

Towards a Practice of Token Engineering

Trent McConaghy
@trentmc0

#Data #Incentives

Silo mo' data

Mo' accuracy

Mo' \$

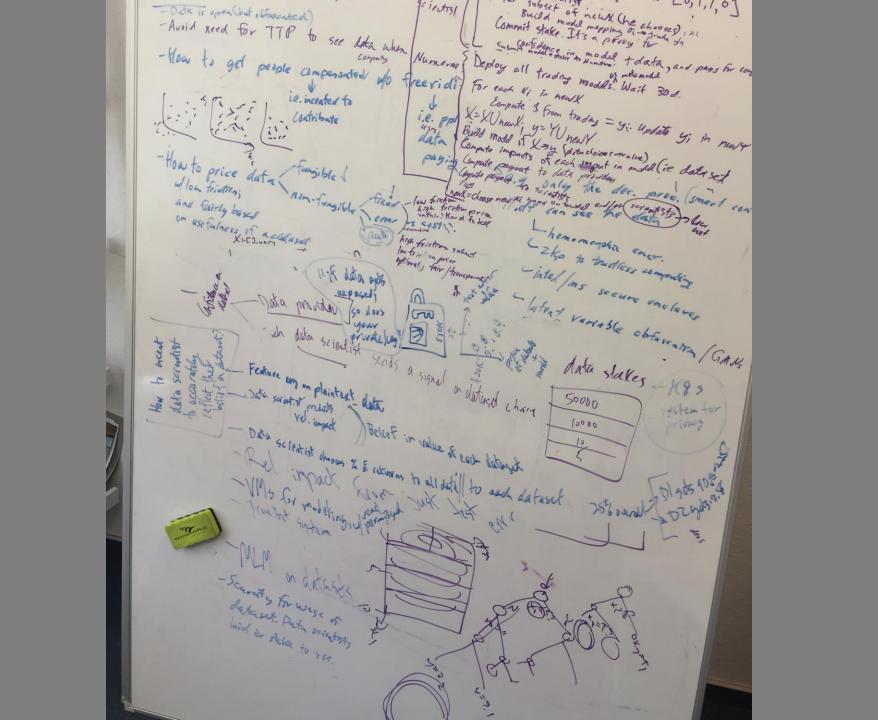
Default incentive: hoard the data

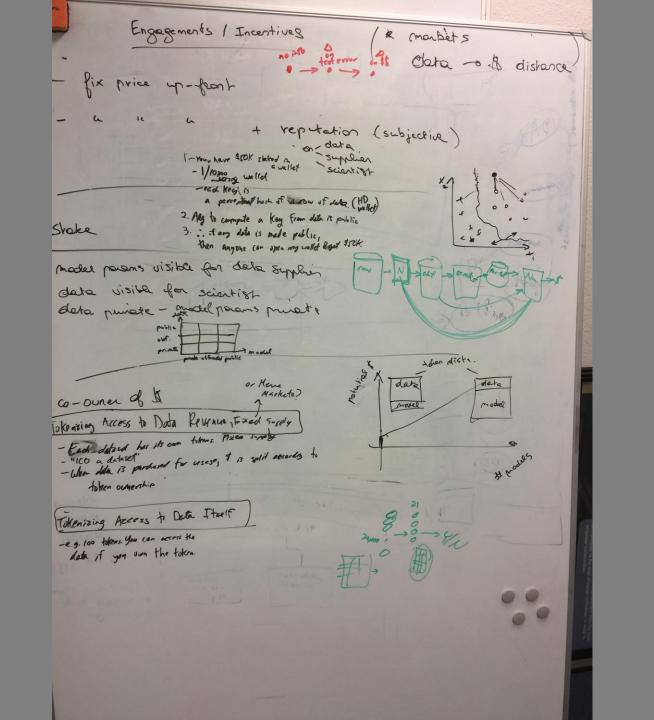
"Show me the incentive and I will show you the outcome."

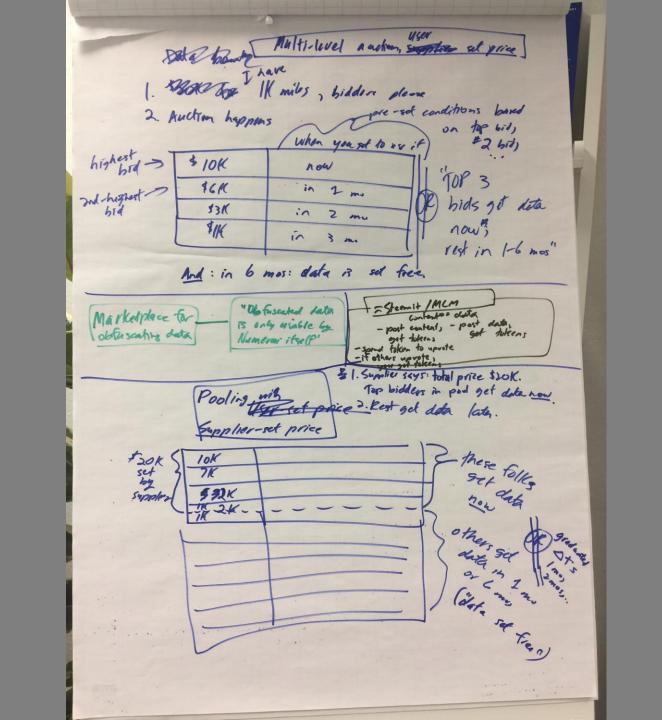
-Charlie Munger

Change the incentives!

Sile Pool mo' data


Mo' accuracy




Mo'\$

Early iterations



Challenges O. Denertie late. 1. How to ensure supplier get pail who losing ability to get pard in future. "Free riding"
"Privacy"
"Copy is title" 2. Friction in pricing) | overall price

2. Friction in pricing) | percelative impact per dataset Static -> Dynamic dataset Fragilale Non Fragilale (gors stale) - data laboling sorree - data obtaseation market Signals address free ridery - Stake in bolief of the supplier walker of dataset supplier - Set the Fer" after Dt Istran to - Licensing - Arm gara-Gora - price asked by supplies e-pare bid by scientist - reputation e-reputation of dataset - provenance - visk of litigation - only the smart contract can see the data to docker + locks - handies for non-free a vides detection F-total value of network a value for allered appreciation market belief in calment - If data set free, you have you private key gots exposed " but stake if ttt I novelty of a dataset - Data obtescation, as latent variables on NN (like take a price of data set Nermonai

Early iterations: Flailing

Can we structure this better?

Realization: Tokenized Ecosystems Are a Lot Like Evolutionary Algorithms!

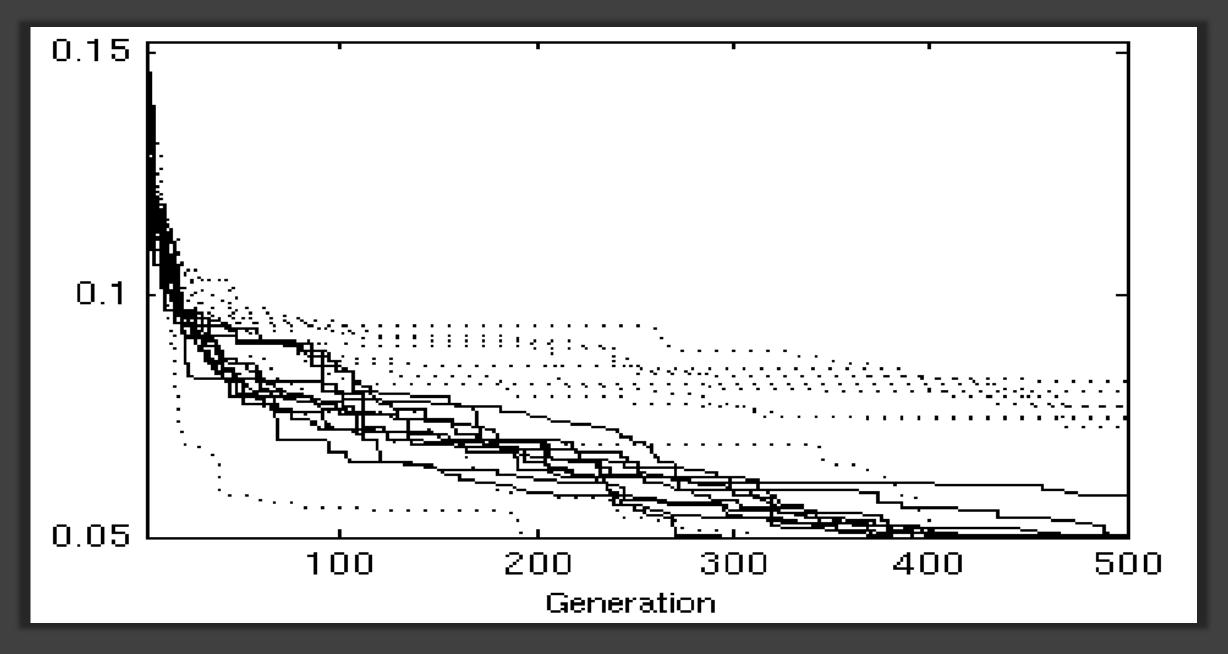
What	Tokenized ecosystem	Evolutionary Algorithm
Goals	Block reward function E.g. "Maximize hash rate"	Objective function E.g. "Minimize error"
Measurement & test	Proof E.g. "Proof of Work"	Evaluate fitness E.g. "Simulate circuit"
System agents	Miners & token holders (humans) In a network	Individuals (computer agents) In a population
System clock	Block reward interval	Generation
Incentives & Disincentives	You can't control human, Just reward: give tokens And punish: slash stake	You can't control individual, Just reward: reproduce And punish: kill

We can approach token design as optimization design.

Optimization Design

Steps in Optimization Design

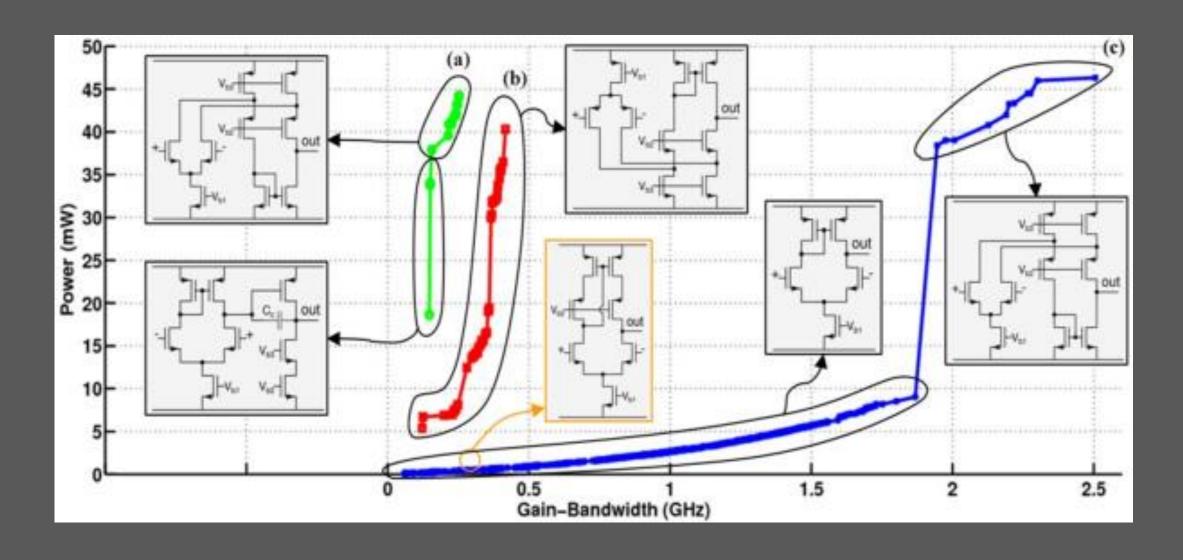
- 1. Formulate the problem. Objectives, constraints, design space.
- 2. Try an existing solver. If needed, try different problem formulations or solvers.
- 3. Design new solver?


1. Formulation of an optimization problem Objectives & constraints in a design space

The algorithm's aim is formulated as a constrained multiobjective optimization problem

minimize
$$f_i(\phi)$$
 $i = 1...N_f$
s.t. $g_j(\phi) \le 0$ $j = 1...N_g$
 $h_k(\phi) = 0$ $k = 1...N_h$
 $\phi \in \Phi$ (1)

where Φ is the "general" space of possible topologies and sizings. The algorithm traverses Φ to return a Pareto-optimal


2. Try an existing solver. Does it converge?

3. Design new solver

```
TABLE II
e homo-
                                PROCEDURE SANGRIAOPTIMIZATION()
motopy
coarsely
                   Inputs: D, N_a, K, N_L(k)
                   Outputs: d^*
ructural
                   1. N_{qen} = 0; P = \emptyset, P_{all} = \emptyset
v. Tradi-
                   2. while stop() \neq True:
ro path,
                           if (N_{gen}\%N_a) = 0:
                       if |P| < K:
the zero
                                    P_{|P|+1} = \emptyset
 several
                                P_0 = \text{SpaceFillIndividuals}(N_L(k), N_D, D)
                        for k = 1 to |P|:
                               P_k = \text{SelectParents}(P_k, P_{k-1}, N_L(k))
mulated
                                P_{k,j} = \text{UpdateLocalOptState}(P_{k,j}, k), j = 1 \text{ to } |P_k|
nalyses,
                        P_{all} = \text{unique}(P_{all} \cup P)
int \theta \}.
                        P_{|P|} = P_{|P|} \cup \text{InnerOptimize}(P_{all}, D, k)
                       d^* = d_i in P_{all} with highest Y or Cpk
nt/other
                        N_{gen} = N_{gen} + 1
                   13.
onnom-
                   14. return d*
corners
rated in
             and all individuals encountered so far in the search, P_{\rm all}.
on (with
             Lines 2 13 are the generational loop, which repeats until stop
```

Example of a Successful Outcome

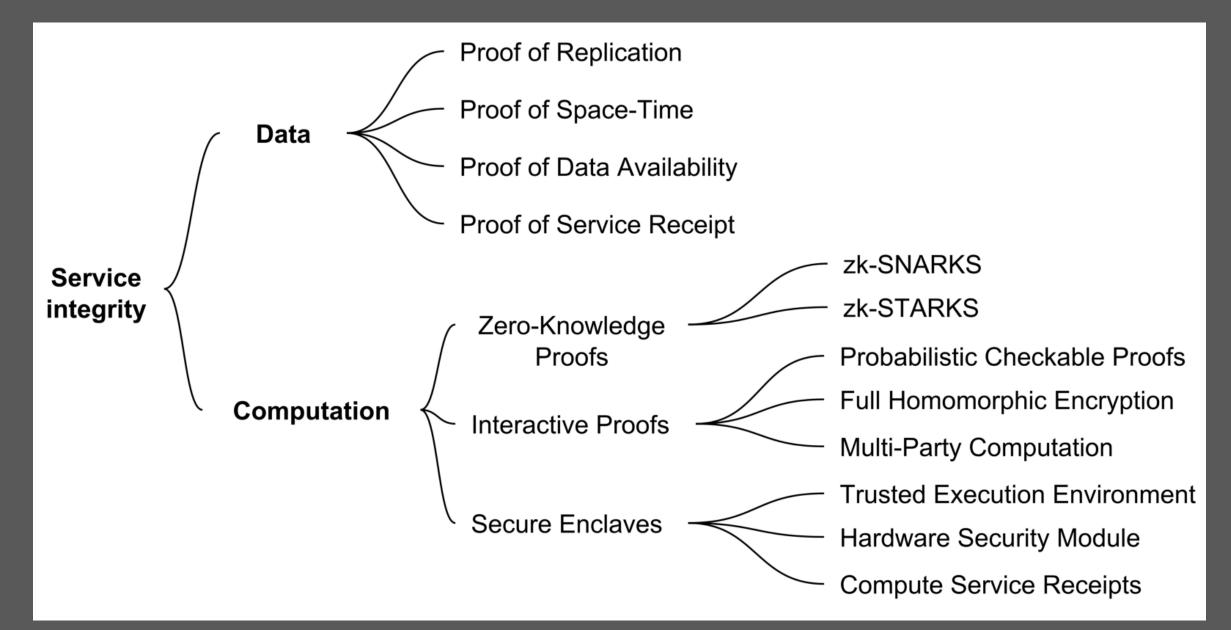
Token Design as Optimization Design

Steps in Token Design

- 1. Formulate the problem. Objectives, constraints, design space.
- 2. Try an existing pattern. If needed, try different formulations or solvers.
- 3. Design new pattern?

1. Formulate the Problem

- (a) Ask
 - Who are my potential stakeholders?
 - And what do each of them want?
 - What are possible attack vectors?
- (b) Translate those into objectives and constraints.


2. Try Existing Patterns

- 1. Curation
- 2. Proofs of human or compute work
- 3. Identity
- 4. Reputation
- 5. Governance / software updates
- 6. Third-party arbitration
- 7. ...

2.1 Patterns for Curation

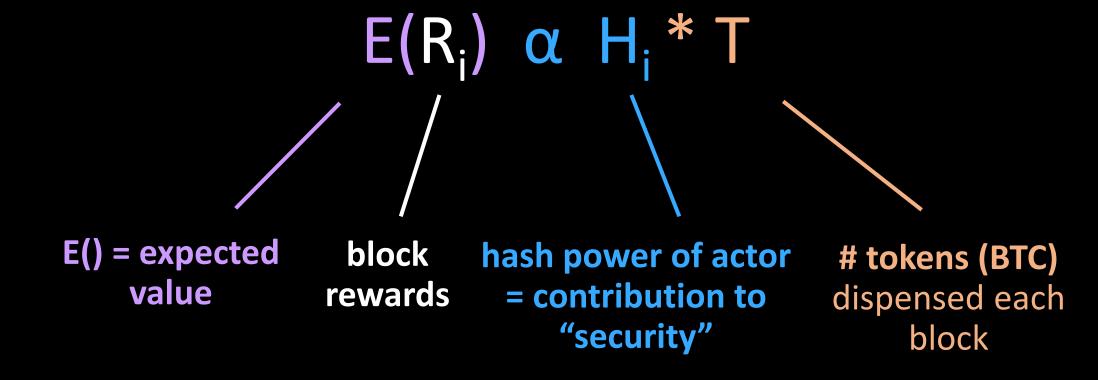
- Binary membership: Token Curated Registry (TCR)
- Discrete-valued membership: Stake Machines
- Continuous-valued membership: Curation Markets characterized by bonding curve
- Hierarchical membership: each label gets a TCR
- Work tied to membership: Proofed Curation Market
- Non-fungible tokens: Re-Fungible Tokens

2.2 Patterns for Proofs of Compute Work

Case Study: Analysis of Bitcoin

Bitcoin objective function

Objective: Maximize security of network


- Where "security" = compute power
- Therefore, super expensive to roll back changes to the transaction log

Bitcoin objective function

Objective: Maximize security of network

- Where "security" = compute power
- Therefore, super expensive to roll back changes to the transaction log

Case Study:
Design of Ocean

1. Formulate the Problem:(a) Who are stakeholders? What do they want?

Key stakeholders in Ocean ecosystem

Stakeholder	What value they can provide	What they might get in return		
Data/service provider, data custodian, data owner	Data/service (market's supply)	Tokens for making available / providing service		
Data/service referrers, curators. Includes exchanges and other application-layer providers.	Data/service (via a provider etc), curation	Tokens for curating		
Data/service verifier. Includes resolution of linked proofs on other chains	Data/service (via a provider etc), verification	Tokens for verification		
Data/service consumer	Tokens	Data/service (market's demand)		
Keepers	Correctly run nodes in network	Tokens for chainkeeping		

Formulate the problem: (b) Translate into objectives and constraints

Objective function: maximize supply of relevant data

Token rewards if: supply relevant data

Token rewards if: supply data, and curate it

1. Formulate the problem:(b) Translate into objectives & constraints

Constraints = checklist:

- For priced data, is there incentive for supplying more? Referring?
- For priced data, good spam prevention?
- For free data, is there incentive for supplying more? Referring?
- For free data, good spam prevention?
- Does the token give higher marginal value to users of the network versus external investors? Eg Does return on capital increase as stake increases?
- Are people incentivized to run keepers?
- Is it simple? Is onboarding low-friction?

Formulate the problem: Translate into objectives & constraints

Towards Good Acting via Staking, Id, Reputation

Good acting general

• Key goal: Is there a means to get high-quality metadata? Eg How do we prevent non-owners of the data from submitting that data? (Fraud).

- Key goal: Are we incentivizing skin-in-the-game? E.g. Does return on capital increase as stake increases?
- Do big providers of data need to stake a lot? Consumers?
- If I have high stake but low reputation, can I make \$? If I have low stake but high reputation, can I make \$? If I have high stake and high reputation, can I make \$\$\$?
- Do keepers (at least keepers with a higher level of reward or privilege) need to stake a lot?
- Is there a good threshold of individual / org identity are they are who they say they are? At the very least, to prevent Sybil attacks. But potentially more, to adhere to data privacy regulations.
- Is there a good measure of individual / org reputation are they a good actor in the ecosystem? (In buying, selling, keeping, etc?)
- Is there a good threshold of data identity is the data what they say it is?
- Is there a good measure of data reputation is the data useful?
- Does remuneration favor data freshness?

2. Try Existing Patterns Some patterns:

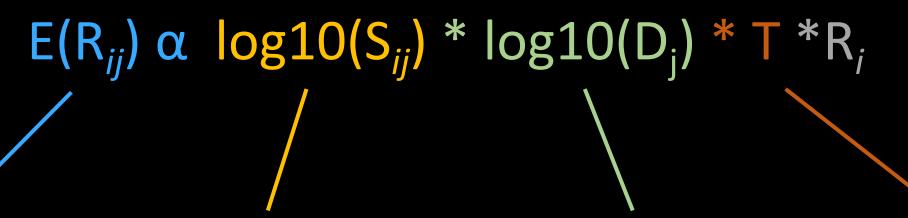
- 1. Actor registry
- 2. Data registry
- 3. Actor registry + data registry
- 4. Data registry + free-as-in-beer data curation market. Curation: Pay tokens to listen.

2. Try existing patterns: evaluate on objectives & constraints. None passed...

Key Question	1	2	3	4
For priced data: incentive for supplying more? Referring?	×	*	~	*
For priced data: good spam prevention?	*	~	~	✓
For free data: incentive for supplying more? Referring?	×	*	×	~
For free data: good spam prevention?	≈	~	≈	~
Does token give higher marginal value to users of the network, vs external investors? Eg Does return on capital increase as stake increases?	✓	~	~	✓
Are people incentivized to run keepers?		*	~	✓
It simple? Is onboarding low-friction? Where possible, do we use incentives/crypto rather than legal recourse?		~	*	*

3. Try New Patterns Some patterns:

- 1. Actor registry
- 2. Data registry
- 3. Actor registry + data registry
- 4. Data registry + free-as-in-beer data curation market. Curation: Pay tokens to listen.
- 5. Data registry + free data curation market. Curation: Stake tokens as belief in reputation. Auto CDN.
- 6. Actor registry + free&priced data curation market. Curation: Stake tokens as belief in reputation. Auto CDN. "Proofed Curation Market"


3. Try new patterns: evaluate on objectives & constraints

Key Question		2	3	4	5	6
For priced data: incentive for supplying more? Referring?	×	æ	~	æ	*	~
For priced data: good spam prevention?	æ	>	✓	>	~	~
For free data: incentive for supplying more? Referring?	×	æ	×	>	*	~
For free data: good spam prevention?	æ	>	*	>	*	~
Does token give higher marginal value to users of the network, vs external investors? Eg Does return on capital increase as stake increases?	>	*	✓	*	*	*
Are people incentivized to run keepers?	*	*	~	~	~	~
It simple? Is onboarding low-friction? Where possible, do we use incentives/crypto rather than legal recourse?		*	*	*	~	*

Objective: maximize supply of relevant data

- Reward curating data (staking on it) + making it available
- New pattern: Proofed Curation Market

Expected reward for user *i* on dataset *j*

S_{ij} = predicted popularity = user's curation market stake in dataset j

tokens during interval

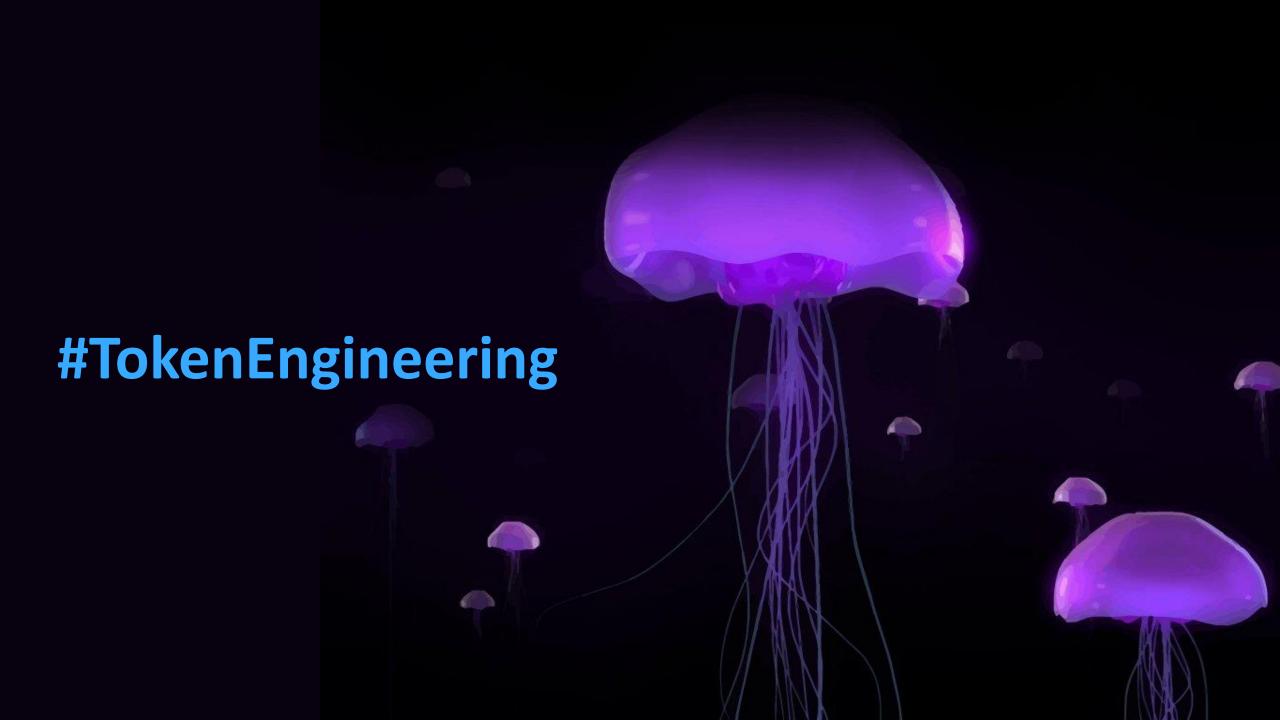
From Al data to Al services

Motivations:

- Privacy, so compute on-premise or decentralized
- Data is heavy, so compute on-premise
- Link in emerging decentralized AI compute

Objective function: Maximize supply of relevant services

=reward curating services + proving that it was delivered


$$E(R_{ij}) \propto log 10(S_{ij}) * log 10(D_j) * T * R_i$$

predicted popularity

of service

proofed popularity

of service

Design of Tokenized Ecosystems From Mechanism Design to *Token Engineering*

Analysis:

Game theory

Synthesis:

Mechanism Design

Practical constraints

Optimization Design

Design of Tokenized Ecosystems From Mechanism Design to *Token Engineering*

Analysis:

Game theory

Synthesis:

Mechanism Design

Practical constraints

Optimization Design

Engineering theory, practice and tools + responsibility

Token Engineering for Analysis & Synthesis

Conclusion

Conclusion: Towards a Practice of #TokenEngineering

- Token design ≈ optimization design
- So, approach token design as optimization design!
 - 1. Formulate problem. Objectives, constraints.
 - 2. Try existing patterns. Iterate.
 - 3. If needed, try new design.
- This process helped a lot for designing Ocean (so far)
- Token Engineering = Theory + practice + tools + responsibility

