BigchainDB: A Scalable Blockchain Database

Trent McConaghy

ascribe®

The Elements of Computing

Modern Application Stacks

The modern cloud application stack

Along came Bitcoin...

"Magic Internet Money"

Bitcoin sparked a revolution Truly own digital assets, supply chain visibility,

1.5 tx/s 50GB

What about planetary scale?

Planetary scale: Netflix uses 37% of Internet bandwidth

"Big data" Distributed DBs

Writes / s vs. # nodes

http://1.bp.blogspot.com/-ZFtW7MFMqZQ/TrG5ujuDGdI/AAAAAAAAWw/heceeMD50x4/s1600/scale.png

To be Distributed, Big Data DBs Must Solve Consensus

Two ways to scale up

Big data-fy the blockchain

- Builds on man-decades of work
- Significant scalability hurdles?

<0r>

Blockchain-ify big data

- Builds on man-centuries (millennia?) of work
- Scalability challenges already resolved
- How to blockchain-ify? ...

"Blockchain-ify"

- **Decentralization:** no single entity owns or controls
- **Immutability:** tamper-resistant
- Assets: Can issue & transfer assets
- Blockchain (noun): hashed-together chain of blocks (1991!)
- Blockchain (noun): storage that is decentralized + immutable + assets
- Blockchain (adj): decentralized + immutable + assets

How to Blockchain-ify Big Data

Retain Big Data DB's Performance

- Let the Paxos derivative solve order. Get out of its way!
- It naturally builds a log of all txs

Add in blockchain characteristics

- **Decentralization:** federation voting on txs. Group into blocks for speed.
- Immutability: hash on prev. blocks
- Assets: Digital signatures etc.

Benchmarks 1/2

Storage: SSD Nodes: 32 EC2 instance: c3.8xlarge Cores: 32 Network: 10Gbps

This is **BIGCHAIN**^{DB}

1

Immutability Decentralized control Assets High Throughput Low Latency **High Capacity Rich Permissioning Query Capabilities**

Traditional blockchains

 $\mathbf{\nabla}$

Big Data

 $\mathbf{\mathbf{V}}$

 $\mathbf{\nabla}$

 $\mathbf{\nabla}$

 $\mathbf{\nabla}$

V

BIGCHAIN^{DB}

Vertical: Diamond Supply Chain

Value prop: identify & prevent fraud. 7-40% in \$80B industry

Customer: **RWE**

Vertical: Energy Supply Chain

Value prop: manage \$ flow in energy deregulation

Customer: Tangent⁹⁰

Vertical: Medical Journals / Supply Chain

Value prop: governmentmandated transparent \$ flow

LOG IN / SIGN UP

Customers: ascribe.io, 5000 artists, 25 marketplaces & non-profits Verticals: Art Supply Chain, Intellectual Property

Value Props: secure provenance in \$64B art industry, IP mgmt.

Enterprise Use Cases Made Possible by **BIGCHAIN**^{DB}

A Decentralized DB for the Planetary-Scale Cloud

Bonus: A DB for the Emerging Planetary-Scale *Decentralized* Cloud

RELATION TO OTHER DBS

What is BigchainDB?

It's an open source distributed blockchain database

- ★ Federated
- ★ Scales linearly with the number of nodes
- ★ High performance / low latency (kinda like RethinkDB)
- ★ **Decentralized** control (each cluster node is controlled by a different entity)
- ★ Federation nodes **update** the database (prevent Sybil Attacks without PoW)
- ★ Publicly verifiable
- ★ Cryptographically secure (only an owner can transfer its digital asset)
- ★ Immutable

What we tested

BigTable Clones

Lineage: Google's BigTable paper.

Data model: Column family, i.e. a tabular model where each row can have an individual configuration of columns.

Tested: HBase, Cassandra

Good at: Handles size well. Stream massive write loads. High availability. Multiple-data centers. MapReduce.

Document Databases

Lineage: Inspired by Lotus Notes.

Data model: Collections of documents, which contain key-value collections.

Tested: RethinkDB, MongoDB, ElasticSearch

Good at: Natural data modeling. Programmer friendly. Rapid development. Web friendly, CRUD.

Key-Value Stores

Lineage: Amazon's Dynamo paper and Distributed HashTables.

Data model: A global collection of KV pairs.

Tested: Redis, Riak

Good at: Handles size well. Processing a constant stream of small reads and writes. Fast. Programmer friendly.

BIGCHAINDB IS RETHINKING BLOCKCHAIN DATABASES

Why RethinkDB?

Strong consistency guarantees linearizability and atomicity

Real time notifications of any change in the data

ReQL

- ★ Powerful query language
- ★ Flexible indexing

JSON

- ★ standard
- ★ high support (language independent interchange format)
- ★ easy to serialize

Raft consensus protocol equivalent in fault-tolerance and performance to Paxos

Easy configuration (sharding, replication, cluster)

Open source and great community

Arch: review

Retain Big Data DB's Performance

Let the Paxos derivative *solve order*. Get out of its way!

It naturally builds a log of all txs

Add in blockchain characteristics

Decentralization: federation voting on txs. Group into blocks for speed.

Immutability: hash on prev. blocks

Assets: Digital signatures etc.

Two Tables

System Arch

★ RethinkDB

handles intra-cluster communication

★ BigchainDB Nodes

accept new transactions via an API

★ BigchainDB Nodes

bundle transactions in blocks and validate them

Transaction

hash	from	to	input	payload	signature
key	key	key	hash	json data	w/priv_key

Transaction example

hash 123	from eventim	to eventim	input -	payload {ticket_id: 2661}	signature #####
hash 456	from eventim	to Alice	input 123	payload {ticket_id: 2661}	signature #####
hash 789	from Alice	to Bob	input 456	payload {ticket_id: 2661}	signature #####

Malicious transaction example

hash 123	from eventim	to eventim	input -	<pre>payload {ticket_id: 2661}</pre>	signature #####
hash 456	from eventim	to Carly	input <i>123</i>	payload {ticket_id: 2661}	signature #####
hash 789	from Carly	to Alice	input <i>456</i>	payload {ticket_id: 2661}	signature #####
hash Øab	from Carly	to Bob	input 456	payload {ticket_id: 2661}	signature #####

Lifecycle of a transaction

Making blocks

Validating blocks

Vision: A DB for the Emerging Planetary-Scale *Decentralized* Cloud

BigchainDB: A Scalable Blockchain Database For the Planet & The Enterprise (& Wrigley)

github.com/bigchaindb bigchaindb.com/whitepaper

> NETWORK ILLUSTRATION BY OPTE PROJECT

APPENDIX

BIGCHAIN^{DB} > Million Writes per Second

BigchainDB handled nearly 2 Mio Writes/s

- 1,900 blocks written per second
- Each Block can store 1,000 transactions
- BigchainDB scales linearly as nodes are added
- Limiting constraint is I/O, not transactions or validations
- Each Node adds 48 TB in storage capacity

