lines 8,9).

Because SGB does IS, it inherits the dimensionality inddpece of Monte Carlo algo-
rithms, which is the core of the theory showing why SGB hassexcellent scalability
properties([Er2002].

3.3.5 CART Construction

This section describes the construction of a single CARTehod

CART construction is performed by recursive partitioninghypercubes in input
space[[Bre1984, Fri1991]. The starting region is the whofaut space. At each par-
tioning iteration, all existing eligible subregions arditsimto two child subregions. The
split of a regionk into two child regionsk,. s, and R, takes the form:

if ¢ € R then
if ZTsplitvar < splitval then x € Rz (3.8)
else T € Rignt

where z,1.- 1S One of the input variables, anglitval is its split value. This split
is generated by considering all possible variables and ttwresponding split values,
and choosing the best according to a “splitting criterioni this case minimizing root
mean squared erret Partitioning continues until there are no eligible sulweg left.
A subregion is eligible to split if it has not hit stopping tetiia. Stopping criteria are:
maximum number of recursionsand no samples left in subregion to split.

A CART takes the form of a binary decision tree. Accordindhgy have a visual
interpretation. Section 8.3 exploits this property of CARM a classification setting, as
an insight aid for designers.

3.3.6 SGB Construction Example

This section illustrates SGB construction in action on trebfem of learning a mapping
of a sinusoidal function. In the first boosting iteration @& (lines 1-9 of Tablé-313),
one CART is built to the current targg®) . At at this point,y(?) is still equivalent to
the overall targety(¥. The SGB’s output is equal to multiplied by the initial CART’s
output. Figuré_313 (a) illustrates. Note how the energy ef$iGB response is only about
a = 10% of the overall target sinusoid. Also not the piecewdeastant nature of the
mapping.

Figure[33B (b) illustrates the outcome of the next step. Nate the SGB response
moved closer to the target, but ntoo quickly. Figures (c) to (g) illustrate further con-
vergence, at boosting iterations 2, 5, 10, 20, 40, and 77tefdtion 77, the target error
¢=0.01 was achieved, so SGB stopped.

Figure[33B (h) illustrates convergence of SGB em@s!)) versus boosting iteration.
Note the smooth convergence over time. The convergencesrakarper in earlier itera-
tions, and slows in later iterations; this can be confirmedhnispections of figures (a) to
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(g9) where the difference between the curves is more drarfatiearlier curves such as
(a) to (b), and less dramatic for later curves such as (f) }o (g

Interestingly, the ideas behind SGB can applgitouits as well, where small circuits
replace CARTs. Sectidn_10.4 explores this in detail. As akmeek, note how simi-
larly the sinusoidal mapping is learned, in Figlre 3.3 forRIA, versus Figure—10.8 for
circuits.

3.4 Foundations: Homotopy

Homotopy / continuation methods (sec. 11.3[of [Noc1999)ar optimization strategy
in which the original optimization problem of solvin(d) = 0 is not solved directly.
Instead, an easy problem with an obvious solution is set nis dasy problem is grad-
ually transformed to the true problem, and during the tramsftion, the solution to the
problem is continuously tracked. Eventually, the probless become the true problem,
and therefore its solution is the true solution.

Specifically, thehomotopy mag (d, n) is defined as:

H(d,n) =n*f(d)+ (1 -n)*(d-a) (3.9)

wheren is a scalar parameter and € ®¢. Whenn = 0, equation[[30) becomes the
easy initial problemH (d,n) = d — a, having the obvious solution @ = a. H(d,n)
becomes the original problem when= 1. The steps in between, i.e. the path in the
space oid Un whereH (d,n) = 0 for various values ofy, is called thezero path

There are various strategies for shifting from the easy lerobaty = 0 to the true
problem at; = 1. The most obvious is to gradually changéom O to 1, and solve at
each step along the way. However, this may not always workusecthe zero path may
not always follow monotonically increasing valuesipfMore successful strategies track
the zero path itself, rather than thevalue.

3.5 SANGRIA Algorithm

Now that we have described some foundations of SANGRIA — mmdi&ding optimiza-
tion (MBO), stochastic gradient boosting (SGB), and hormpgte we are prepared to
describe the SANGRIA global yield optimization algorithtealf [Mcc2008k]. We start
by describing how MBO can be improved, then discuss how #edd into SANGRIA
and its other core elements. After that, we will be ready tosthe results of SANGRIA
doing yield optimization of analog circuits, in sectionl3.6

3.5.1 The Beginnings: Improving MBO

MBO is promising because it makes maximal use of simulatidormation. However,
traditional MBO approaches have major issues as sdciioB 8ifcussed. This restricts a
straighforward application of MBO to yield optimization.
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However, we can systematically fix these issues. Thble 3whmarizes how. To
have a regressor with good scaling properties and withoued functional template, we
start with SGB regressors. But to handle uncertainty toous& anensembleof SGB
regressors, where uncertainty at an inguis the standard deviation across the SGBs’
outputs ad.

Table 3.4:0vercoming MBO Issues for SANGRIA.

| MBO Shortcoming | Solution |
Inadequate regressors Use stochastic gradient boosting (SGB)
Issues in uncertainty Useensemblesf SGB models
Sensitivity of infill criterion Make inner optimizationtruly multi-
objective
Too few samples for hight Combine MBO with a gracefully-
dimensional prediction scaling optimizer

The sensitivity of the infill criterion’s exploration vs. pboitation tuning parameter is
resolved byremovingthe tuning parameter, and instead a truly multi-objectp®miza-
tion is used. The multi-objective optimizer minimizes castd maximizing uncertainty.
The single criterion becomes two objectives. The specifiordhm used is NSGA-II
[DebZ002].

Finally, for the high-dimensional cases when there are two $amples to predict
meaningfully, MBO is always run in parallel with another alghm that scales grace-
fully with a large number of search dimensions. Here, theiahds an evolutionary
algorithm (EA) with several specific tactics that we will diss shortly. The EA and
MBO parts share each other’s design candidates and sioniliatiormation. Therefore,
behavior in many dimensions is graceful, because the dv@fNGRIA algorithm does
not needMBO, but takes advantage of it when the regressor has enoaighta make
good predictions.

3.5.1.1 Structure of SANGRIA
The structure of SANGRIA is shown in FigureB.4.

SANGRIA has the following key elements

¢ High-dimensional model-building optimization. MBO works with SGB to make
maximum use of simulation information. An EA in parallel anss that search is
graceful when there is not sufficient data for good models.

e Structural homotopy. Exploration is performed on a loosened objective function
(that happens to be cheaper), and exploitation is done ofulhebjective function
(which is more expensive).

e Local-optimization search operator. This operator accelerates the EA's convergence
by de-randomizing the EA's search steps.
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Figure 3.4:SANGRIA Structure.

We now discuss structural homotopy and the local searchatqeiurther. Then, section
3.5.2 will give a highly detailed description of SANGRIA.

3.5.1.2 Structural Homotopy

SANGRIA has a set of search “layers”, where each layer isntiptng a population of
candidate designs (“individuals”), as shown in Figuré 3iddte column. The layers are
organized according to the degree to which the candidatgresave been optimized
(“age”): randomly-drawn designs enter the lowest layere®-age designs, and if they
do well they get promoted to ever-higher layers while beungHfer optimized (and aging
+1 unit per generation). Each layer has a maximum age: 2@yerl0, 40 for layer 1, and
so on. If a design gets too old for a given layer, then it isteigdrom that layer, thereby
preventing wasted search effort on a stagnated design. Gineaoncept is called an
age-layered population structure (ALPS) [Hor2006].

To enable yield optimization, only design candidates atigbest age layer are fully
simulated (across all analyses, process points, and emv@otal corners). Designs at
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lower-age layers have fewer simulations. We call this ‘seal homotopy.” Other ho-

motopy algorithms work by starting with an easier-to-sdv@sened version of the prob-
lem, then tightening the probledynamically In contraststructuralhomotopy embeds

the loosening into the algorithm’s data structure (stafié)e solution to each layer can
be regarded as a point on the homotopy “zero path”. Thergfoeecan view structural

homotopy as a new approach to traverse the zero path: leazansely to begin with, and
refine it over time.

Specifically for circuit yield optimization, see how in Figui3.4, layer 0 is just simu-
lated at a single process/environmental corner of {dc/atyses, nominal process poit
typical environmental poind}. Layer 1 is like layer 0. Then, layer 2 adds transient/other
analyses on the singles{ 8} corner. Layer 4 adds non-nominal corners for dc/ac, and
layer 6 adds non-nominal corners for transient/other. Thaae of corners is elaborated
in sectiof:3.5.216. Finally, layer 8 does a full Monte Cailmsation (with blocking) on
each candidate.

This split of simulations was chosen based on choosing aealwhich give many
key measures for less simulation cost (ac, dc), and defgetii@ more expensive analyses
which only give incremental measures of quality (transiand corners). The core idea
of structural homotopy does not depend on the exact choaeever. In sectiof 915, we
will show a different allocation of evaluations that is atftective.

To balance out the simulation cost per age layer, encounageraore exploration at
the lower levels, and avoid potentially prohibitive toa simulation costs, SANGRIA'S
lower layers have larger populations which shrink going amg. Figurd_3]4 left illus-
trates. The top layer has a tiny population, which is why vielat “ultra-local”.

To add fidelity at layers with fewer simulations, the non-giated {s, 8} combina-
tions are predicted by adding performance deltas from ofkeé}'s. Individuals are
compared via a cost function that allows meaningful optatian when no simulations
are feasible, some simulations are feasible, or all sirariatare feasible.

Each layer follows an evolutionary algorithm (EA) framewdor updating the pop-
ulation with selection operators and search operatorsec8eh for layer: is typical EA
selection, except individuals at laye+ 1 are also considered.

Sectior 3.5 will elaborate on specific algorithms, anagjmealgorithm settings will
be given in the results sectidn(B.6).

3.5.1.3 Local-Optimization Search Operator

Each design candidate has its own local-optimization sestatey, allowing it to learn
about the local structure of its search space and have aatsdeconvergence. This is
in contrast to a typical EA which uses mutation and crossoperators, which have no
memory and do not address fitness. It is also in contrast torfetie” EAs which run a
whole or partial local optimization for each individual'gauation.

The specific local optimizer used is Dynamic Hill ClimbingHQ) [Yur1994]. DHC
was chosen compared to other local optimization algoritifonsa few reasons. First,
derivatives are costly to compute, which rules out classioalinear programming algo-
rithms such as quasi-Newton with BFGS update [Noc1999]os&che search space has



56 Globally Reliable, Variation-Aware Sizing: SANGRIA

continuous and / or discrete elements, ruling out many moderivative-free algorithms
such as NEWUOAJPowZ2006] which can only handle continuowsgevariables.

Nature-inspired algorithms such as simulated annealiAg, /olutionary algorithms
(EAS), and particle swarm optimization (PSO) are derivafree and can handle mixed
continuous/discrete spaces. However, their behaviommeditowards global optimiza-
tion, not local, so they are inefficient when the aim is metelyal optimization. One
exception is the EA variant of covariance-matrix adaptafidan2001] which has fast
convergence and a local optimization focus, but unforteiyatt only works in continuous-
valued spaces.

Pattern (direct) search algorithris [Kol2003], which irdguthe simplex([Dan1963]
and Hooke-Jeeves [Ho01961] algorithms, are also dere+tee, can handle mixed spaces,
and have a local search focus. These are a reasonable ciodici fact they have been
used within other analog CAD optimizels [Phe2000]. DHC [¥84] can be viewed as
a loosened version of pattern search - loosened becausewsdbr stepsize growth in
order to improve convergence rate, at the expense of logsinge pattern search conver-
gence properties. Since we have many local optimizers iallehrwe are less concerned
about provable convergence per local optimizer, and moneemed with convergence
rate; hence we chose DHC.

We are now ready to describe the specific algorithms withiNGRIA, including an
elaboration of DHC.

3.5.2 SANGRIA Detailed Description

This section describes specific algorithms and sub-algostin SANGRIA, in detail.

3.5.2.1 High-Level Algorithm

SANGRIA's high-level algorithmSangriaOptimization()is described in Table—3.5. The
algorithm’s inputs are the search space boundage gapV,, maximum number of layers
K, and number of individuald/; (k) for each layet.

Line 1 initializes the generation cound,,,, the data structur¢” which will hold a
population at each age layéi,, and a list of all individuals encountered so far in the
searchP,;. Lines 2-13 are the generational loop, which repeats utmjd@ng conditions
are met. Lines 3-6 handle the case of an “age-gap” generatioch happens every
N, generations. In an age-gap generation, Gttelayer getsN,(0) new space-filling
individuals in theNp-dimensional spac®, including a “loose” layer-0 evaluation.

In lines 7-9, each age layét; is updated at a time. First, parents are selected from
the current or lower layer, and only if they are not too old.efheach individual's local
DHC statey is updated, including evaluations appropriate to the agerla(in line with
structural homotopy). Sectidn 3.5.P.8 gives details on DGating. Line 10 updates all
the individuals encountered so fdft,;, just in time for the MBO inner optimization to
use it (line 11). Lines 12 and 13 do bookkeeping: updatind#st design so fail*, and
generation coundv,.,,. Once the search terminateb; is returned; and of course during
search intermediaté*’s can be returned.
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The sections that follow give details on other aspects of GRN, including some
of the above routines which were called $sngriaOptimization()

Table 3.5:Procedure SangriaOptimization()

Inputs: D, N,, K, N.(k)
Outputs: d*
1. NgenIO;P:@,Pa” =0
2. while stop()}£ T'rue:
if (NyenoN,) = 0:

if |P| < K:

P\P|+1 =0

P, = SpaceFillindividuals¥, (k), Np, D)
fork=1to|P]:

P, = SelectParent$i,, P._1, N.(k))

P, ; = UpdateLocalOptStatéy, ;, k), j = 1 to| Py
10. P, =uniquef,; U P)
11. Pp; = Pp U InnerOptimize{,, D, k)
12. d* =d;in P,; with highestY or C'pk
13.  Nyen = Nyep + 1
14. returnd*

©®NO U AW

Layer 0: max age = 19 new inds MBO

. . inds for trainin
Sim: dc/ac nominal 9,

t randomly generated inds

(@)

Layer 1: max age = 39 new inds

Sim: dc/ac nominal

inds for training

% inds available for selection MBO
Layer 0: max age = 19

Sim: dc/ac nominal

inds for training

t randomly generated inds

(b)

Figure 3.5: (a) SANGRIA with just one age layer so far| = 1. (b)
SANGRIA with two age layers so faF| = 2.

3.5.2.2 Growth of Age Layers

We point out thatP starts out with just one layer, as shown in Figird 3.5(a).hatfirst
“age gap” generation, it grows a new layer, as shown in Fi§liiéb). At subsequent
“age gap” generations, it keeps adding age layers, untitstdteady state witlk layers
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as Figurd 314 shows. At steady state| = K. MBO always feeds to the current top
(non-ultralocal) layet p,.

3.5.2.3 SANGRIA Individuals

The atomic unit that SANGRIA processes is an “individual” h&veas in most EAs an
individual is a single design candidate, here the individkia local optimization search
state x. x holds (a) one or more design points, (b) associated ciramaituations, and
(c) local optimizer-specific state information. More infoation will be provided after
sectior.3.5.Z18 where we discuss the local optimizer, DiH@are detail.

3.5.2.4 ALPS Selection

Table[3.6 describes tournament selection of parents in SRAIGLine 1 determines the
candidate parents by merging layeand layerk — 1, and only keeping the individuals
with age< maximum age at layet. Lines 2-5 fill the selected population: lines 3 and 4
randomly draw parents 1 and 2 with uniform bias fréty,.;, and line 5 selects the parent
with the lowest cost. Line 6 returns the updated populaitpn

Table 3.6:Procedure SelectParents()

Inputs: Py, P._1, Np(k)
Outputs: P
Pcand = ageOkPk U Pk:—l)
fori=1..Np(k):

parl ~ unif(P.ana)

par2 ~ unif(Peana)

Py, = best(fparl, par2})
returnp;,

ogakrwdpE

3.5.2.5 SANGRIA Model Building Optimization

This section describes how MBO is deployed within SANGRIADIE[3Y describes the
high-level MBO algorithmnnerOptimize()

Lines 1 and 2 build the training input and output data, retpely, using the infor-
mation of all the individuals so fat’,;. P, is the first individual in this list of all
individuals, P, » is the second, and so oR,; ;.d is the design point of the first individ-
ual, and so on.

Line 3 constructs an SGB ensembiérom the training datd X , y} (see sectiop 3 3).
In line 4, an inner optimization is run according to the pehlformulation. Since there
are two objectives (rather than a single, sensitive infitecion), a Pareto-optimal set of
designs is returned to collectively approximate exploration-exploitation tradeoff. The
multi-objective optimization is performed using NSGA{D¢b2002].

Multi-objective optimization could return a large numbérRareto-optimal individ-
uals. We do not want to evaluate all of these because it caddrbe computationally



3.5 SANGRIA Algorithm 59

expensive; a better option is to use a representative subggline 5 reduces the number
of individuals from|P;,,.e.| t0 N;uner, USIing clustering. SANGRIA employs bottom-up
clustering (hierarchical agglomerative clusteririg) L¥68] because it is simple, fast, and
reliable. Bottom-up clustering works as follows: (a) eadmnpis assigned its own clus-
ter, (b) measure distance among all clusters, as the Eacldistance between the closest
points in the clusters, (c) merge the two clusters that haeetasst distance, (d) if target
number of clusters is hit, stop, otherwise goto b.

Model-building time, and inner optimization / model simtia time could become a
potential bottleneck. Accordingly, we use a rule of thumidimoosing parameter settings:
the computational effort oflnnerOptimize()cannot exceed the computational effort for
circuit simulation.

Table 3.7:Procedure InnerOptimize()
Inputs: Py, D,k
Outputs: P, per
1. X = {Pall,l-da Pall,Z'dy e }
2.y ={cost(Pu, k), cost(Pao,k),...}
3. ¢ = BuildSgbEnsembleX, y, N.,.s)
_ [ minimaze{cost(y), d
4 Binner = { maximiz{e{u(fﬁ, d)i}} stdeD
S. Pinner = CIUSter@nnera Ninner)
6. returnpP;, ., )

3.5.2.6 Setting Corners

SANGRIA uses a corner-based approach to enhance efficieeeyed as a “lightweight”
Monte Carlo simulation. Recall that the core idea of corfrsed approaches is: if
corners are “representative” of process and environmematations, and all corners can
be “solved”, then the final design’s yield will be near-100We repeat equatiofi (2.114)
here:

d* = argmaz( H i(d,=;)) — Y(d*) = 100% (3.10)
eb  Zem
The challenge in SANGRIA is to choose corners that are reptesive of the perfor-
mance bounds, but with a minimum count. SANGRIAS approado (a) takeV;c cand
(e.g. 100) samples of process points, simulate them allgtieal environmental point,
then (b) chooséVyc chosen (€.9. 25) representative points (corners). Represestatv-
ners are chosen in two steps: (b1) do nondominated filteawards worst performance
values, i.e. nondominated filtering in the opposite dimatii of optimal, and (b2) if
needed, further reduce the points by bottom-up clustefliagli968]. Figuré_316 illus-
trates. This procedure is not expensive as it is a one-tinsg dmne prior to starting
SangriaOptimization() This also allows it to use designer-specified corners. Thee
dure is also not overly pessimistic, as it is based on MonteoGamples.highest euclide
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Figure 3.6:Selecting representative corners. Top: nondominatedifiljeof
“pluses” towards worst performance values gives “squarésthe bottom-
left quadrant. Bottom: nondominated filtering followed lystering; there-
fore the “squares” in the bottom plot are a subset of the “sgrsd on the top
plot that have the highest Euclidian distance.
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3.5.2.7 Evaluation and Cost Calculation

Table[3.8 describes the evaluation of a population at age layP,.. Each design candi-
dated at layerk must be evaluated sufficiently for use in selection at l&yand at layer
k + 1 (line 2). Themin() accounts for the topK*") layer.

SANGRIA's per-layer simulation specifications are showfrigure’s3.4 middle col-
umn. For example, layer 2’s specification is {dc/ac nomim@nsient/other nominal}.
Therefore layer-1 individuals must also be simulated aséhgpecifications, as its indi-
viduals are available for selection in layer 2.

Table 3.8:Procedure Evaluate()

Inputs: Py, k, K

Outputs: P

1. fori=1.|Pl:

2. simulateP ; for layermin(k + 1, K') specifications
3. P, = Py; return P}

When an individual is evaluated “on nominal”, each of its DBk@te’sd’s are simu-
lated at {nominal process poit,.,, typical environmental poird,,,,}. When evaluated
“on corners”, it means that the evaluated is simulated agall)epresentatives’s with
etyp, and (2) alle’s with s,,.,,,. This avoids simulatingll combinations of environmen-
tal and process points. Then, the performahad a given{d, s, e} is estimated as the
performance af s,om, €typ }, SUMmMed with deltas in performance duestande:

~

)‘<d7 S, €> = )\<d7 Snom, etyp)
+ (A(d, s, eryp) — AN, Snom. €typ)) (3.11)
+ ()‘<d7 Snom; €> - )\(d, Snoms etyp))

This setup directly accounts for the interactions{df s} variables and d, e} vari-
ables. It assumes that the interaction of all three togeth&rs, e}, is less significant.
However it can still handle the case when that interactiottenst the top “ultra-local”
layer simulates all {s, e} combinations for a gived.

When the algorithm estimates the cost of an individual, #yel% is important. For
example, an individual may have enough simulations ford@yéut is participating in a
layer-1 selection tournament; then its cost calculationly oeed to use the simulations
that layer 1 specifies.

The cost is computed as follows:

cost(d) = cost,(d) + costopi(d) (3.12)

wherecost, measures the total cost of violating constraints and., is a contribution
from measuring Cpk.

Ng
costy(d) = Z violation(Guwei(d, \;)) (3.13)

%
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0 ; <0
violation(g;, \;) = { 9i—iymin 5=

9i,max —9i,min

(3.14)

otherwise

whereg,.; is the estimated worst-case value of performarnaeross all s, d} combina-
tions. Performance is estimated at egehd} combination with equation (3. 1L1Y; a0
and g; ., are the minimum and maximum values of performapceeen so far in the
optimization run.

The additionatost,, is activated when all constraints are solved, and pulls €@t
depending on how high the Cpk is. It enables the optimizentoeiase the margin further
once the estimated yield hits 100%:

0 costy(d) =0

costepi () :{ —(Cpk(d) + cphoss) otherwise (3.15)

wherecpk,; is a value sufficiently large to ensure that negative valfeSpk do not
make the overall value of cost be > 0. Cpk is calculated asuraon [Z2.6).

3.5.2.8 Dynamic Hill Climbing

Recall from sectiori-3.5.2.3 that a SANGRIA individual is ar@nic Hill Climbing
(DHC) [Yur1994] searclstate rather than merely a point in design space. DHC is a
hillclimber which keeps any improvements found, and whdiméds improvements it tries
to capitalize on the direction of improvement with accefieraand ridge-walking.

In particular, the DHC statg - maintains and updates (a) three design poimts {
xv, andxuwv}, (b) simulation / cost info for each design point, and (@tstinformation
of a velocity vectorv, a ridge-walking vectowm, V;;; = possible next’s, and a next
actionp € {TRY_XV, TRY_XUV,STOP} . x is the current and best point so fan
isx + v, andzuwv is x + u + v. From SANGRIA's higher-level perspective, it only sees
that the (DHC) individual offers a design point)( an associated cost for that point, and
a routine to update the individual’s local optimizationtstapdateLocalOptState()

For completeness, we give the algorithm frdm [Yur1994] ibl&&3.9, but recast into
a state-machine framework, so that it fits into SANGRIA. Atigeg iteration, the DHC
statey is updated based on how design proposalsand xuv perform, i.e. how their
costs compared to the center desigs cost. Lines of group 2 enable a “spinning” loop
where different random directions from centeare tried, by popping frony.V};.;. This
loop will repeat unless a special case snaps it out (linegg@y4, 5, and 6).

Line groups 3 and 4 handle the case when DHgisis worse and it has run out of
Viist Options. If DHC is not at the smallest stepsize, then it #wtnand creates a new set
of options (line group 4). By adaptively shrinking the stepsvhen not improving, the
probability of improvemenp;,,,,-o.. goes up. Of course;,,,rove — 0.5 as||v|| — 0 when
not at a local optimum. This is easy to visualize:|ja§ — 0, the mapping frome to f
in the region of radiugjv|| becomes a first-order Taylor-series approximation (a plane
and exactly half that plane is better thAfx). So, the DHC stepsize shrinks adaptively to
keeppimprove g00d. Of course, DH@ll reach a local optimum whem,,,,..e = 0. Once
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Table 3.9: Procedure UpdateLocalOptState() (state-machine versibn

DHC).

Inputs: x, k. Outputs: \/

1.
2.

10. evaluate(updated subset{gf x, x.zv, x.zuv}, k); update cost(subset)

if x.o=TRY_XV:

if (cost(y.xv) > costly.x)) & (||x-Viis:|| > 0):
# xv worsened; but options left at this stepsize
X-v = Pop(-Viist)
X- XV = X.& + x.v

else if (costf.xv) > costly.x)) & (|| x-v|| = vmin):
x.p = STOP #xv worsened; no options left

else if cost(.xwv) > costy.x):
#xv worsened; but options left at smalley.v ||
X0 = x.v/2
X-Viist = NewStepsList(y.v||)
X-v = poplx-Viist)
X-ZV = X.T + X.V

else if|| x.Viis|| = 0

#xv improved or neutral, without a spin; build off u

X-T = X.Zv
XU =X.UuU+X.v

XU = X.V*2
XXV = X.Z + X.v
X-‘/list - {}

else:#xv improved or neutral, but had to spin to get hes;u

X- XUV = X.& + x.u+ X.v
x.p = TRY_XUV
else: #y.p = TRY_XUV:
x.p=TRY_XV

if cost(y.xuv) > costfy.x): #xuv worsened, so just go back to x+v

X-T = X.TV
XU = x.v

XU = X.V*2

X- LV = X.Z + X.V

X-Viist = NewStepsList(x.v||)

else: #xuv improved or neutral, so incorporate u into v keep going

X- = X.TUv

XU =x.u+ x.v

if [[x.u| >0: y.v=yxux2, elsex.v = x.v*2
X- XV = X.& + x.v

X-Viist = {}

11. ' = x; returny’
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it reaches that optimum, it will keep shrinking the stepsirgil the minimum stepsize
Vmin IS hit, at which point DHC will declare itself converged artds (line group 3).

Line groups 5 and 6 handle the case when D¥€is improved or neutral. If it
had been building on past successes without needing to depamying, then it will try
to continue build on those past successes. In line group&use successes imply a
high pipmprove, V'S Stepsize is doubled. In line group 6, updatimdies together multiple
past successes, with the hope that the aggregate is helpfuhas not had any recent
successes, then it needs to re-initializedtsv and test it (line group 7).

Line groups 8 and 9 occur whetuw is tested. lfxuv was unsuccessful (line group
8), then the search state backtracks. If successful, them again DHC capitalizes on it
by tying together the past successful steps (line group 9).

Line group 10 does evaluation of the newly-generated deseymd updates their cor-
responding costs for layér. Note that all costs in this procedure are actually of awére o
layer valuek.

A speedup not shown in the algorithms is the following: if gdahas solved all
its constraints, then it has little need to do more work. Efae it skips the call to
UpdateLocalOptState{pr that layer, for additional computational savings.

3.5.2.9 Space-Filling Designs

Table[3ID gives the details of creating individuals (DH&tes) to collectively fill out
the design spac®, using Latin Hypercube Sampling (LHS) [Mck1979]. In linegla
raw LHS sample matrix is created, which assigns a bin for ekssgn variable of each
individual. In lines 4-10, actual design variable values generated, where each variable
must stay within the variable’s subspace defined by the biote Niow it handles any
mixture of continuous vs. discrete design variables. Inddge of continuous variables,
line 8 shows how further random sampling within the bin wasdesgl~ U([0, binsize]).

In line 11, InitializeDHCstate(¥or individual F, ; (statey;) involves setting the state
X's attributes as followsz = the inputd, v = a random direction having the magnitude
of minimum stepsize,;,, v = {0,0, ...}, xv =  + v, andzuv = x + u + v.

Line 12 evaluates the new individuaty sufficiently for level 0, and line 13 returns
them.

3.6 SANGRIA Experimental Results

3.6.1 Summary of Test Circuit Problems

We used the test circuits shown in Table8.11, which inclube=e opamps of increasing
size (from 10 to 50 devices), and a voltage reference cituief”). The schematics will
be shown further on.

Because of its excellent accuracy, and to illustrate thityabf SANGRIA to handle
an extremely large number of process variables, we useddloess variation randomness
model of [Dre1999]. Accordingly, the local variation paratars for each transistor are:
NSUB (substrate doping concentration), VFB (flatband \g#)aWINT (width variation),
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Table 3.10:Procedure SpaceFillindividuals()

Inputs: N.(0), Np, D

Outputs: Fy

1. B =zeros(Np, N.(0))

2. fori=1..Np: #for each variable

3. B, = random permutation of1,2,..., N.(0)}

4. forj=1..N.(0): #for each individual? ;

5. fori = 1..Np: #for each variable

6. if D, is continuous:

7. binsize = (D; maz — Dimin)/NL(0)

8. dnew,i = Dimin + Bij * binsize + ~ U([0, binsize])

9. else: #D; is discrete

10. dnew: = (Bi ;)™ discrete value i{ D; 1, D; o, . . ., Di oz })

11. (FR,) = InitializeDHCstated,,c.,)

12. evaluatefy, 0)

13. returnp,

Table 3.11:Test circuit sizes.
Label # # Design| # Process| # Env. | # Env. | Test-
Devices | Vars. Vars. Vars. Points | benches

10T opamp| 10 21 91 5 3 ac, tran, THD
30T opamp| 30 56 216 5 3 ac, tran, THD
50T opamp| 50 97 342 5 3 ac, tran, THD
vref 12 28 106 3 3 ac, ac

LINT (length variation), UO (permittivity), RSH (sheet istance), and TOX (gate oxide
thickness). The per-resistor variation parameters areSIBRsheet resistance), DXW
(width variation), and DXL (length variation); and per-e@agitor variation parameters are:
DXW (width variation), DXL (length variation), and DTOX (ade thickness). There is
a single global-variation parameter for each of NSUB, VF8, @s well. The variables

s in the process variationg/df (s), are normal, independent, and identically-distributed
(NIID).

Because there are so many variables per device, the totderuhprocess variables
is very large. For example, there are 342 process variablebé 50T opamp, which, as
we will see, SANGRIA readily handles.

The technology was TSMC 0.L& CMOS. The simulator was a proprietary SPICE-
like simulator of a leading analog semiconductor comparith &ccuracy and runtime
comparable to HSPICE! [Snps2008al].

In all cases, an initial “rough cut” design is supplied, whiook about 10-30 minutes
for an expert designer to do. We do this only so that we can hdwaeseline for compari-
son, e.g. comparing the yield and performance spread a@dlingrsus resulting designs.
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SANGRIA can leverage this, but does not rely on it, becauseyeV, = 10 generations
it will inject randomly-generated designs into age layerThese random designs get a
chance to refine because they do not have to compete withndesidigher layers, in-
cluding designs derived from the initial design. As we wéks in several experimental
runs it was crucial for SANGRIA to explicitlyot use the initial design’s region and in-
stead build on a region started from random sampling-basgld®tion. [Hor2005] also
observed this.

3.6.2 Algorithm and System Settings

Each run of each circuit problem had identical algorithmapageters. The maximum
number of circuit simulations wad;,,, mq., = 100,000, which is easy to run overnight
with a modestly-sized computer cluster. (Therefore allrtirgimes for each forthcoming
SANGRIA run is overnight or less.)

The ALPS settings were as follows. In line with Figlirel 3.4rthwerek = 9 age
layers in steady state, a value similarfto [Hor2006]. Withage gapV, = 10, the max-
imum age per layer was 10, 20, ... for layers 0, 1, ... respelgti Layer 8's maximum
age wasoo. [Hor2006] had similar values in the ’linear’ age settinghellowest age
layer’s population sizeéV,,(0) was 200 individuals (like[[Hor2006]). Population size de-
creased linearly fromV,(0) = 200 down toN(7) = 8. The ultra-local layer had/ (8)
= 3 individuals, which allowed some exploration withoutHgioverly computationally
expensive. The cost offset gk, = 10.0, which is more than enough because excellent
values of Cpk are >2.0.

Naic.chosen = 25 representative process points were chosen ffgm .., = 100 can-
didate points using the approach of secflon 3.5.2.6.

The MBO optimizer’s settings were as follows. SGB paransetare: learning rate
= 0.10, minimum tree depth,;, = 2, maximum tree depth,., = 7, target training error
€targ = D%. There weréV,,,, =5 SGBs in an ensemble. SGB parameters were set based on
recommendations from [Ern2002]. NSGA-Il parameters weYe,, = 25, Nyep, maz = 90,
with a crossover probability of 0.2 which was enough to getrifeareto optimal results
without having the inner optimization risk dominating camtgtional cost. The number of
individuals returned from a given inner optimizatia¥;,,..., was set to 5, which is large
enough to get a good spread of the exploration-vs-expioitétadeoff without becoming
too expensive.

Designs returned as final results hi&g, = 30 process points which is quite low, but
still provides reasonable resolution for Cpk values.

The whole system was coded in Python [Pyt2008], including&yNumeric[[Pyn2008]
for handling arrays.

With the exception of the SGB parameters, there was velg litining of these pa-
rameters. The parameters were set based on reasoningjradnéo@®rr on the side of
reliability. There is almost certainly opportunity for imgving algorithm speed and qual-
ity of results via parameter tuning.
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3.6.3 Experiments on 10T Opamp Circuit
3.6.3.1 Problem Details

Figure 3.7:Schematic of 10-device operational amplifier.

Figure[3Y shows the schematic for the 10-transistor opalnpas 21 design vari-
ables, 91 process variables, and three testbenches hayirigaa, and THD analyses
respectively. Each testbench has 3 environmental pointgposed of 5 environmental
variables. Specifications wered,, > 65 dB, BW > 1 MHz, GBW > 300 MHz, PM
> 56°, GM < -10 dB, settling timeST < 12 ns,SR > 3e8 V/s, overshoaD S < 12%,
andT H D < -45 dB. We performed four runs with different seeds to thedam number
generator. We now analyze the results of each run.

3.6.3.2 Detailed Analysis of First Run

This section describes the results from the first run, gaitgdetail to examine the quality
of the results, and SANGRIA's convergence behavior.

Figure[38 shows the yield vs. generation, and Cpk vs. géparor the first run.
Each square in the plot is the result of a full Monte Carlo datian of the current most-
promising SANGRIA design across,,;c = 30 process points. We see on the far left of
the plot that the initial design’s yield is 26.7%, and that tiext Monte Carlo sampling
happens at generation 60, giving an improved yield of 56.T¥e best yield keeps im-
proving with passing generations, until hitting the maxmmaf 100% yield at generation
112, making the run a success.

To be precise, the yield numbers are statistical estimatssdon the 30 Monte Carlo
samples. This means that the lower bound for a “reported%d 9ield is 88.6%, with 95%
confidence (using Wilson’s confidence interval for a bindmpraportion [Wil1927]). But
for simplicity, we will just say 100% yield.

Note the squares below the curve of yield vs. generation.s&lage Monte Carlo
sampled results where the candidate design did not do aasviEle best so far. It happens
when the best design so far on the “ultra-local” layer hasaaly been simulated, so a



68 Globally Reliable, Variation-Aware Sizing: SANGRIA

Best yield ——
1.0r ). E
aa—n—o—o—flm_“ v o New yleld point o
poed Best cpk —=—
0.8‘ T—f—n—«‘v@‘ p 4
i o]
06l | eeees . ]
/9—4—}» o o]
e a |
0.4k . . ]
" .
o Goeamd
0.2 / ]
|
[ @
€ o—od
0.0f oo B i
0 20 40 60 Generation 100 120 140 160 180

Figure 3.8: Best yield vs. generation, and best Cpk vs. generation, for
SANGRIA run 1 on 10T opamp.

different design is tried, either from the ultra-local laye a lower layer. Sometimes they
do well, but sometimes they do not.

Once 100% yield is achieved, there is no further optimizateodo on the “yield” ob-
jective (if using Monte Carlo estimation on 30 feasibilignsples). However, SANGRIA
continues to do meaningful optimization beyond this stagenbximizing Cpk. Figure
3.8 also shows the best Cpk vs. generation, denoted by the with theo's. We see
that Cpk is steadily increasing prior to achieving 100%djdlut it improves furtheafter
achieving 100% vyield at generation 112. This has the effectaveasing the margins on
the performances. The best Cpk value is found in generai8n The run stopped when
the 100,000 simulation budget was hit.

A further illustration of this continued improvement is stioin the boxplots of Fig-
ure[39. The 3x3 grid holds all 9 performancés, BW, etc. Each entry in the grid
summarizes the spread for a specific performance on the &siguls, each from a Monte
Carlo sampling. In each entry, the left box / whiskers is fa initial design, and the three
proceeding rightwards are for 100%-yield designs from gatien 106, 133, and 167 re-
spectively. A box/whiskers summarizes the performancestildution as follows. The
lower and upper whiskers are the minimum and maximum siradlaélues, respectively.
The lower and upper edges of the box are thé 2id 75" percentiles, respectively.
Therefore the box’s extremes contain 50% of the data, and/ingkers contain 100% of
the data. Each performance’s y-axis is actually orientexh shat thetop of the plot has
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Figure 3.9:Performance boxplots of four of the designs found in SANGRIA
run 1 on 10T opamp: initial, generation 106, generation 183d generation
167.

the best values according to the performance’s aim. For pl@am, (top left) aims “>”,
so its top is a larger value (70.0 dB) than its bottom (50.0. dB)nversely, settling time
ST (bottom middle) aims “<”, so its top has a smaller value tharbottom (4.0 ns vs.
13.0 ns).

The feasibility threshold is the horizontal bar spannifdalr boxes. Therefore it is
easy to scan the plots to see which performances are not mhétydmow much; or which
performances are met and their degree of margin. For exam@esee that the initial
design (left box/whisker) does not meé{, GBW, PM, andST. Ititis on the edge for
overshoot S, and is close foBIV. It has some margin fof R and significant margin for
GM andT HD. GM has a very tight spread, and significant margin. The gerogrdt67
design (right box/whisker) is above every feasibility tield. It basically has equal or
tighter spread than the other designs on each performantemeé has equal or better
margin than the other designs as well, exceptd@av/ which is better than the initial
design but slightly worse than the generation-106 design.

We can also do side-by-side comparisons from the initiailghet® improved designs.
For starters, see that all box/whisker plots of all three%6feld designs are fully within
the specification range, which they should be by definitidme fargin forG BW signif-
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icantly improved by tightening the spread. The margins@at, SR, and.ST improved
by shifting their respective mean values upwards. was one of the tougher specs, but
the three designs significantly tightened the spread to rathlkamples feasible.

We can also compare the improvement among the three deskprsmost perfor-
mances BW, GBW, OS, PM, SR, andST), we see that the margin improved going
left-to-right through the generation 106, 133, and 166 glesi Sometimes the margin
improved by tightening spread (e.§.H D), and sometimes by improving the mean (e.g.
PM). In the case of7M, margin actually decreased a bit but that was not an issue
because all designs, even the initial design, had a veryrmaylgin.

We can also ask how the area changed from the initial desigth&r designs. After
all, solving ayield issue via a drastic increase to areaipraxctical for industrial designs.
Because we do not use layout information, our area estiraate approximation: the sum
of W x L across devices. It turns out that all three 100% yield deslhgralower area than
the initial design; the smallest 100%-yield design has #3I&ss area than the initial
design. TabléZ3.12 shows the designs’ relative area vadlesg with Cpk values.

Table 3.12:Cpk and area for four designs in 10T opamp run 1.
| Design Point Label | Yield [ Cpk | Area Change |

Initial design 26.7% | 0.037 0% (baseline)
Run 1 generation 106 | 100% 0.759 -21.7%
Run 1 generation 133 | 100% 0.805 -23.7%
Run 1 generation 166 | 100% 0.834 -23.4%

So far we've seen SANGRIA final results and yield / Cpk coneeag. Let us now
examine SANGRIA's behavior in more detail, by inspecting tonvergence for each
SANGRIA layer. Figurd_-3.710 shows the cost vs. generatioreémh age layer, which we
now explain. At generation 0, only thé"Cage layer exists, so only its curve is plotted
until generation 10 (age gag, = 10). Layer 0’s best design was able to immediately meet
all the layer-0 constraints, giving it a cost of 0. Thereftite line is merely a horizontal
line at y-axis cost=0. At generation 10, layer 1 is added, iarglable to fully solve the
design as well because it has the same goals as layer 0. Aéxh&age-gap generation”,
generation 20, layer 2 is added, and despite having mores dtvah/other nominal), it
was able to solve them so its cost stays at 0.

Interesting things start to happen at generation 30. Rhistpopulation formerly at
layer 2 gets kicked out, into layer 3. Layer 3 has the samesgasllayer 2, and there-
fore the best cost remains at 0. However, the new individgaisg into layer 2 do not
immediately solve all the goals at generation 30, so thest best is >0. In the plot,
these are the’s at a cost value of 48 for generations 30-33. But thosé&s go back
to cost=0 at generation 34, which means that the new indalsdat layer 2 were able to
solve the goals. At generation 40, layer 4 is added. Layentg igenediately solved by
the incoming individuals from layer 3. At generation 50,da¥% is added, and it is solved
immediately too. Throughout the whole run, layers 4 and Selacost. Since the only
difference between them and layer 4 is adding corners ondlbessbench, it implies that
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Figure 3.10:Best cost vs. generation, for each age layer, on SANGRIA run 1
of 10T opamp.

once a design can solve for the process and environmentatigas on ac performances,
it can solve for the nominal dc/tran/THD performances. kslaot imply that solving on
nominal always means solving on corners, however! In faetcanfirm this when layer 6
is added at generation 60. Its cost is initially so high thet out of the plot’s axes, but by
generation 62 the cost comes down sufficiently to be visibleese are the squares with
cost ofx 50 at generation 62. Layer 6's best cost continues to reduitiegeneration 70.

At generation 70, layer 7 is started, being initialized byelia6’s. Layer 7 continues
convergence for generations 70-75, then plateaus for Srgéomes. At generation 80,
layer 8 is created, starting with the layer 7 population. éra§ further reduces the cost,
and meets cost=0 at generation 84. Since it is already cemsglall testbenches and
process/environmental variations, then it can aim for @ abs0, which it does. So from
generation 84, it converges with cost values < 0. It steadilijuces cost for the remainder
of the run (the stars curve).

Another interesting signature ALPS behavior can be obskrvéhe convergence plot.
Note theo’s (layer 2 curve) appearing at generation 80, with cesb0. Prior to that
generation, layer 2 had solved the problem having cost Gitbutdividuals became too
old, and the new individuals feeding into it were not goodwggtoto have 0 cost. So
layer 2 improves the design in generations 80-90, then hiatmlkayer 3 at generation 90
which solves it in 3 more generations. At generation 90, #we mdividuals coming into
layer 2 at generation 90 also do not solve the design. So, gemerations 90-99, layer 2
improves the best cost, and finally solves it at generatiéh 10

The spike of cost for layer 6 at generation 120 is anotheragige ALPS behavior.
Once again, its best individuals became too old, were ajefcben layer 6, and no new
individuals could help. From generations 120-130, layemnfverges downwards and
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feeds into layer 7 with helpful individuals. Similar spikeappen to layer 6 at generation
140 and at generation 150. Note that sometimes spike®twappen, such as in layer 6
for generations 90 - 120. This occurs when the layer’'s youmgkviduals are the best.

Recall that each age gap generation (evry= 10 generations here), layer 0 gets
freshrandomly-generatethdividuals. This means that ALPS is consistently tryingvne
regions of the search space. Through the subsequent refihémigigher layers, these
regions get exploited. Individuals in less promising regiaie out. ALPS continues
this space-filling process over time, and it is this changstie that gives it the globally
reliable behavior, not only theoretically but also in preet This property is extremely
important for handling challenging optimization probleraad we will exploit it in sub-
sequent chapters as well.

We also observe that the best randomly-generated indivafieach age gap genera-
tion has zero cost (on ac testbench, no process or envirdaimemiations). This means
that getting a functional sizing is relatively easy for threblem. Unsurprisingly, we will
see on more complex circuits, getting a functional sizindjtake more search effort than
mere random sampling.
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Figure 3.11: Zoom in on age layers 6-8 in best cost vs. generation, on
SANGRIA run 1 of 10T opamp.

While Figure[3ID gives us insight into the convergence agel, it is hard to exam-
ine the convergence of the top layers in detail. This is irtgparbecause ultimately the
individuals in these layers become candidates for MontéoGampling. So, in Figure
311, we zoom into layers 6, 7, and 8. First, note how layerc8% is monotonically
decreasing. This is because its maximum agsjsvhich means individuals never get
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ejected for being too old, and the best-cost individual riesaithout regard to age. In
contrast, layers 6 and 7 do have upward spikes due to theragatithese layers. Layer 6
has more drastic spikes than layer 7, because layer 6 soteegher problem than layer
5 (which feeds it individuals). In contrast, layer 7’s prefn is the same as layer 6's, so it
has a running start.

Finally, because layer 8's evaluations are based on full tl&@arlo sampling and
its cost function is monotonically decreasing, it meang @k will be monotonically
increasing, which is what we have already observed on thetieg individuals.

3.6.3.3 Second, Third, and Fourth 10T Opamp Runs

FiguresT3.IP[3.13, arild_3]14 are the results of three subse@ANGRIA runs on the
10T opamp. In each run, we show the convergence of the yieldeseration, Cpk vs.
generation, and best-cost vs. generation for each age layer

Each of the three runs (2, 3, 4) achieved a yield of 100% at tapeneration 100.
Also, as Tabld—3.13 shows, runs 2, 3, and 4 each got Cpks lik#errun 1 in their
100,000 simulation budgets. We dive deeper to see what tieeatice in behavior is.

In run 2’s Figurd-3. 12 bottom, we see that the top age layes doeget cost < 0 until
generation 110. There was an aborted attempt at generdijavhére the second-highest
layer got cost 0, but that design did not translate to the ggplayer with low cost. And
of course, it also did not translate to good yields, as comttioy the low-yield results in
generations 70-100. The only difference in cost functiogisvieen the top two layers is
in the accounting for interactions among the process andamental variables. This
means that the early design attempts had stronger proogss+emental coupling, and
the final, more successful designs, did not. Run 3 had a sigtl@ehomenon, as shown
in Figure[3IB. Both these runs illustrate that taking stieps the initial design, no
matter how promising, might lead to a local optimum. So, ¢h@aust be an opportunity
to try alternative regions. This reconfirms the need to hglebally reliable statistical
optimization.

Run 4 (Figurd-3.14) had a behavior like run 1 in its early gatiens. As opposed to
runs 2 and 3, run 4 had no false starts in getting a cost < O,langi¢lds of its Monte-
Carlo sampled individuals were steadily improved. Accoglly, run 4 hit a yield of 100%
at generation 69, much earlier than run 2’s generation 183 am 3’s generation 110. Its
Cpk at that point was like run 1 too: <1.0. But at generatiojrid0 4 started to behave like
runs 2 and 3: its highest layer’s cost spikes upwards (tosédpe search goes elsewhere.
Within just a few generations, the layer found a new regiathwost < 0, and with its first
Monte Carlo sampling at that region (generation 76) it goesigh with Cpk > 1.0. The
remainder of run 4 was like the last parts of runs 2 and 3: st@agrovement to Cpk,
driven by steady lowering of the top layer’s cost, fed by lovegers’ designs.

Figure[3:Ib shows the boxplot for Run 3's best-Cpk desiggh{rbox/whisker plots)
compared to the initial design (left box/whisker plots).ngmaring to the designs in Fig-
ure[3.9, we see that the result from run 3 has improved the imargnificantly for all
performance measures. The run 3 design has 11% smaller ansalla as Tablé“3.13
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Figure 3.12:Convergence curves for SANGRIA run 2 on 10T opamp. Top:
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shows. Of course, due to the adaptive space-filling natufd&fS, we expect that if run
1 continued, it would eventually have achieved a high Cpk el w

Table 3.13:Best 10T Opamp Designs from Four SANGRIA Runs.

| Label | Yield | Cpk | Area (m?) |
Initial design 26.7% | 0.037 11.60e-10
Run 1 Best 100% 0.835 8.88e-10 (-23.4%)
Run 2 Best 100% 1.672 10.25e-10 (-11.6%)
Run 3 Best 100% 1.849 10.32e-10 (-11.0%)
Run 4 Best 100% 1.669 12.04e-10 (+3.80%)
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3.6.4 Experiments on 30T Opamp Circuit

Figure[3.16 shows the schematic for the 30-transistor opantyas 56 design variables,
216 process variables, and three testbenches having acatrd THD analyses respec-
tively. Performance specifications were: gdin > 37.5 dB, bandwidtiB1/ > 13.5 MHz,
gain-bandwidth BWW > 300 MHz, phase margi®M > 5%, GM < -10 dB, unity gain
frequencyF'U > 265 MHz, settling timeST < 5 ns,SR > 1.85e8 V/s, overshoads <
6%, and total harmonic distortidiH D < -40 dB.

Figure 3.16:30-device operational amplifier.

We performed four independent runs, with resulting congaag curves shown in
Figured 3. 1113183119, ahd 3.20 respectively.

In short, all four runs hit 100% vyield, and kept improving Csilgnificantly beyond.
Each of the per-layer cost convergence curves shows thatsignbehavior that we ex-
amined in detail on the 10T problem. Figlre_3.19 is partidylateresting, because it
only got good results very late in the run; until the good hess{and after them) the lower
age layers repeatedly try different regions. Finally, adjoagion was found and the yield
and Cpk increased accordingly. This reconfirms the valueANIGRIA's age-layered
approach to achieving global reliability.
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3.6.5 Experiments on 50T Opamp Circuit

Figure[3.Z1 shows the schematic for the 50-transistor opdhims 97 design variables
(W’s, L’s, etc), 342 process variables, and three testbenchendhaei tran, and THD
analyses respectively. Therefore, these experiments iemade the ability of SANGRIA
to scale to a very large number of design variables and anlavger number of process
variables. Performance specifications were: gajn> 30 dB, bandwidthBI/ > 2.3
MHz, gain-bandwidth BW > 50 MHz, phase margi® M/ > 65°, gain marginGM <
-5 dB, unity gain frequency'U > 50 MHz, settling timeST" < 15 ns,SR > 1.5e8 V/s,
overshooD.S < 5%, and total harmonic distortichH D < -40 dB.

Eﬁ—fr—‘ e ”*E.uﬂjgwéﬁ'“ :

I M% -

L]
i
=

3| : BEICRE R
M e R ] e e

Figure 3.21:50-device operational amplifier.

We performed two independent runs, which are shown in FEfBE&2 and"3.23 re-
spectively.

The first run hit a yield of 100% within 80 generations, andtkegproving its Cpk
significantly beyond that.

The second run almost hit a yield of 100% within its pre-adligdl runtime. Upon in-
spection of the cost convergence curves, we see that althtre age layers consistently
hit a cost of O very quickly, and stayed there. Recall that &RVA has a “speedup”
where if a layer’s cost is 0, then it ignores further evolatiaf that layer until the next
age gap. Since fewer age layers are evolving aggressivise is less opportunity for
SANGRIA to explore its way out. There is some evolution, hegreindicated by the up-
ward spikes in the right third of the cost convergence cursesve expect that eventually
SANGRIA will hit the target due to its continued space-figlisampling to explore new
regions. From a user’s perspective, the user would be aldbgerve the convergence of
best cost vs. generation for each age layer, and could trerebserve that progress is
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being made. So in an industrial setting, he would just camtito run SANGRIA until
he observes that progress has stagnated, or that he hageattiie target yield (the more
likely scenario).
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Figure 3.22:Convergence curves for SANGRIA run 1 on 50T opamp. Top:
best yield/Cpk vs. generation. Bottom: best cost vs. génera
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3.6.6 Experiments on Voltage Reference (vref) Circuit

The schematic for the voltage reference is shown in figurd.312has 12 devices, 28
design variables, and 106 process variables. It has twostoeteches, each with three
environmental points having three environmental varigblBerformance specifications
were: powerPWW R < 0.111 mW, temperature coefficieAt” < -20°C, minimum temper-
atureT’'MIN < -20°C, maximum temperaturEM AX > 85°C, voltage-change reference
DV REF < 600, minimum voltagé’ M IN < 0.78 V, maximum voltag& M AX > 2.8

v B
?TE ..

Figure 3.24:\oltage reference schematic.

We performed four independent runs. The convergence curiésh are shown in
Figured3.2H, 326, 327, ahd 3.28 respectively. Each Eighows best yield vs. genera-
tion, best Cpk vs. generation, and best cost vs. generairaath age layer.

In short, all four runs hit 100% yield, and kept improving Cipgyond. Once again,
each of the per-layer cost convergence curves shows thataigrbehavior that we exam-
ined in detail on the 10T problem.
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Figure 3.26:Convergence curves for SANGRIA run 2 on voltage reference.
Top: best yield/Cpk vs. generation. Bottom: best cost vserggion.
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3.6.7 Summary of Experimental Results

Table[3I# summarizes the experimental results of the 14&RI runs across four
different circuit test problems.

Table 3.14:Summary of SANGRIA Experimental Results.
Problem and Run # || # Variables | Initial Yield | Final Yield | Runtime |

10T opamp run 1 122 26.7% 100% < overnight
10T opamp run 2 122 26.7% 100% < overnight
10T opamp run 3 122 26.7% 100% < overnight
10T opamp run 4 122 26.7% 100% < overnight
30T opamp run 1 302 20.0% 100% < overnight
30T opamp run 2 302 20.0% 100% < overnight
30T opamp run 3 302 20.0% 100% < overnight
30T opamp run 4 302 20.0% 100% < overnight
50T opamp run 1 489 23.3% 100% < overnight
50T opamp run 2 489 23.3% 83.3% < overnight
vref run 1 146 16.7% 100% < overnight
vref run 2 146 16.7% 100% < overnight
vref run 3 146 16.7% 100% < overnight
vref run 4 146 16.7% 100% < overnight

3.7 On Scaling to Larger Circuits

This section discusses how SANGRIA would address circuith w000 or 10,000 or
more devices, i.e. system-level circuits. The short anss/énat system-level designs
can be hierarchically decomposed, and that each node indra¢hy can be explored by
SANGRIA (or a modified version).

There are several alternative hierarchical design metlogées, and several ways to
estimate performance at each node in the hierarchy. SANGRIit into most combina-
tions. Methodologies include top-down constraint-driegproach (TDCD)[[Chal997],
and multi-objective bottom up approach (MOBU) [Eec2005¢E¥)T], which section
.23 discussed further. For SANGRIA to handle MOBU or battop computation of
feasibility regions, it would be modified to be multi-objeet

Then the question is whether or not SANGRIA can handle thet mam®plex node
within a design hierarchy. System-level and higher designd to have 5-20 components
at their level of the hierarchy, whereas cell-level desigasge typically 10-50, (and some-
times as many as 250). So, by demonstrating the ability tdled&0-devices, SANGRIA
should be applicable anywhere in the hierarchy, and thexdfandle designs with 1000
or 10,000 or more devices.
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3.8 Conclusion

Recall from the review in chaptEr?2.1 that none of the optation approaches in the liter-
ature or industry had a combination of accuracy, reasorefbiteéency, and globally reli-
able convergence. This chapter has presented a solutichGEAM. SANGRIA is a tool
for globally-reliable, variation-aware sizing of analogcaits [Mcc2008k]. SANGRIA
makes no accuracy-compromising assumptions, can hangtedwinensionality statis-
tical SPICE models, and uses simulation in the loop, butesgs industrially-feasible
runtime. Most importantly, it has globally reliable congence, which means that the
designer does not need to be concerned about whether tiheizgion is stuck. Designer
confidence is further improved by showing visualizationdest-cost convergence per
age layer.

SANGRIA's key elements are: structural homotopy with ALR®lividuals embed-
ding a local-optimization search operator (DHC), and inveebmodel-building optimiza-
tion (MBO) combining scalable regression (SGB ensemblad) ianer multiobjective
optimization.

We have tested SANGRIA on four different circuit problenfrtwo different circuit
classes (opamp and voltage reference), in a total of 14 rline.problems ranged from
10-device circuits having 21 design variables and 91 pseasables, up to 50-device
circuits with 97 design variables and 342 process varialled 3 / 14 runs, SANGRIA
was able to successfully attain 100% yield and further imerGépk within an industri-
ally feasible number of simulations and runtime, despitedktremely high number of
parameters and evidence of multimodality. In contrast,theapproaches have reported
global yield optimization results for circuits with this matransistors, and especially not
this many process variables.

While this chapter has presentedesign aidto support global variation-aware sizing
via optimization, the next chapter presentsiasight aidfor variation-aware sizing via
the extraction of whitebox performance models.
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Chapter 4

Knowledge Extraction in Sizing:
CAFFEINE

All models are wrong, but some are useful.
—George E.P. Box

4.1 Introduction and Problem Formulation

4.1.1 Chapter Summary

This chapter presents a tool to accelerate designer ingighing, by extracting whitebox
performance models. The tool is called CAFFEINE [MccZ208ac2005b/ Mcc2005c,
Mcc2006a] Mcc2006kh, Mcc2006c, Mcc2008b, Mcc2008g]. CAREEImplements a
method to automatically generate compact, interpretapiebslic performance models
of analog circuits with no prior specification of an equatiemplate. The symbolic
models capture mappings of the design variables to indaligarformances or to Cpk
(a robustness measure). CAFFEINE takes SPICE simulatitm ainput. This en-
ables modeling of whatever SPICE handles: arbitrary nealirtircuits, arbitrary circuit
characteristics (including transient and noise perforreameasures), modern technol-
ogy processes, environmental effects, and manufactuinigtions. The possible ex-
pressions for the model are defined as a satawfonical form functionsstructured as
layers of product-of-sum terms that alternate with laydrsum-of-product terms. These
canonical form functions are modeled agrammar which is subsequently searched via
grammatically-constrained genetic programming. Novealle@tonary search operators
are designed to exploit the structure of the grammar. By ewgipy) multi-objective op-
timization, CAFFEINE generates a set of symbolic modelscitollectively provide a
tradeoff between error and model complexity.

On six test problems, the compact performance models denatabetter prediction
quality than several other state-of-the-art modeling mégplres including posynomials,
splines, neural networks, and support vector machines.

We also describe techniques to scale CAFFEINE to handldgrebwith more than
100 input variables, validated by further experiments.



96 Knowledge Extraction in Sizing: CAFFEINE

4.1.2 Motivation

Both symbolic analysiandsymbolic modelingim to derive human-interpretable expres-
sions of analog circuit behavior [RutZ007]. Symbolic as@yextracts the expressions
via topological analysis of the circuit, whereas symboliocdaling extracts the expres-
sions by using SPICE simulation data. These expressiorns tha/same applications:
knowledge acquisition and educational / training purpparalytic model generation for
automated circuit sizing, design space exploration, repetormula evaluation including
statistical analysis, analog fault diagnosis and testglaihalysis, and analog behavioral
model generatiori [Gie200Rb]. In particular, a tool that baip a designer improve his
understanding of a circuit is highly valuable, becauseati&to better decision-making
in circuit sizing, layout, verification, and topology desjgegardless of the degree of
automation([Mcc2005a]. Therefore, approaches to gensyatdolic expressions are of
great interest.

Historically, symbolic analysis came first. Notable ap@ioes include ISAAC[San1989,
G1e1989], ASAP[[Fer1991 A, Fer1991b], SYNAP [Sed1988, S88], SAPEC[Man1991],
SSPICE[[Wie1989], SCYMBALKon1988], SCAPP [Has1989], Aswinsydes/[Som1993],
and CASCA [[FIo1993]. These tools differ in terms of: anadydomain (s-domain, z-
domain, dc domain), device-level vs. system-level angjyse of small-signal lineariza-
tion, support for mismatching, support for approximatigfar better interpretability),
support for weakly nonlinear circuits, support for hietaigal analysis (for better scala-
bility), and how the problem is actually formulated (modifieodal analysis, signal-flow
graph, admittance matrix, etc.). The paper [Gie2002b] istarial. There has evidently
been great interest in symbolic analysis. However, its maakness has traditionally
been the limitation to linearized and weakly nonlinear wit€. This was recently over-
come via piecewise-linear/polynomial modeling approadiiee [Man2003| Yang2005,
Dong2008]. Those new approaches, however, return expresghat are hard to inter-
pret, which is counter to the main motivations of symbolielgsis

Leveraging SPICE simulations in modeling is promising lseasimulators readily
handle nonlinear circuits, environmental effects (e.gngerature, power supply volt-
age, loads), manufacturing effects, different techn@egnew effects (e.g. proximity
[Dre2006]), and more. Simulation data has been used tortraimy types of regressors, in-
cluding linear models [GraZ007, Mcc2005c, Li2008c], pasyials [Dae200Z, Dae2003,
DaeZ005, Agg2007], polynomials [L12Z007b, MccZ2005c], sps [Wal2004, Mcc2005c¢],
neural networks[[Van2001, WoIZ2003, Mcc2005c], boostedralenetworks [[Liu2002,
Mcc2005¢], support vector machinés [Ber2003, Kie2004gR60%| DingZ2005kh, Mcc2005c],
latent variable regression [SInZ007, L12008b], and krigjkicc2005¢| Yu2007b]. How-
ever, such models either follow an overly restrictive fuoal template which limits their
applicability, or they are opaque and thus provide no irndiglthe designer. Less opaque
flows exist, such as visualizing CART trees [Bre1984] or &ating rules from neural
networks [Tic19909]. However, these approaches do not gigdunctional relations that
symbolic models provide.

The aim ofsymbolic modelings defined in this thesis is tse simulation dat#o gen-
erate interpretable mathematical expressions for cieqtications, typically relating the
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circuit performances to the design variables. Symbolic etiod has similar goals to sym-
bolic analysis, but a different core approach to solvinggtablem. A symbolic modep
maps anV,-dimensional input vector of sizings and biasing#o a scalar approximator
of circuit performancey. Thatis:vy :  — 7.

In [Dae2002, Dae2008, Agg2007], posynomial-based syrobmidels are constructed.
The main problem is that the models are constrained to a finedetemplate, which
restricts the functional form. Also, the models have dozehserms, limiting their
interpretability for designers. Finally, the approachussss that posynomials can fit
the data; in analog circuits there is no guarantee of thid, @me might never know
in advance. There have also been advances in building giag@ynomial models
[Li20086,[L12007H, Feng2006], but polynomials also havesdrietive structure that limit
their usefulness.

4.1.3 Approach

The problem we address in this chapter is how to generate gjertbhodels with more
open-endedunctional forms (i.e. without a pre-defined template), &obitrary nonlin-
ear circuits and circuit characteristics, and at the same &nsure that the models are
interpretable A target flow that reflects these goals is shown in Figurk 4.1.

We approach the question by posing it as a search probleneisghace of possible
functional-formtrees An appropriate search algorithm is then genetic programgr{GP)
[Kozal992], which conducts the search by iterative evolutif a population of points.
(A non-population-based approach like [Lan1987] is pdssiwhich examines just one
search point at a time. However, because it is single-ptian it cannot swap sub-
expressions between candidate functions. This compreniisebility to explore the
search space effectively.)

GP generates symbolic expressions without using a tematehose functions are
overly complex. So, we extend GP via a grammar specificalsigied to have sim-
pler but accurateinterpretablesymbolic models. We name the approach CAFFEINE:
Canonical tinctional brm expressions irevolution.

The contributions of this chapter are as follows:

e To the best of our knowledge, the first-ever tool femplate-free symbolic modeling
Because it uses SPICE simulation data, it allows modelingngfnonlinear circuit
characteristic, or analysis (including transient, no&e&l more).

e The approach returns models that are compact and undeatiandget with good
accuracy. In fact, it returns setof possible models thatade off accuracy and com-
plexity.

e A GP-specific contribution is a specially designed gramnmrat eelated operators,
which ensures that all functions explored folloveanonical formy making them di-
rectly interpretable. The grammar plugs into any gramna&ieP engine.

e Finally, this chapter proposes techniquesstale symbolic modeling to problems
with more than 100 input variables. The techniques are:realaaching([Kei2004],
gradient-directed regularization [Fri2Z004] to simultansly prune basis functions and
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DOE or Circuit Optimization

Circuit Sim. Data:
(Design Point, Perf.)
Pairs

\k_

Template-Free Symbolic Modeling

A
e —_—

Interpretable, Open-Ended Model(s)

Figure 4.1:Template-free symbolic modeling flow.

learn remaining coefficients, a pre-evolution step of filtgrsingle-variable expres-
sions, and always considering all the linear basis funstion

4.1.4 Problem Formulation

The modeling problem that we address has the flow of Figuile K. formulated as
follows:

Given:

X andy: A setof{x;,y;},j = 1..N data samples whete; is a N,-dimensional
design pointj andy; is a corresponding circuit performance value measured from
SPICE simulation of that design. Design of experiments (DOEcircuit optimiza-
tion can be used to generate the data samples.

No model template

Determine:

A set of symbolic model8/ that together provide the Pareto-optimal tradeoff between
minimizing model complexityf; and minimizing future model prediction errgs.

The formulation is a constrained optimization problem:

complexity ()
E,,L(y, F(x: ¢))} st ew 4.1

M = minimize {fl
f2

whereV is the space of template-free symbolic models. The algorithll traversew
to return a Pareto-optimal séf = {v7,¢s,..., vy, }. Each modek) maps anV,-
dimensional inpute to a scalar circuit performanceg, i.e. y = ¢ (x). Equivalently,
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y = F(x;v¢). Complexity issomemeasure that differentiates the degrees of freedom
between different models. Details are in equatlonl (4.5).

E,,L is the expected loss for a given over future predictions in the distribution
pdf (x), whereL is the squared-error loss functidn [FriZ003]:

L{y, F(z:¢)) = (y — F(x34))*)/2 (4.2)

Sectiorf4.411 will describe how an approximation fdp is computed.

By definition, no model in the Pareto-optimal set dominates any other model.
A model ¢, “dominates” another mode}, if {f;(v.) < f;j(¥s)}Vy, and {f;(v.) <
fi(y)}37; 7 = {1,2} in our case. That s, to be Pareto-optimal, a model must keaat |
as good as any model on both objectives, and better than adglnmoone objective.

4.1.5 Chapter Outline

The rest of this chapter is organized as follows.

Sectio 4R presents background on genetic programmingthslc regression, and
identifies specific issues with the status quo approachesioS8EL3 introduces the heart
of CAFFEINE: canonical form functions. Sectibnl.4 desesilthe reference search al-
gorithm, which uses multi-objective genetic programming a grammar to constrain to
canonical form functions. Sectidn#.5 describes the firghtbof experiments. Section
H.8 describes how to scale up CAFFEINE to larger problemity @arresponding experi-
ments in section 41 7. Sectibn¥.8 describes other appitatf CAFFEINE. Section 4.9
discusses the sensitivity of canonical form functions ® skarch algorithm employed.
Sectiorf4.70 concludes.

4.2 Background: GP and Symbolic Regression
4.2.1 Background: High-Level Issues

Genetic Programming (GP)_[Kozal992] is an evolutionanoatgm, with the distin-
guishing characteristic that GP individuals (points in design space) arteees Since a
symbolic model is a function and can be represented as alieesearch for template-free
models can be accomplished by GP search. In the GP literdhisdas calledsymbolic
regressionSR).

The functional form of results from canonical GP is comgietenrestricted. While
this sounds promising compared to the restrictions of fiseadplate regression, it actually
goes a little too far: an unrestricted form is almost alwaiffscdilt to analyze. GP-evolved
functions can be notoriouslgomplexand un-interpretable For example,[[Kozal992]
showed functions so bloated [SouZD02] that they take ugd pdgke of dense text. A recent
paper complains: “[GP-evolved] expressions can get, asawe $een, quite complex, and
it is often extremely difficult to understand them withoutaar foit of interaction with a
tool such asvlathematica [Kir2004].

We can see for ourselves. Using a dataset from seCiidn 4bnazal GP evolution
returned the following “optimized” expression:
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—1.40 % (vsgl + max(vsgh, max(max(maz(vsgh, max(vsg3 + vgs2, min(vsg3,
abs(1/vds2))) — logl0(vsdb)), min(ib2, abs(sqrt(abs(idl))))) — log10(vsd5),
maz(id2, min(vsg3, abs(sqrt(abs(logl0(id2)))))) + logl0(vsdb)) — min(vsg3,
abs(sqrt(abs(idl)))) — logl0(vsdb)))

Improvements are clearly needed. The first step is to ideatiti enumerate thepecific
issues that SR has.

4.2.2 Background: Specific SR Issues

This section examines SR challenges and GP approachesKaflapproaches) to handle
each. Most of them are specific to SR.

Managing Complexity. Occam’s Razor is the guide here: the simplest model that de-
scribes the data is usually the correct one. Complexityggglly dependent on measures
like tree depth and node count. In GP, expression-simpiifiogprocesses are of two
varieties: non-SR and SR-specific.

Non-SR techniques include:

e penalizing complex solutions (“parsimony pressurg”) [Kb292],

having complexity as a second objective and using a mujaative algorithm([Smi2005,
Kor2006],

maximum tree depth [Kozal992],
uniform operators such that depths never grow [Poli19 9,
other “bloat control” methods, e.d. [Pan2004].

The SR-specific approach is to do symbolic simplificatiothesi (a) automatically
during or after evolution with a symbolic math tool like Mathatica, or (b) manually
after evolution.

Excessive Compounding of Nonlinear OperatorsGP gives equal treatment to function
operators, whether they are linear or nonlinear (e.g. '+'lag()). The result is that even
a very small tree which would pass GP-parsimony standardkldme not interpretable
by humans. An example ign(exp(sin(z))): three compounded nonlinear operators
is too much, and even two is questionable. Maximum tree depdint handle this, but
unfortunately the tree must still be large enough to hantlieraeasonable combinations
of expressions such as polynomials.

Finding Coefficient Values. Induced expressions might have real-valued coefficients
which must be determined during GP search. Coefficients eaitbher the linear "weights"
on each basis function (along with the offset), or the nadincoefficients inside basis
functions.

Linear weights can be handled by: inclusion with nonlineaeficients; linear re-
gression[[Mck1999]; or having just one overall basis fumctand a simple correlation
calculation to sidestep linear regression until after etioh [Kei2004b].
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Nonlinear coefficients can be handled by “ephemeral randamstants”[[Kozal992];
by constant perturbation on a distribution, e.g. unifdrppg3004] or Gaussiah [Ang1996];
via nonlinear optimizatior] [Top2001]; within a constaméation grammar such as digit
concatenatiori [DemZ200D5]; or even combining multiple sgas [Dem2005].

Log-Range of Coefficient Values.For some problems, coefficient values should also
be able to take on a wide range of possible values that may lwampany orders of
magnitude: large positive numbers like 1.0e+10, smalltp@esnumbers like 1.0e-10,
zero, small negative numbers, and big negative numbers.

Some SR approaches handle it implicitly by allowilng() and/orpower() operators
to act directly on the constants, or by choosing from a discset of log-range variables.
We have not been able to identify any work that directly adsles log-valued constants
for continuous-valued numbers.

Coefficient values are just one side of the “coefficient cpBP must also determine
where in the expression to insert each constant. Thus, itragirto much research on
coefficient values, with the exception of the linear/noaéin distinction, there is little
discussion of coefficient placement in the GP literaturefodnonately, this means that
GP-evolved equations can end up having too few constantsne glaces and too many
in others; i.e. shortagesd excesses.

Coefficient Shortages.Consider the expressiof(xz) = log(z), which might appear in
a typical SR run. We can rewrite it g8z) = wo + w; * log(wy + ws * x) in which it
has four implicit coefficientsw, = 0.0,w; = 1.0,w, = 0.0, andws; = 1.0. The first two
coefficientsw, andw, are linear; the others are nonlinear.

As Figure[4.P illustrates, GP should be able to make smallssie the space of the
function’s behavior by having all relevant coefficientsdiiyaavailable. If there is a coef-
ficient shortage, tunability of the function is compromised

small {qu(x1) log(1.02'x;)  10g(0.01+1.02"x,)
beh.

change

large =>
change| & 7 4

Figure 4.2:Coefficients can be difficult to insert if not already presenen if
the behavioral change is small.

Coefficient Overabundance.Missing constants in some places is one issue, and having
too many in other places is another. The GP system is evomioig parameters than it
needs to. Figure4.3 illustrates one of many examples.

Non-compact Polynomials and Rationals.In GP, it takes many terms to build up a
polynomial, and sometimes those terms cancel each otheramsing redundant terms,
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f(x) = (4.8+1.1)*x,

could be
° f(x) = 5.9*x,

Figure 4.3:An example of coefficient overabundance.

as FigurdZ}4 shows. In the literature, this is also handigglicitly as part of symbolic
simplification.

f(X) = (Xa/X1)*((X1*X1)*X3) = Xq * X5°

f(x) = 1
oliPo
DO QOFE

oo

Figure 4.4:1t can take many nodes to get a simple polynomial or rational
expression. They can even cancel each other out.

Dimensional Awarenessin real-world use, functions describe something, and thatie-
thing" has units of measurement. Each input variable, aeddiget variable, has its own
unit, such as "m/s" for a velocity variable. For a GP-evolfediction to be physically
meaningful, the units have to align, e.g. only like units eald, and the input variables
must propagate through to the output such that the corrdpubunit is hit. Most SR
systems ignore this, but the work of Keijzer is a notable pkioa. He demonstrated
one system that used dimensionless values, another tisathéxolution towards correct
units, and a third system that had correct-by-construatiats [Ke11999| Kei2001]. Kei-
jzer noted that if there is a coefficient in front of an expressthat coefficient could
conceivably have "corrective" units such that the inputsitianslated properly into the
output units. Interestingly, the existence of coefficieaterywhere (implicit or explicit)
causesmplicit corrective unit transformations!

Bounded Ranges for Expression OutputsFor a given problem, each unit of measure-
ment has a range of reasonableness. For example, velocitygasfcan safely be bounded

between 0 and 500m /h. An ideal function would never allow intermediate or final ex

pressions that go beyond unreasonable unit ranges. MostsgBrch ignores this, though

Keijzer handles this via interval arithmetic in GP_[KeiZD&Ee12003].

Bounded Ranges for Operators.Some mathematical operators are only valid for spe-
cific ranges, e.qg. division “/” can only have a nonzero denwtur, andog() needs a pos-
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itive argument. GP research typically handles this by “pcteéd operators’ [Kozal992]
or simple exception handling, though the safest and mogaatevay is probably interval
arithmetic [Kei2001, Kei2003].

The challenge is to find a way to restrict the functional formoegh to overcome each
of these SR problems, without constraining away any posgdrims. The next section
discusses CAFFEINE, and how it overcomes these issues.

4.3 CAFFEINE Canonical Form Functions

The design of CAFFEINE follows two guidelines:
e ensure maximum expressiveness per node, and
e make all candidate functions directly interpretable.

Figurel4b shows the general structure of a CAFFEINE functibalternates between lev-
els ofsum-of-producexpressions angdroduct-of-sunexpressions. Each sum-of-product
expression is a weighted linear add of an overall offset tplus weighted basis func-
tions. A basis function is a combination of product termseveheach product term is a
polynomial/rational, zero or more nonlinear operatorg] aero or more unity operators.
Each product term acts as a “gate” to the next sum-of-predager.

sum of
products
product roduct
of sums

product

product
f sums

Figure 4.5:CAFFEINE evolves functions of this canonical form. Whilzaih
go deeper indefinitely, it is typically only as deep as shaworder to retain
human interpretability.

An example function is shown in Figure 4.6. We now describ& tiwe function aligns
with the CAFFEINE object, atree. Inth&1/x3” part of the function, the 7.1 is the tree’s
top left “wy” and the “1 /x3” is its neighboring “poly/rat’l of vars”. The 1.8” corresponds
to top “w,”, and the %" is the its neighboring “poly/rat’l of vars”.

The function’s ‘log corresponds to “nonlinear func”, which in the tree holdg th
“weighted linear add” term 1.9+ 8.0/z; + 1.4 x 23 /z3". That term itself breaks down:
function’s the “-1.9” is the tree’s lower %, rs¢"; “8.0/x,” corresponds to the tree’s
lower left “w,” * “poly/rat’| of vars”; and “1.4 x z3 /3" corresponds to the tree’s lower
right “w,” * “poly/rat’l of vars”.
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Note how CAFFEINE places coefficients only where they arededeand nowhere
else. This characteristic, which is distinct from tradi& GP approaches to symbolic
regression, is critical to generating interpretable fiored. A coefficient on everything
also means that they can be "dimensional transforms" tdwesiimensional awareness.

Wo

f(x) =-10.3 +7.1/x,
+1.8%x,"log(-1.9+8.0/x, +1.4* x,2 /x5 )

Figure 4.6: Example of a function in text form, and its corresponding
CAFFEINE tree form.

Figure[4Y gives an example which has unity functions fodpot terms. Specifically,
note how there isi0 nonlinear function that gates one layer of linear adds tathé. In
this fashion, CAFFEINE supports a product-of-sums forriafa

weighteo weighted
inear add inear add
f(x) =-10.3 +7.1 /X, /

+1.8"Xx,*(1.9+8.0/x,+1.4"%,/%;) *(3.2+5.9 %2/ x,)
Figure 4.7:Example where CAFFEINE product terms include unity fumsio

Typical usage of CAFFEINE would restrict the number of proicierm layers to just
one or two, which is a more effective “maximum depth” conistiretherefore ensuring that
there is not an excessive compounding of nonlinear comgesesh asog(sin(exp(x))).
There is a limit on the number of basis functions. Due to threeafsa canonical form, all
evolved functions are immediately interpretable, with gmbolic manipulation needed.

Such constraints on functions directly resolve excessomptexity including GP
bloat [Sou2002]. Furthermore, they can be used in a compleanefashion with other
complexity-reducing tactics, e.g. having a second objeatf complexity within multi-
objective search.
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4.4 CAFFEINE Search Algorithm

This section describes the search algorithm used on CAFEEINctions. CAFFEINE
search uses genetic programming (GP) as a starting poirgxbends it in order to prop-
erly address template-free symbolic modeling. It attablksissues of model complexity
and interpretability in two main ways: a multi-objectivegmpach that provides a tradeoff
between error and complexity, and a specially designed gam operators to constrain
the search to specific functional forms without restrictgogpd solutions.

As described in the previous section, in CAFFEINE the overgbression is a linear
function of basis function®;;: = 1,2, ..., Np:

Np
y=F(x:) =ag+ Y a; B(x) (4.3)
i=1

A CAFFEINE individual¢» has one GP tree to define each basis functign:=
{By, By, ..., By, }. The linear coefficients; are determined on-the-fly using linear re-
gression on the least-squares eror cost function.

4.4.1 Multi-Objective Approach

CAFFEINE uses a state-of-the-amtlti-objectiveevolutionary algorithm, namely NSGA-
[ [Deb2002]. NSGA-II returns a set of individuals that, leaitively, trade off model error
and complexity. Error and complexity are objectivgsand f, in equation[[411).

Error (expected los#, ,L) is approximated by “training erroré,., which is is the
normalized root mean squared error of individyabn training data:

o 1 Al ?Zfr\,l = Ytry ?
() = || 7 * 2 <max<y> - mm(y>) (4.4)

=1
whereN,, is the number of training sampleg, ; is sample of training outputys,., ¥s,.;
= F (@i ¢), andxy,.; is samplei of training inputsX:,.. Note that the y-values are
scaled byy, notyy,.. €., has a similar formula, except thé,. training points{ y¢,., X4, }
are replaced by th&/;.., testing point yses¢, Xeest |-

Complexity is measured from the number of basis functidms,number of nodes in
each tree, and the exponents of “variable combWv€s{j, according to:

Np nvc(j)

complexity(y) = Z(wb + nnodes; + Z vecost(vey 5)) (4.5)

j=1 k=1
wherew, is a constant to give a minimum cost to each basis functiandes(j) is the

number of tree nodes of basis functigrandnuc(j) is the number o¥/Cs of basis function
J, with cost:

d
vecost(ve) = Wy, * Z lve(d)| (4.6)

1=1
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Using the terminology of [Wam1995], the approach accorhelésimplification during
generation It does so by maintaining evolutionary pressure towargsetocomplexity.
The user avoids aa priori decision on error or complexity because the algorithm gener
ates a set of models that provide tradeoffs of alternatrabker than producing just one
model.

Note that specific parameter settings are given in the exyetis (sectioh415).

4.4.2 Grammar Implementation of Canonical Form Functions

In GP, a means of constraining search is via a grammar, as mlj9%9%]. Tree-based
evolutionary operators such as crossover and mutation regpect the derivation rules
of the grammar.

Even though grammars can usefully constrain search, novne yet been carefully
designed for functional forms. In designing such a gramihas,important to allow all
functional combinations (even if just in one canonical fprm

The CAFFEINE grammar, shown in Talflel.1 is explicitly desid to create separate
layers of linear and nonlinear functions and to place cdefiiis and variables carefully;
in adherence with Figuie4.5

Table 4.1:CAFFEINE Grammar.

REPVC — VC | REPVC * REPOP | REPOP

REPOP — REPOP * REPOP | OP_1ARG ( W+ REPADD) |
OP_2ARG( 2ARGS ) | ... 30P, 40P, etc

2ARGS — W+ REPADD MAYBEW| MAYBEW W + REPADD

MAYBEW+— W | W+ REPADD

REPADD — W * REPVC | REPADD + REPADD

OP_ 2ARG+— DIVIDE | PON| MAX | etc

OP_1ARG — INV | LOGLO | etc

First, we describe the notation of Tablel4.1. The nonterhsipabols are in bold-case
(terminal symbols are not). Each line (or two) shows the fpbsg&xpressions that a non-
terminal symbol on the left can map~) into. The possible expressions, i.e. “derivation
rules” are separated by the OR operator |'.

We now explain how the grammar implements canonical fornetions.REP is short
for “repeating”, such as “repeating operatoREPOP and “repeating variable combo”
REPVC, which are explained further. The start symboREPVC, which expands into
one basis function (remember that an individual has seveddtlevel basis functions).
Note the strong distinction among operators. The root isoayet of variablesREPVC)
and / or nonlinear functiondREPOP). Within each nonlinear function iIREPADD, the
weighted sum of next-level basis functions.

A VCis a “variable combo”, intended to maintain a compact regméstion of poly-
nomials/rationals. Its expansion could have been impléeatkedirectly within the gram-
mar; though in our baseline system we store a vector holdmopteger value per de-
sign variable as the variable’s exponent. An example vestt,0,-2,1], which means
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(z1*x4)/(x3)?, and according to equation(#.6) has cast+ [0] + | — 2|+ |1| = 4. This
approach guarantees compactness and allows for specratofseon the vector.

In determining coefficient values, we distinguish betweeedr and nonlinear coeffi-
cients. As described, a CAFFEINE individual is a set of basgistions which are linearly
added. Each basis function is a tree of grammatical deoinati Linear coefficients are
found by evaluating each tree across all input samples ta gettrix of basis function out-
puts, then to apply least-squares regression with thatxreatd the target output vector
to find the optimal linear weights.

With each nonlinear coefficieWin the tree (i.e. ones that are not found via linear
regression), a real value will accompany it, taking a vatuthe rangd—2 * B, +2 x B].
During interpretation of the tree the value is transformed j—1e+ B, —1e— B]U[0.0]U
[le — B, le + BJ.

POW a, b) is a’. When the symba2 ARGS expands to includ&AYBEW either the
base or the exponent (but not both) can be constants.

The designer can turn off any of the rules in the grammar ofeldhl, if they are
considered unwanted or unneeded. For example, he coully easirict the search to
polynomials or rationals, or remove potentially diffictdt-interpret functions such asn
andcos He could also change or extend the operators or inputsirelgdeV;, L;, and
W;/ L.

Table 4.2:Procedure ExtractSymbolicCaffeineModels()

Inputs: X,y

Outputs: M

1. M=0;P=0;Q=10

2. fori=1..Npyp:

3. P~V

4. for Nyen, = 1..Nyen mas:

5. {P, @} = OneNsgaiiGeneratiof{ ()
6. M = nondominatedFilte/ U P U QQ)
7. returnM

4.4.3 High-Level CAFFEINE Algorithms

This section describes the CAFFEINE model extraction dligors in pseudocode. Table
B2 shows the highest-level routinExtractSymbolicCaffeineModels()t takes in the
training inputsX and training outputgy. It will output a Pareto-optimal set of models,
M.

Line 1 of Tabld4.P initialized/, as well as the current set of parefiteind current set
of children@, all to empty sets. Lines 2 loops across the populationjzgto randomly
draw each individuaP; from the space of possible canonical form functidns

Line 4 begins the EA's generational loop of lines 5 and 6. Tdaplstops when the
target number of generations,.,, ..., iS hit. Line 5 does the main EA work, which
here is a single generation of the NSGALI[Deb2002] mulijextive EA. Line 6 updates
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the external archive of Pareto-optimal individualg, by nondominated-filtering on the
existing M with the recently updated parensand childrerns).

Line 7 of Table[4.P concludes tHextractSymbolicCaffeineModels@Qutine, by re-
turning the Pareto-optimal symbolic modeld,

Table[4.B gives the pseudocode for one generation of the NB&gorithm [Deb200R].
It inputs the parent® and children), and returns respective updated versihand()'.

In line 1 of Tabld' 4.3, the procedure merges the two inputsamie overall population
of candidate parentd?. In line 2, it sortsk into nondomination layerg;, i = 1..Nyp,
whereF) is the nondominated sef;, is what would be nondominated#f;, was removed,
I35 is what would be nondominated if; U F, was removed, etc./’ contains all the
candidates with no duplicatdg U FL U --- Fyp = P,UP._;; FiNFyN---NEyp = 0.

Table 4.3:Procedure OneNsgaiiGeneration()
Inputs: {P,Q}
Outputs: {P’,Q’}
R=PUQ
F = fast-nondominated-sork)
P =0;i=1
until |[P'| + | F;| < Npop:
crowding-distance-assignmeh)
P' =P UF;
1=1+1
Nyi = Npop - | Pl
F; = sort F; in descending order of crowding distance
10 P =P U{F;1,Fis,- - E,me}
11.Q)" = ApplyOperatorsp”’)
12.(Q)" = Evaluate)’)
13. return{ P’, '}

©CoNOOR~WDNE

The aim of lines 3-10 is to fill up the selected paremits,

It begins by initializingP’ to an empty set in line 3. Then lines 4-7 iterate by filling up
each nondomination layer, banhly if the whole nondomination layéfr; fits. Specifically,
it first adds all individuals fron¥, if they all fit, i.e. if if | P,| + |F1| < Np. If there
is space left, it then adds all individuals frofa if they all fit. If there is space left, then
adds all individuals fron¥ if they all fit. And so on.

Lines 8-10 of Tabl&413 cover the case wh&mmay not be full yet. This occurs when
the last nondomination layér; did not fit perfectly intoP”’s remaining space oN;;;
individuals. In that case, line 9 sorts the nondominatigeta’; according to “crowding
distance”. Crowding distance of an individual is the maximEuclidian distance (in
performance space) between that individual and its classighbor. Line 10 takes the
Ny individuals inF; that have the greatest spacing, and adds theRi.to

Now that the parents have been selected, children can beedrebine 11 of Table
M3 applies evolutionary search operators to the parBhte create childrer)’. These
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operators are grammar / CAFFEINE-specific, so the operadtaild are given in section
B4

Line 12 evaluates the childrep)’. In this case, evaluation is of the two CAFFEINE
objectives, model training errat, in equation[(4K), and model complexity in equation
@.3). To measures training error, recall that least-semieggression must first be done to
determine the linear coefficients of each of the basis functiors,.

Line 13 returns the updated pareritsand childreny’, and the routine concludes.

4.4.4 Evolutionary Search Operators

We now describe how trees are randomly generated, and axpkisearch operators on
the trees. The search operators are grouped by the aspesdrchsepresentation that
they concern: grammar, real-valued coefficiéf@s, and basis functions.

Random generation of trees and subtrees from a given symbales merely ran-
domly picking one of the derivations of one of the symbolg] eecursing the (sub) tree
until terminal symbols are encountered (subject to treardimits).

Grammatical restrictions on the trees lead to a natural grarrobeying crossover
operator and mutation operator, as described by Whigham1995]. Whigham-style
crossover works as follows: it randomly picks a node on thet parent, then randomly
picks a node on the second parent with the constraint thatst e the same grammatical
symbol (e.g.REPOP) as the first node, and finally swaps the subtrees correspgndi
each node. Whigham-style mutation involves randomly piglki node, then replacing its
subtree with a randomly-generated subtree (as in the gemerd initial trees).

Real-valued coefficients are mutated according to a Caudtsitdition [Yao19998],
which cleanly combines aggressive local tuning with theasamnal large change.

The specialized structure ®Cs get appropriate operators, which include: one point
crossover, and randomly adding or subtracting to an exporadne.

Since each individual has a list of basis functions, thigl$etb special operators:
creating a new individual by randomly choosing > 0 basis fimmdfrom each of 2 parents;
deleting a random basis function; adding a randomly geedriee as a basis function;
copying a subtree from one individual to make a new basistiom¢or another.

4.5 CAFFEINE Results

This section describes the application of CAFFEINE to haogdsymbolic models for
analog circuits that map design variables to performanimgsproblems with 13 input
variables. It shows the actual symbolic models generakediteasured error vs. com-
plexity tradeoffs, how prediction error and complexity qoane to posynomials, and how
prediction error compares to other state-of-the-art (k@) regression approaches. The
extension of CAFFEINE to larger problems is described irtiea@.8.
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45.1 Experimental Setup

Unary operators allowed are/ (), logio(z), 1/, 22, sin(x), cos(z), tan(z), max(0, z),
min(0, z), 2%, and10”, wherex is an expression. Binary operators allowed afer x,
x1 * To, maz(xy, x3), min(xy, x2), power(zy, x9), andz, /z,. Conditional operators in-
cluded< (testExpr, condExpr, exprl f LessThanCond, else Expr) and< (testExpr,
0, exprl f LessThanCond, else Expr). Any input variable could have an exponent in the
range{..., -1, 1, 2, ...}. While real-valued exponents cblbéve been used, that would
have harmed interpretability.

The circuit being modeled in this example is a high-speed GM@IA as shown
in Figure[£8. The goal is to discover expressions for the-fimguency gain 4. r),
unity-gain frequency{'U), phase margini M), input-referred offset voltagé{O F' F),
and the positive and negative slew ratdd,, SR,), To allow a direct comparison to the
posynomial approacih [DaeZ2002], an almost-identical gnobdetup was used, as well as
identical simulation data. The only difference is that, duese scaling makes the model
less interpretable, neither the inputs nor the outputs weaded. The one exception is
that F'U is log-scaled so that the mean-squared error calculatioddigear learning are
not wrongly biased towards high-magnitude sampleg'dt The technology is 0;/m
CMOS. The supply voltage is 5V, .o is 0.76V and -0.75V for the NMOS and PMOS
devices, respectively. The load capacitance is 10 pF.
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Figure 4.8:CMOS high-speed OTA.

Good training data is essential to the methodology. Theoehof design variables and
sampling methodology determines the extent to which thegdes can make inferences
about the physical basis, and what regions of the desigregpacmodel is valid in. We
used an operating-point driven formulatidn [Leyn1998] ,end currents and transistor
gate drive voltages comprise the design variables (13&san our case). Device sizings
could have been used as design variables instead; it depardissigner preference and
other reasons (see sect[onl6.4).
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Full orthogonal-hypercube Design-Of-Experiments (DOMDHh2004] sampling of
design points was used, with scatég=0.1 (the simpler problem efr=0.01 from [Dae2002]
is ignored in this chapter) to have 243 samples. The sinmraime for one sample
was about 1 s, or 4 min for all samples; this is fully dependemthe circuit, analyses,
and experimental design method being used. These samgieswise unfiltered, were
used as training data inputs. Testing data inputs were alspled with full orthogonal-
hypercube DOE and 243 samples, but with=0.03. Thus, in this experiment we are
creating a somewhat localized model; one could just as Iseathdel a broader design
space, but the above choice allows us to compare the res{@aéZ2002].

The run settings werelNg = maximum number of basis functions = 15 (any larger
is definitely non-interpretable)y,,, = population size = 200 (like NSGA-II's default),
Nyen,maz = 5000 generations (more than enough time to converge),rmanritree depth
= 8 (so that each basis function has exactly one layer of neatioperators), and “W”
coefficients rangé—1e + 10, —1e — 10] U [0.0] U [1le — 10, 1e + 10] (so coefficients can
cover 20 orders of magnitude, both positive and negative).

All operators had equal probability (a reliable settingcept parameter mutation was
5x more likely (to encourage tuning of a compact functiomniplexity measure settings
werew, = 10, w,. = 0.25. That is, the cost of adding a basis function is retdyivigh
compared to the cost of adding another variable combo.

One run was done for each performance goal, for 6 runs togadh Eun took about 12
hours on a 3 GHz Pentium IV Linux workstation. (Note that thies on a slow Matlab-
based system with extensive pass-by-value functions. Mip&eimentation of sectidn 4.6
is significantly faster because it has pass-by-referenoetifans and more improvements).

We calculate normalized mean-squared error on the traiddtg and on the separate
testing datag,, ande,.; as described in equatidn{#.4). These are standard measuem
of model quality in regression literature. The testing emg,; is ultimately the more
important measure, because it measures the model’s aoilggneralize to unseen data.
These measures are identical to two of the three posynompigllity of fit” measures in
[Dae2002]: its measure “worst-case quality,. is the training errok,,., and its measure
“typical case quality’y,. is the testing erroe,..; (as long as long as the constant ‘c’ in the
denominator is set to zero, whidh [Dae2D02] did.)

4.5.2 Results: Whitebox Models and Tradeoffs

Let us first examine some symbolic models generated by CAREEWe ask: “what
are the symbolic models having less than 10% training artohtgsrror, with the lowest
complexity?”

Table[4# shows those functions. (Note thhdf has been converted to its true form
by putting the generated function to the power of 10). We baédach form has up to
four basis functions, not including the constant. F@p ' F', a constant was sufficient to
keep the error within 10%. We see that a rational functiooahfwas favored heavily; at
these target errors only one nonlinear function, In( ), apg€for A, ). That expression
effectively says that therder of magnitudef some input variables is useful because it
deals in logarithmic scales.
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Table 4.4.CAFFEINE-generated symbolic circuit models with < 10% trai
ing error and <10% testing error.

Perf. Expression
Char.
ALF —10.3 + 7.08e-5/iq1 + 1.87 x In(—1.95e+9+1.00e+10/ (vsg1 * vsg3)
+1.42e+9%(Vgs2 * Vass)/ (Vsg1 * Ugs2 * Ugss * 142))
FU 10(5.68—0.03*1)951 Vds2—b5.43xiq1 +5.63e—6/141)
PM 90.5 + 190.6 * idl/vgsl + 22.2 % idg/vdsg
VOFF —2.0e-3
SRp 2.366+7+1.956+4*id2/id1 — 1047/Zd2 + 2.15€+9*’id2 + 4.63€+8*id1
SR, —5.72e+7—2.50e+11% (141 * ig2)/Vgs2 + 5.53e+6%V 452/ Vgso + 109.7 /iy

One can examine the equations in more detail to gain an uadeiag of how design
variables in the topology affect performance. For examglg; is inversely proportional
to iy, the current at the OTASs differential pair. O$,R, is solely dependent oiy; and
igo and the raticiy; /ige. Or, within the design region sampled, the nonlinear caowpli
among the design variables is quite weak, typically onlya®s for variables of the
same transistor. Or, that each expression only containsragimes small) subset of
design variables. Or, that transistor pal&l and /2 are the only devices affecting five
of the six performances (within 10%).

We now examine the CAFFEINE-generated tradeoffs betweeanitig errore;, (q..)
and complexity. Figur€4l9 illustrates. All models in thadeoff of training error vs.
complexity are shown: as complexity increases, the trgimmor decreases. In each
performance instance, CAFFEINE generates a tradeoff afitah® different models. As
expected, a zero-complexity model (i.e. a constant) habitjteest training error of 10-
25%. The highest-complexity models have the lowest trgieimor, of 1-3%.

We can also examine the curves relating complexity to thebmuraf basis functions.
Recall that complexity is a function of both number of basisdtions, and the complex-
ity of each tree within each basis function. In the curves,sse that the number of
basis functions usually increases with the complexity. Elsy, sometimes complexity
increases by having larger trees within existing basistions, rather than adding more
basis functions. This can be seen in the curves: as complexiteases, the number of
bases temporarily levels off, or even decreases.

The testing errok;.; (g;.) is also shown in Figurie4.9. We see that unlike the training
error, it is not monotonically decreasing as complexitgsis This means that some less
complex models are more predictive than more complex on@sveMer, we can prune
the models down to the ones that give a tradeoff betweemgestror and complexity, as
shown in Figuré4.10. These are the most interesting andiusef

It is notable that the testing error is lower than the tragnémror in almost all cases.
This sounds promising, but such behavior is rare in the s=jpe literature, and made
us question what was happening. It turns out that there idié nesason: recall that the
training data is from extreme points of the sampling hypbec(scaled/z=0.10), and the
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Figure 4.9:Plots of models’ training error, testing error, and numbéibases
vs. the complexity for each performance goal for the opamipignire [4.8.
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testing data is internal to the hyperculde£0.03). This testing data tests tinéerpolation
ability. Thus, models that reallgre predictive should be able to interpolate well, even at
the cost of a perfect fit to the extreme points. In any caséjlydiaving the testing error
lower than the training error demonstrates the strength@fQAFFEINE approach.

By only putting the relevant variables into a model, the apph demonstrates the
potential to provide expressions for circuits with sigrafitly more variables (see next
section).

One may improve their understanding of the basic dependsnia circuit in an-
other fashion: by examining expressions of varying comipje®r a single performance
characteristic. Low-complexity models will show the maefftects; alterations to get
improved error show how the model is refined to handle seanddr effects. TablE4.5
shows models generated for the phase margin (PM) for dengearaining and testing
error. A constant of 90.2, while giving 15 % training errogchonly 4% test error. For
better prediction, CAFFEINE injected two more basis fuoiesi; one basis being the cur-
rent into the differential pait,;, the other basisy /v4s0, being the ratio of the current to
the drain-source voltage @f2; i.e. M2’s small-signal output conductance/¢,..2). The
next model turns the input current term into a ratjp/v,.; i.e. M1’s transconductance,
inverted (/g..1). Interestingly, and reassuringly, almost all ratios usegame transistor
in the numerator and denominator.

Such analyses achieve one of the aims of the CAFFEINE symbuddeling tool:
demonstrating how to gain insight into the topology.
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Table 4.5:CAFFEINE-generated models B/, in order of decreasing error
and increasing complexity.
Test | Train | PM Expression
error | error
(%) | (%)
3.98 [ 154 |[90.2
3.71 [10.6 | 90.5+ 186.6 % ig; + 22.1 * igo/Vgs0
3.68 10.0 90.5 4+ 190.6 = idl/vgsl + 22.2 * idg/vdsg
3.39 | 8.8 90.1 4 156.85 * g1 /vgs1 — 2.06€-3%i42 /141 + 0.04 % vg52/vgs2
3.31 8.0 91.1 — 2.056'3*@@2/7@1 + 145.8 * idl + 0.04 * Ugsg/vdsg — 1.14/1)931
3.20 | 7.7 90.7 — 2.13e-3xiga/ig1 + 144.2 x igy + 0.04 * vyg0/Vas2
—1.00/ (vgs1 * Vgs3)
265 | 6.7 90.8 — 2.08e-3%ig2 /141 + 136.2 % igy + 0.04 * vys2/Vas2
—1.14/v451 + 0.04 * vye3/Vas5
241 | 3.9 91.1 — 5.91e-4%(vgs1 * Ga2)/ia1 + 119.79  igy + 0.03 * vys2/Vas2
—0.78 /451 + 0.03 % Vg1 /Vass — 2.72€-7/ (Vs * Vass * iaz)
+7.11%(Vg52%Vgs4%0g2) —0.37 /v59g5—0.58 /v453—3.75e-6 /1 40—5.52e-
G/idl

4.5.3 Results: Comparison to Posynomial-Based Symbolic Meling

We also compared CAFFEINE to the posynomial approach usiegosynomial results
in [Dae2002]. We first compare model complexity. To pick thedels to compare, we
first choose the CAFFEINE model which meets the reported mpasyal training and
test error of [Dae2002], then we compare the number of pasyalccoefficients to the
number of coefficients appearing in the CAFFEINE express{tims is reasonable when
the CAFFEINE expressions are largely rationals; more cempymbolic models would
be less appropriate). As Figure 4.11 shows, the CAFFEINEeiscate 1.3 to 6.4 times
more compact than the posynomial models. Andyin F F', the only performance that
the posynomials had slightly better prediction error thakFEEINE (see Figuré&4.12),
the CAFFEINE model is 6.2x more compact.

We can also compare the prediction abilities of CAFFEINEdsymomials. To pick a
model from a CAFFEINE-generated tradeoff for comparisoe fixked the training error
to what the posynomial achieved, then compared the testiogse The results are in
Figurel4.IR. In one cas®,0F'F', CAFFEINE did not meet the posynomial training error
(0.4%), although it probably could have with more basis fioms; we instead picked an
expression which very nearly matched the posynomial agpredesting error of 0.8%.
What we saw in the previous data, and what we see again hehati€EAFFEINE has a
lower testing error than training error, which providesareonfidence to the models. In
contrast, in all cases bitO F'F', the posynomials had a higher testing error than training
error, even on this interpolative data set. The CAFFEINE elsdesting errors were
2x to 5xlower than ones from the posynomial models. The exception(d4'F', where
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the posynomial achieves 0.8% testing error compared t@0 85 CAFFEINE. In short,
posynomials have poor prediction ability even in interpiola. CAFFEINE models pre-
dict far better, and with more compact models. Given thi® can reasonably question
the trustworthiness of constraining analog circuit perfance models to posynomials.

4.5.4 Results: Comparison to State-of-the-Art Blackbox Rgression
Approaches

While other modeling techniques may produce models thabjpague (and therefore not
interpretable), it is still instructive to see how well CAERNE compares to them in terms
of prediction ability.

So, on the 6 problems already described in sediionl4.5.1,ested the following
regression techniques: a constant, linear models with-Bepgares fit, full quadratic
models with least-squares fit, projection-based quadf@ROBE) [Li2Z006], posynomial
[Dae2002], state-of-the-art feedforward neural netwdfSNN) [Amp2002], boosting
[Sch2002] the FFNNs, multivariate adaptive regressiomspl(MARS) (i.e. piecewise
polynomial with stepwise construction) [Fri1991], leasfdares support vector machines
(LS-SVM) [Suy2002], and kriging [Jon1998].

Model builders were coded and configured as follows.

e The code to build constant, linear, and full quadratic medehs about 25 lines of
Matlab. The model building time was a few seconds, at most.

e The code to build PROBE was about 100 lines of python, usingié&tic / LAPACK
for least-squares regression and maximum rank of 2. The hbodlding time was a
few seconds, at most.

e The posynomial results were taken directly frdm [Dae20@2gports that the model
building time was 1-4 minutes (on a slower machine).

e The FFNN is trained via an adaptive Levenberg-Marquardhapation scheme (OL-
MAM); we used the Matlab code referenced In [Amp2002]. &gk wereNum-
Restarts= 10, MaxEpochs= 5000. The time to build a single network was about 10
s. A suitable error was typically found in the first or secoastart of about 3 hidden
neurons. Therefore the total model building time was abtQtg) * (10 restarts) *
(first 2 neurons) + (10 s) * (2 restarts) * (1 final neuron) = 10*2 + 10*2 =220 s =
3.7 min.

e The boosted FFNN was Matlab code wrapping the OLMAM code.tirfggt were
NumModels= 20. The model building time was about (220 s to discdvamHid
+ (10 s)*(20 models) = 220 s + 200 s = 420 s = 7.0 min. A 10x speeda@ C
implementation would make this 42 s.

e The MARS model builder was about 500 lines of Matlab code; ehbdilding time
was about 5 minutes.

e The SVM is trained using the least-squares strategy (LS-5W\ used the Matlab
code from [Suy2002], with all settings at “fully automati¢he model building time
was about 5 minutes.
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e The kriging model builder was about 200 lines of Matlab cad#) ©,,,;, = 0.0,0,,,4.
=10.0,pmin = 0.0,p,0- = 1.99. The model building time was about 5 minutes.

Figure[4. 1B shows the resulting test errors for the 6 peréorees (adapted frorm [Mcc2005c¢]).
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Figure 4.13:Comparison of prediction ability of CAFFEINE to state-bkt
art modeling techniques.

On this dataset, CAFFEINE does the best. MARS comes in vegecl Kriging is
the next-best. The FFNN, boosted FFNN, and SVM are all varge;land perform about
the same as the linear model. The quadratic and posynonpedaghes and posynomial
approaches perform the worst.

The results on different regressors inform us about theraaitithe data. Progress-
ing across the spectrum of polynomial complexity — from thepest linear models to
posynomials to projection-based quadratic to full quadrathe prediction error contin-
ually worsens. It turns out that the polynomials even capthetraining error poorly; for
example the projection-based quadratic had a training efrabout 10% for each per-
formance. Since the prediction error became lower the monstcained the polynomial
model was, this indicates that where the models do attemmddhe added flexibility to
predict better, it backfires. In general, this is indicativat a polynomial functional tem-
plate is not appropriate for circuit performance mappirgygn for this relatively simple
OTA circuit.
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CAFFEINE only selects input variables that really mattdrisibiased towards the
axes of the input variables rather than being affine-inveri&hat is, CAFFEINE expres-
sions and search operators work on one or a few input vagaila time, as opposed to
using all variables in a weighted sum. MARS did similarlychese its stepwise-forward
nature makes it also biased towards the axes and is seleftiaput variables. While
CAFFEINE had the best or near-best prediction error on 5 ef@tperformance goals,
MARS had the best or near-best on 3. As we shall see, the gtpeoaches lose predic-
tion performance because they have different biases.

Kriging performed fairly admirably in this setting. This m®t surprising because it
tends to perform well when the input samples have relativeljorm spacing, as they
do here with the DOE sampling. Kriging, FFNNs, and boosteNIR§ did worse than
CAFFEINE and MARS, most likely because they did not have #lpfal (for this appli-
cation) bias towards the input axes. The boosted FFNN dithae¢ noticeably superior
performance to the FFNN, which means that overfitting waalyikiot an issue with the
FFENN. The SVM’s performance was poor, probably becausesdtéd the variables it
selected too uniformly. Also, the support vector at the eenf the sampling hypercube
has to reconcile all the other samples, which it does notyréave enough parameters
to do properly. Because kriging did substantially bettentlsVMs, the choice of kernel
distance function was likely not an issue. Interestinghlyahree approaches, namely
CAFFEINE, MARS, and kriging, did better at prediction tharc@nstant. This is not
because constants are good predicp@sse but because other predictors failed for the
various reasons described. Put in another way, the othdigboes’ attempts to predict
outputs from unseen (testing) inputs did poorly becausertbdels generalized in poor
directions that caused more extreme error values, wheheaonstant never had extreme
error values.

In summary, CAFFEINE demonstrated that it could out-predlithe state-of-the-art
approaches tested (on the given circuit-test suite), intiaticto being theonly approach
that outputsgemplate-freesymbolicmodels. CAFFEINE’s construction time is longer
than the other methods, but is still fast enough for ithe@ght applications that it was
designed for.

4.6 Scaling Up CAFFEINE: Algorithm

We ran the algorithm described in sectionl4.4 on larger d@scd problems with more

than 100 input variables. The results were disappointirggpide good performance on
smaller problems, CAFFEINE was too slow to return interegtiesults on these larger
problems in reasonable time. That experience motivatesst#igtion. The aim is to alter
the search algorithm so that it can scale to problems of 1@@blas. The specific aims
are to (a) run in a reasonable time — hours or minutes, (b) peadictive models, and (c)
have interpretable models.

The improved CAFFEINE leverages four complementary teqpines:
e Subtree caching
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e Gradient-directed regularization to simultaneously grbasis functions and find co-
efficients for the remaining basis functions

¢ Filter single-variable expressions in a pre-evolutiompste
e Always consider all linear basis functions

We now describe each technique in detail.

4.6.1 Subtree Caching

In the original implementation of CAFFEINE, every time adrmas changed, it would
have to bdully re-evaluated. The technique of sub-tree caching [Kei26@#steps eval-
uations in some nodes of the tree. Given that the trainingsg¢atdoes not change, when a
new tree is created from parent tree(s) via the search apsrainlypart of the new tree

is different. Therefore, we evaluate just the nodes of tee that have changed, and their
parent nodes, anthchethe results. The “evaluation” for other nodes merely use®ttal-
uated results that have been cached previously. Note tht this cleanly, CAFFEINE
was re-implemented in Python, whereas the previous impitatien was in Matlab. This
improved runtime further because Python passes functibresaby reference, whereas
Matlab passes by value.

4.6.2 On-the-fly Pruning with Gradient-Directed Regularization

In previous subsections, the linear coefficieatsf equatiof 4B were learned by mini-
mizing the least-squares (LS) loss function on the traimiatp. But for larger problems
having potentially more basis functions, the LS predictioan be unstable because there
is higher variance in the range of possible parameters.hEurtore, to keep the com-
plexity down, it is desirable to have a more aggressive wagytme the basis functions.
Regularization is promising because it explicitly acc@uiotr parameter variance and can
implicitly prune basis functions on-the-fly. Historicglihe main regularization choices
have been ridge regression [Horl970] and the lasso [Tigj199afortunately, ridge re-
gression does little pruning, and the lasso prutbesaggressively. Fortunately, a new
technique, gradient-directed regularization (GCR) [B0Z], strikes a compromise. GDR
does gradient-based optimization on the loss funcfidn equation[(4I1) according to the
coefficient update rule:

a(v+ Av) =a+ Av x hr(v) 4.7)
where Av is small (“infinitesimal”) value andewr is the direction of the next step. The
starting value otz is [0, O, ..., O]. The gradient to the loss function is:

gr(v) = da N, - ZL vi, F(z;;a (4.8)

whereL is given in equatior{412).
One could directly optimize usingr instead ofhr in (@4), but little pruning would
happen, and collinear or near-collinear bases get simdares (like ridge regression).
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Instead, GDR encourages diversity by selectively updatmefficients. Specifically, it
changes; at a given step only ifgr;| is sufficiently large:

hr(v) = {hr;(v)}Vi = {v(v) x gri(v)}Vi;i =1,2,..., Ng (4.9)
3W(0) = Hgr() 2 7 maz_lori(o)) (@.10)

where~; is an indicator function that returns 0 or 1, ahd either outputs 0 opr; as

it combines the indicator function and the gradientis a parameter which controls the
degree of pruning: 0.0 is like ridge regression, 1.0 is li&ssb, and values in between
strike a compromise.

We employ GDR here (with settings given in secfion4.7.1)e Tésult is that we can
have CAFFEINE individuals with a large number of basis fimts$, and in a single pass
GDR will drive many linear coefficients to zero (i.e. prune thasis functions), and set
robust values for the remaining linear coefficients. GDRas too: our 300-line python
implementation of GDR has about the same runtime as theyhmtimized LAPACK
linear LS solver.

4.6.3 Pre-Evolution Filtering of Single-Variable Expres#ons

The third scalability-improving technique focuses therskdowards the most promising
single-variable nonlinear expressions. It determinesehexpressions with the routine
ExtractUsefulExpressionsghown in Tabld_4l6, prior to the evolutionary run (i.e. right
before line 2 in the procedure of Tallle . ExtractUsefulExpressionsgpnsiders a large

set of possiblsingle-variableexpressions at once, and extracts the most promising ones.

We now describ&xtractUsefulExpressions@f Table[4.6 in detail. It takes as inputs
the target training inputX and corresponding outputs It also takes iny,., which gov-
erns the final number of expressions returned. It will retaiget of chosen expressions,
Buseful-

In lines 1-6,ExtractUsefulExpressions€pnstructs the candidate expressidsby
enumerating through all combinations of input variabl@se(R), operators (line 3), and
exponents (line 4).

Line 7 simulates each candidate expression on each of thentyanput vectors inX..
Each row of the resulting matriX gz has the values of each training input vector as input
to a given expressiomn;.

Line 8 identifies the influence of eadh, i.e. each row inX g, by conducting linear
learning on the mapping fronX g to y. Since it is possible (and likely) that the num-
ber of expressions exceeds the number of training sampBR, & used because it can
handle underdetermined linear systems. From GDR, eaclessipnB; will get a linear
coefficienta;.

Then, line 9 computes thafluence ;, of an expressiom; according to:

v = |a;| * (maz (Bi(x;)) — min (Bi(x;))) (4.11)

1<j<N 1<j<N
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Table 4.6:Procedure ExtractUsefulExpressions()
Inputs: X, y, v,
Outputs: Bysefu
1. B={};i=1
2. foreach input variable = {z, 23, ...}
3 for each operatarp = {unity(), logio, - - -}
4 for each exponentrp = {-2, -1.5, ...}
5. defineB; asop(v)*?
6
7
8

: B=BUB;;i=i+1

. X g =simulateX on eachB;

. a =GDR linear learning oiX g — y.
9. ; = compute influence aB; according to[(4.11); for eacB;
10. B = sort B in descending order of
11-Buseful =0; 44t =0;0=1
12. whilewr < tipy:

13. Buseful = Buse_ful U Bz
14, 10 = tior + 14

15. 1=1+1

16. returnB sefw

wherez;; is the;*" training sample.l@%v(Bi(wj)) is the largest value thd; computes to
VS
across the training data, a@QnN(Bi(mj)) is the smallest value. Influencds essentially
J

an absolute and normalized version of linear coefficignt

Lines 10-16 use the information to do final selection of basis functions. Fitste
10 sorts all the basis functions such tiigthas highest influence3, has second-highest
influence, and so on. Line 11 initializes the loop that fokowLine 12 loops around
until the total influence quota is hitgta,,,.. For examplejotas,, = 0.95 means that the
routine will keep the highest-influence expressions ha@héo of total influence. To
implement this aim, line 13 adds the next-most influencingression, and lines 14-15
do bookkeeping.

Line 16 returns the final chosen expressiaBg e .-

TheseB,, .. g€t stored for use during the evolutionary run. During the, muhen-
ever a sum of products expression is about to be randomlyrgeak(as a basis function,
or at a lower level in the CAFFEINE expression tree), théhof the time, only the useful
expressions are considered. There has to be enough opippttutry other expressions
to avoid over-constraining the search, but the majorityeafrsh effort can be focused on
known-promising expressions. We set 80%.

Note that variable interactions can easily be generatedressover and mutation op-
erations on single-variable expressions. This strateggnsniscent of MARS[|Fr1991],
which builds up complex multi-variable expressions fronoarfdation of single-variable
expressions.
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4.6.4 Always Include All Linear Basis Functions

The focus of the final scale-up technique is to enhance grediability. It was based on
the following observations:

e Circuit problems with a larger number of input variablesden have at least partially
linear responses to some variables.

e GDR was very effective at pruning bases.

e A recent paper showed enhanced prediction ability by comgifinear basis func-
tions with a (non-CAFFEINE) nonlinear modelL[Fri2005].

So, we altered the search to always consider all linear hasisions (but not to evolve
them). To be precise, when evaluating an individual, thera step which does linear
learning to find the best coefficients for the tree-basedsidasictions (and the offset). We
altered that step to include more basis functions — onetibasis function for each input
variable. This greatly increases the number of basis fanstfor linear learning, but not
for the evolutionary search itself which only sees the nunalb&P trees.

This measure ensures that linear responses to variabledveags considered. This
biases the search towards more stable, understandabldspaitbout having to ask the
evolutionary algorithm to manage the extra bases.

This completes the description of the four enhancementsMeREINE which were
designed to allow it to scale up to larger problems. We wilvrpzesent some experimen-
tal results.

4.7 Scaling Up CAFFEINE: Results

4.7.1 Experimental Setup

In this section, the aim is to determine how well the scaighgoals have been achieved
with the improved CAFFEINE.

The tests are on three progressively larger circuits — theliiers shown in Figures
B.4,[316, an@3.21. The circuit regression problems haga bet up with the parameters
of Table[4¥. Four output performances are modeled for eachit; with the intent to
represent a cross-section of analyses and measuregggain), 7'H D (total harmonic
distortion),SR (slew rate), and) S (overshoot). The technology is 0.L8n CMOS. The
design variables are width§&, lengthsZ, multipliers M, capacitance§’, and resistances
R. The samples were taken using Latin hypercube sampling 191¢%,[ MckZ200D] on a
uniform distribution in the hypercube having its center dgaod” design, and variable
rangest10%. The training and test data were split apart by sorting émegges according
to the output value, allocating eveti} sample to the test data, and the rest to training (i.e.
25% test data). This technique, inspired by “vertical sligiin [Kor2007], guarantees that
the test data will cover the whole range of possible outplites

The search strategy settings were as follows. For pre-@galdiltering: influence
threshold.;,, = 25%, bias to useful expressions= 80%. In GDR, pruning degree=
0.5. In CAFFEINE, all settings were like in sectibn}4.5, epcpopulation sizeV,,, =
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Table 4.7:Parameters of Circuits for the CAFFEINE Scaling Experingent

# Vari- | # Devices| # Train | # Test| Performances Modeled
ables Samples| Samples

24 10 129 32 Ay, THD,SR,OS

59 30 330 82 Ay, THD, SR, OS

129 50 1050 262 Ay, THD,SR,OS

100, and maximum number of generatiofg,, ..., = 50. Far fewer generations are now
needed to get to reasonable results because the pre-ewdiltering picks highly useful
expressions, and the linear bases are always available.

4.7.2 Experimental Results

This section aims to see how well the scalability goals weteewved: on the above ex-
amples, run in a reasonable time (hours or minutes), hawdiginee models, and have
interpretable models.

To assess the scalable CAFFEINE, we compare its models fer@mee regression
algorithm that has a good track record of predictive abitityd of scalability: MARS
[Eri1991]. To make the comparison as fair as possible, wd &eR for MARS’ linear
regression subroutine. A further motivation for MARS istthiavas the most competitive
to CAFFEINE in the experiments of sectibni.5.

We first consider the interpretability of MARS-generateddels versus CAFFEINE-
generated models. We recognize that the judgement of netedplity is necessarily sub-
jective, so here we aim to give the reader a feel. To do so, wat reuiew MARS slightly
further. Each MARS basis function is a product of “hockeyglsti( / S) functions:

Nprod

Buyars(x) = H HSG (2@, i, 4:)

i=1

whereH S(;) is the:*” H S function having either a- or — sign, andr(;), t;, andg; are the
chosen input variable, split value, and power 66 ;), respectively. Al S function is:

(4.12)

B 0 if x<t

To see how MARS basis functions look on real problems, we wg# an arbitrarily
chosen exampl@ S, from the largest circuit (50T opamp). Talilel4.8 shows theatign
for just asingleMARS basis function. As we can see, the hockey stick funsttcanslate
to very hard-to-interpret functions.

We saw that even a single basis function from MARS is extrgnobhllenging to
interpret. Tabl€4]9 shows the 50T opamp expression that CAFFEINE generated. The
model is are not as interpretable as we have seen for smatterts, butsomeinsights
can be extracted. It is notable that of the 109 input var@bBAFFEINE pruned down
to just use 17 variables, i.e. about 10% of the variables. vEm@bles include widths

(4.13)
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Table 4.8: A single basis function in MARS-generated equation(déf of
50-transistor opamp

0 if Lom <213+10°]. 0 if Lam <2900 .
(LJ\/[Q — t) ’Lf Lo > 213 % 1076 (LJ\/[g — t) Zf LM3 > 290.0

0 ’Lf Mmppiyma < 8.416 10_6
(mDleQ — 8.416 * 10_6) Zf mppiye > 8.416 106

Table 4.9: Caffeine-generated equation of OS for the 50-transistarap
tional ampilifier circuit. @All basis functions.)

—780.8

+9.90 % 108 * L]\/[DP3 + 5.23 * 108 * L]\/[C]\/jl +4.18 108 * LMg

—9.27 % 108 * L]\/[C]\/[BQ —4.24 % 108 * LM4 —4.20 % 108 * L]\/[13

+11.46 % Mo + 7.11 % mpari7 — 8.83 * maoarime2

+1.14 % 108 % Wupps + 7.09 107 % Wyeoms + 2.39 % 107 % Wi

—2.45 % 107 * W]\/]4

—8.86 * 10° * logio(Warcms) * m?vﬁo * WJ?/[/éM?; % (0.655 * mg 50 + m5C/J€[2Ml)

W, lengthsL, and multipliersm. Most of the basis functions have a linear relation to
OS. To decreas&)S, there somel’s which need to be decreased (e.§.,pp3 and
5.23 % 10% x Ly;can), While otherL's need their values are increased (e.Bucirs2
and L,,4). Similarly, to decreas® S with m’s, somem’s need decreasing and others
need increasing. And similarly fdi’’s too. There is a single base with nonlinearity. It
has interactions among the variabl&S,cr3, mari0, moasyt, @andmenranr. 1t is very
notable that of the 109 input variables, only 4 have sigmificateractions (in terms of
affectingO>s).

Table[4ID summarizes the interpretability results for EEMNEversus MARS. In
short, MARS models are definitely not interpretable, and EBRNE models (arguably)
are, at least enough to extract some insights.

Table[4.ID also lists the CPU time that MARS and CAFFEINE eack to build
each regression model. We see that the runtime is indeednable, even for the largest
problems. It is far faster than the original CAFFEINE on theedier problems.

Table 4.100MARS and CAFFEINE build times and interpretability, forfelif
ent problem sizes.

# Vari- | Can interpret | MARS Can interpret | CAFFEINE

ables MARS model? | build time | CAFFEINE build time (min)
(min) model?

24 No 7 ~ Yes 20

59 No 11 ~ Yes 40

129 No 25 ~ Yes 100




126 Knowledge Extraction in Sizing: CAFFEINE

We have considered the interpretability and model constmdimes of MARS ver-
sus CAFFEINE. What about prediction ability? Table 4.11sprés the results of the
regressors’ prediction performance. We see that MARS an&8REANE have similar
performance: in some cases CAFFEINE is slightly better,tirepcases MARS is. We
see that some problems are quite difficult to model (&.4.D of the 10-device circuit),
while other problems are quite easy (e(®)S of the 50-device circuit).

In sum, this section has described techniques to scale ug-EINE to more input
variables, and validated the new “scalable” CAFFEINE onels problems.

Table 4.11: Prediction (testing) error of MARS vs. CAFFEINE on larger
circuit modeling problems.

| # Variables | # Devices| Output | MARS error (%) | CAFFEINE error (%) |

24 10 Ay 3.52 2.95
24 10 THD 24.98 24.90
24 10 SR 0.18 0.42
24 10 oS 4.31 5.21
59 30 Ay 6.19 5.54
59 30 THD 3.53 6.85
59 30 SR 0.32 1.23
59 30 oS 6.25 6.06
109 50 Ay 3.42 3.28
109 50 THD 4.47 4.51
109 50 SR 0.90 0.92
109 50 oS 0.08 0.08

4.8 Other Applications

This section describes other problem types that CAFFEIN&E®en applied to, which
include behavioral modeling, robustness modeling, andycal performance tradeoff
modeling.

4.8.1 Behaviorial Modeling

CAFFEINE has also used been applied to generate behaviodglsof analog circuits,
as an “Interpretable Behavioral Model Generator” (IBMG)dé2005b]. There has been
much progress in automated behavioral modeling and edjyeciadel order reduction
(MOR) [Rut2007]. Despite this, manual design of models riesgpopular because hu-
mans can leverage their insights, and take responsibgityeseded for the final model.
CAFFEINE carbridgemanual and automated design, by offering behavioral mcalaj-
gestions” to guide the modeling expert. These suggesti@gaulting from evolving the
models in CAFFEINE.
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The problem description is as follows. We consideriaput ¢g-output nonlinear dy-
namic system, specifically a circuit, of the form:

dx
= J(alt), () @14)

y(t) = Cxx(t) + D * u(t) (4.15)

wherez(t) is the system’si-dimensional state (i.e. node voltages and branch curients
the circuit),u(t) is thep inputs at timet, andy(t) is theq outputs at time. f(z,u) is
an arbitrary nonlinear function vector field that describess the state changeg(t) is a
linear function ofz(t) andu(t).

The task is to create a more compact form of the given dyndmiesdem, i.e. one
with m states where: = n. The model must be interpretable behavioral expressians, i
easily readable functional forms that describe how thesfaanges. Finally, the approach
must have error control by actually generating a set of neothelt trade off between error
and complexity. The generator’s inputs afe) andy(t), taken from a transient simulation
using a standard SPICE simulator. With the aim of interfimiéitg, «(¢) is not an input,
even though it creates a more difficult learning problem. &kgressions to be generated
must take the form:

% (e, u(t) (4.16)

y(t) = Ex z(t) + F * u(t) (4.17)

wherez is the system'’s state, ang £, and F’ are the reduced-system equivalentsfof
C', and D respectively. The initial system state is set toze@) = {0,0,...}. IBMG
must “learn” the vector valued functiay(z, ) as well as’ and F'. LearningE and F' is
merely a set of linear learning problems (one for each outpritible) once:(t) for each

t is known. Learningy(z, u) is the major challenge, as each pgjr¢ G involves a choice
of the number of basis functions, and the functional formaafieof those basis functions
(which takes the other basis functions and u as an input). gasgible composition of
functions is allowed.

We could have formulated the problem more generally,ij.as a nonlinear function
of x andu. But IBMG approximates nonlinear mappings via state véesthat do not
appear inf(), which relater andw to y in a nonlinear fashion. In making this choice
we simplify IBMG and also encourage re-use of expressiongtitputs. Alternatively,
we could have formulated the problem where IBMG is supplieddircuit’s internal state
information (a much easier problem). Instead we will forBMIG invent its own states
and state transition equations.

To solve the problem, CAFFEINE was altered into “IBMG” by niadkit evolve the
differential equationg(z, u), which included discovering the state variables to uBe.
and F’ are found via solving a least-squares problem. Its setugnpaters were the same
as section4]5.
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Figure 4.14:Highly nonlinear latch circuit.

We test IBMG on the strongly nonlinear latch circuit, showrrigurel4.TH. The tech-
nology is 0.1&m CMOS. Vdd=1.8V, Vdd_sub=1.8V, V ss=0.0V, andV ss_sub=0.0V.
Figure[4.Ib shows the circuit’s input and output wavefornBMG’s goal is to build
a model that produces similar outputs given those samesnpiid andV ss are also
treated as inputs to IBMG. Each waveform had 2001 samples.

We ran IBMG to build models for the latch. Runtime was 72 hof@scompiled
implementation would be about an order of magnitude faskegure 416 shows the best-
performing result, which achieved an error of 1.31%. Thia fairly tight fit, especially
given that IBMG did not use the circuit’s internal state imf@tion and instead had to
invent its own states and state transition equations. Exaqithe waveform, we see
that the sharp nonlinear transitions are handled quitesfuélg, though the model output
jumps around somewhat at around 0.5 ns. The output is famlyosh over time in part
thanks to minimization of error of derivatives. Thus, IBM@shaccomplished the error-
minimization goal.

Figure[41V illustrates the outcome of IBMG’s error-cohstrategy: a set of about
50 behavioral models that collectively trade off model céerfty with error. Tabld 412
shows in detail a subset of the resulting models, at diffelevels of complexity and
accuracy. Even the best model with 1.3% error is highly jpretable.

In short, IBMG is a variant of CAFFEINE, specifically desighir offering behav-
ioral model “suggestions” to guide the modeling expert. sTaim was confirmed by
experimental results for a highly nonlinear latch circuit.
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Table 4.12:1BMG-generated behavioral models for the latch circuit.
| Trainerror|  Expression |

15.11% dxy/dt = nBit
dzy/dt = Bit * xy

| 6.25% | dry/dt = —21.3 — 9.28 x 1073 * bufclk * x1 + 10% * nBit * bu fclk |

3.32% dry/dt = 2.21e — 2 — 3.72 % 1072 x 11 — 21.8 * Bit * nBit * bufclk
dxy/dt = nBit x bufclk * x4
dl'()/dt =T

1.31% dry/dt =782+ 1.06 % 1073 * Bit x 1 — 2.11 x 1072 x bu fclk * x,
—4.85 x Bit x nBit * bufclk * x19

dzy/dt = nBit x bufclk * xq

dl’g/dt =T

dx,/dt = Bit x nBit x bufclk * x1 * x19

dxg/dt = Bit x nBit x bufclk * x4

dxg/dt = Bit x nBit * bufclk

dzg/dt = bufclk x x;

dryo/dt =259+ 1.44% 107 % Bit * 1 — 1.89 % 1073 * x1

EF Inp _driven = 7.62+ 1073 +8.85x 10" x x;
for —2.98 %108 %2y —7.63 %1070 % 25 +3.02 % 107 % 2
1.31% —7.77 %1077 % 24 + 0.07 % x5 + 7.43 x 1078 % 29

—1.05 % 107° * 219 — 2.32 % 10712 % Bit — 7.77 % 10~7 * nBit
—2.60 % 107" x bufclk + 0.07 * Vdd — 0.05 x Vss

Inn_driven =0.42 —3.91 % 1077 * 21 + 3.15 % 1078 x z,
—4.93 %1070 % 23 —2.32% 1072 % 24 — 2.60 x 1077 * x4
—0.05 % x5 — 8.82% 107 % g + 8.95 x 1076 % x4,
—2.32% 1072 %« Bit — 7.77% 1077 « nBit

—2.60 * 1077 * bufclk + 0.07 * Vdd — 0.05 * Vss
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4.8.2 Robustness Modeling

In the application of statistical modeling, the designgdsl is to gain an understanding
of how designable variables affect robustness measurésasugield or Cpk (“process
capability”) [Nist2006]. This application follows the s@nmethodology as performance
modeling, except in this case the Cpk is modeled from SPIGtilsition data. The ex-
ample circuit used is the 50-device amplifier of Figure B.21.

Table[4.1B shows the CAFFEINE-generated equation for Cptc06b]. The test-
ing error was 6.3%. Note that the technology variations anbexded in the numerical
coefficients of the model. Cpk is not a function of these pssgegarameters, only their
aggregate effect on the design variables. Since the prpegameters are not part of the
model, this model is specific for the given technology.

In examination of the expression, we can learn a severagshiRirst, only five vari-
ables are needed to hit the 6.3% test erfof; Wy, Wap1, Wap2, Winta, Winer. The
variables comprise one compensation capacitor and fouhgjiénd no lengths or mul-
tipliers. There are significant nonlinear interactions agthe variables. An increase to
W4 Will increase Cpk, as will a decreaseltd,;; . Cpk is quite dependent on the square
root of C... Cpk can also be increased by increasitig,, (big effect) or increasingV,,
much smaller effect

Table 4.13:Caffeine-generated equation of Cpk for 50-device amp.

+1231.4

+4.21 % 106 « W2, /W

—0.0012//C,

—9.39 % 10% W7, % \/Wp1 * min(0.104,6.60 10" — 76.9/1/C.)
4121 % 10" /min(—4.96 + 10°,10'0 — 2.48 % 10°/ (/W * C.))

4.8.3 Automated Sizing

While the original intent of CAFFEINE was to provide designavith insight about
their circuit, CAFFEINE’s predictive abilities were goodi@igh to merit examining if
its model building is fast enough to put into the loop of aroaudited circuit-sizing appli-
cation. The papei [Mcc2006a] explored that opportunityl aochieved speedups which
made CAFFEINE modeling fast enough for such an applicatimie that the scalability
enhancements in sectibn 4.6 of the present chapter havewepICAFFEINE’s speed
sufficiently as well.
Details can be found in [Mcc2006a].

4.8.4 Analytical Performance Tradeoffs

In [Mcc2008h| Mcc2009], CAFFEINE was used to extract anefytmodels of the trade-
off among circuit performances. The approach is to use thi®peance values from a
set of Pareto-optimal circuits. All but one of the perforroas is used as inputs to the
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CAFFEINE models, and the remainining performance is usdle@model output. Sec-
tion[8.5 has details.

It can be concluded that CAFFEINE has many possible apmimsin circuits and
elsewhere, because it is appropriate wherever regressitsdre used, and where insight
into the mapping is desirable.

4.9 Sensitivity To Search Algorithm

There is possibility to change the search representatetrgonstrain the search to canon-
ical form functions. The representation discussed so falirect: a tree-based geno-
type maps to the “function” phenotype. In_[Mcc2006a], amgjrbased genotype with
neutral networks (“introns”) was used. In_[Mcc2006c], fiviffetent variants of search
representations and algorithms were explored. They imdwdcomparison of grammat-
ical GP variants, where the genotype is either a tree |[WH1989 a string of derivation
rules [ONeZ2003]. No approach was markedly better. The rsatiesult was that all of
them could return useful interpretable models. Sedfioldé<tribed other changes to the
model-construction algorithm to improve its scalability.

This underscores the key contribution of this chapter: @i8®ICE simulation data,
applysomecompetent search algorithm and representation to the gppaemonical form
functions, and one can get reasonable, interpretable,léeafvee circuit performance
models. Of course, the choice of algorithm affects the mbdgtling time and ability to
scale to more input variables or training samples, as s&di discussed.

We refer the reader t6 [Mcc2006a, Mcc2006c] for more details

4.10 Conclusion

This chapter has presented a tool to support analog cinaintgsby giving the designer
insight into the mapping from design variables to perforoem

CAFFEINE is a tool which for the first time can generate intetpble, symbolic mod-
els of nonlinear analog circuit performance charactesstis a function of the circuit’'s
design variables, withowt priori requiring a model template. The keys to CAFFEINE
are: a flow which leverages SPICE simulation data, a meanstafating interpretable
functions from the simulation data based on genetic prograng search, and canonical-
form constraints on the functions to ensure interpretgbilising multi-objective genetic
programming, CAFFEINE generates, without an initial teat@) a set of models that
collectively trade off between error and complexity.

In the first round of experiments, visual inspection of thedels has demonstrated
that the models are interpretable. The performance modsais also shown to be signifi-
cantly more compact than posynomials. The CAFFEINE modststead markedly better
prediction ability than posynomials, projection-basedypomials, support vector ma-
chines, MARS splines, neural networks, and boosted neetalarks. This indicates that
CAFFEINE can be applied to under-the-hood applications $ach as circuit optimiza-
tion that uses model-building within the optimization lowpdetermine new candidate
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design points. CAFFEINE has also demonstrated promisepficapions of robustness
modeling and behavioral modeling.

This chapter has also described techniques to scale up QNIEF® handle many
more input variables: subtree caching, gradient-direcégailarization to prune during
linear learning, pre-filtering single-variable expressipand generously considering lin-
ear basis functions. In second-round experiments on pmablgith more than 100 input
variables, CAFFEINE has achieved a prediction performaaceparable to state-of-the-
art blackbox techniques like MARS; and unlike MARS modeks tbsulting CAFFEINE
equations can be visually inspected and are not constrameadpredefined functional
template.

This chapter has also described the application of CAFFBIN&her analog circuit
problems such as behavioral modeling and robustness mgddlican be concluded that
CAFFEINE has many applications in circuits and elsewheezahbse it is appropriate
wherever regression tools are used, and where insighthetoniapping is desirable.

The last three chapters have discussed background, daisiigng, and insight-aiding
tools for the designer task of global varation-aware sizifighe next several chapters
generalize beyond the sizing task, to also search for ¢istuictureor topology design.



Chapter 5

Circuit Topology Synthesis:
Background

| do not know what | may appear to the world; but to myself | seehave been only like
a boy playing on the seashore, and diverting myself in nowthed finding a smoother
pebble or a prettier shell than ordinary, whilst the greaeaa of truth lay all undiscovered
before me.

—Isaac Newton

5.1 Introduction

Recall from chaptdrll the basic flow for analog circuit desija node in the hierarchy.
We show it again in Figure3.1. The first step in this flow is togy design or selection.
The choice of analog circuit topology has a giant impact eperformance of the overall
design. Designers often make the topology selection detisased on experience. While
the choice of a topology is often thought of as a relativelickjaecision compared to
sizing and layout, the implications of the choice resonateltighout the rest of the design
cycle. Even the best circuit optimizers can only produce@sdg result as the chosen
topology allows|[[Rut2002].

Unfortunately, a suboptimal topology choice can occur:

e The topology may not worsening effects due to Moore’s lawhsas larger statistical
variations [Itrs2007].

e The topology may not handle new effects, previous undesdijoeeffects like such
as proximity [Dre2006].

e Functionality requirements may be qualitatively new todlesigner.
e Or, the designer may unknowingly miss an advance in topodtegygn.

In the combined steps of topology design/section and si#ing two steps of Figure
B.7), the aim is to automatically determine the circuit coamgnts, interconnections, and
suggested component dimensions to meet a set of circuigrdegials. Goals can be
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Goals ] [ Models

Topology design
v
Sizing
v
Layout
v

Fabrication

Figure 5.1:Basic flow for analog circuit design (at a node in the hiergrch

performance constraints and / or objectives. If the goagust constraints, the aim can
be called a “specs-in, sized-topology out” flow.

Because of the importance and challenge of topology sele@nd design, tech-
niques relating to it have been researched extensivelytim the analog CAD literature
[Rut2002, Rut2007], as well as the evolutionary computatiterature (specifically, in
genetic programming and evolvable hardware). Despite xtensive work, there is not
yet an industrial tool for topology selection or for design.

Topology selection / design tools will be the focus of thisjeter and subsequent
chapters. This chapter is a review, and the other chaptesept a set of techniques with
industrially-oriented applicability.

The rest of this chapter is organized as follows. Sedilohe&amines different pos-
sible topology-sizing design flows (per sub-block), andrthedation to techniques in in-
dustry and academia. Sectionl5.3 discusses which flowsgocate best into hierarchical
design methodologies to handle system-level design. @dBid presents requirements
for a topology selection / design tool, with an eye towarddustrial applicability. Be-
cause there has been much recent research to open-endéjjopgnthesis using GP,
sectiorf5.b examines and explains why open-ended topoloukiesis is so problematic.
Sectior 5.6 concludes this review chapter.

Subsequent chapters present MOJITO and its derivatives]IMDis a topology se-
lection / design tool that has industrially-acceptableuispand outputs, accuracy, and
runtime. Derivatives leverage MOJITO to enable topologyfgrmance knowledge ex-
traction, and accelerate design of novel topologies.

5.2 Topology-Centric Flows

This section examines different possible topology-siziegign flows, and the related
literature for each flow.
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5.2.1 Flow: Industrial Status Quo

The first flow of interest is the industrial status quo, as shawFigure[5.2. Here, the
designer starts by manually selecting an initial topolofjytlve-shelf, based on the input
design goals (performance specifications and objectivelg).then sizes that topology,
using either an automatic optimizer e.g. [CdnZ2005b] or nadlgu

If he hits the target design goals with that topology, he caalate the topology-sizing
steps done, and proceed to layout. If not, he will select #d-most promising off-
the-shelf topology, and size it. Once again, if goals areH8tcan stop, otherwise he
will select another promising topology. He will continugitrg this until he runs out of
appropriate off-the-shelf topologies.

Eﬂ—] design goals

h 4
manually select
initial topology

L

next candidate
togology 4

auto sizing on one

manually | manually topology

design select

o new new
| topology || topology "°
Only do if

absolutely €S~topologies
necessary left?
(cost, risk, no
time)

sized topology

Figure 5.2:Status quo industrial flow for topology selection/desigd sizing.

If no topology can meet specs, a decision must be made. If adesign is not
absolutely needed, such as if performance goals can beledsthe designer can declare
the design “good enough” and move on to other work. Thereregngtdesire to avoid
designing a new topology because of the greatly increas&dhit the design will not
work, with significant cost ramifications due to the need tgpe1 and increased in time-
to-market. Because of these risks, the motivation for a rwlbgy has to be strong.
New topologies only come about if there is no other way, ifittea has possible orders
of magnitude payoff such that it's worth the money to try,fdhere is some way to make
trying it zero risk.

However, sometimes those motivations for a novel topologsigh exist, so the de-
signer will have to create a new topology. He will try to minz@ risk and design time by
basing the new topology on other analog circuit topologreslauilding blocks, using his
knowledge and experience. He will continue working on itlur hits the target, or runs
out of time or ideas.
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The advantage of this flow is that the final topology is eithdlyftrusted (because
it either uses a known topology), or mostly trusted becabhsenew topology is similar
to previous topologies, with changes that an analog engneasoned his way through.
Unfortunately, the topology selection time can be unpradile, especially if there are
several iterations of topology selection and circuit sizifNovel topology design relies
on the designer being able to be “inspired” which is hard teesitile, and there is still
risk because until the new topology gets verified from maciuigng and test. Therefore
the design time for handling new topologies is poor, and é@ds risk of no invention
happening. The flow is somewhat complicated, though it deelsfatural to designers.

Can this status-quo flow be improved upon?

5.2.2 Flow: Automated Topology Selection

One way to improve upon the status quo industrial flow isutbomatehe topology selec-
tion process, as shown in Figurel5.3. The overall flow lookslar to the industrial flow
of Figure[5.2, but the implementation is substantiallyeti#nt because of the extra input
needed. In particular, the auto-selection step needs te Aduvpologies database (DB)
as input, and possibly selection rules for the topologi¢aluese as well. (If the database
does not have selection rules, it needs to compute themeafiyth

start

topologies DB, design goals
selectioln rules v
Al auto select
next candidate initial topology
topolohy 4 i
: Y
L auto sizing on one
manually auto topology
design select
new new
topology || topology

[

topologies
left?

sized topology

Figure 5.3: Designer flow for topology selection/design and sizing,ctwhi
incorporates automated topology selection.

Several analog CAD systems in the literature have been pexpto follow this flow.
Most notable are the rule-based “expert system” style agpres starting in the mid-
1980’s. These i