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Technology – Alternate Definition

“We can say that solving least-squares problems 
… is a (mature) technology, that can be reliably 
used by many people who do not know, and do 
not need to know, the details.”

• Boyd and Vandenberghe, Convex Optimization, 2004



Technology – Alternate Definition

I would say that least squares is a mature 
technology. ...This is the highest praise. …What 
it means is that other people know enough about 
the theory, the algorithms, and the 
implementations are so good and so reliable that 
the rest of us can just type “A / B”.

– Transcript of Steve Boyd Stanford lecture on convex optimization.
http://see.stanford.edu/materials/lsocoee364a/transcripts/ConvexOptimizationI-Lecture01.pdf



Technology – Alternate Definition

Here’s the really cool part about linear 
programming .. [these problems] are solved. 
Unless your problem is huge or you have some 
super real time thing like in communications, 
then [once you formulate the problem and run 
LP] there’s a sense in which you’re kind of done.

– Transcript of Steve Boyd Stanford lecture on convex optimization.
http://see.stanford.edu/materials/lsocoee364a/transcripts/ConvexOptimizationI-
Lecture01.pdf



SVM Envy?

• SVMs were introduced in the late 90s

– And have become a standard tool in the 
practitioners’ toolbox

• Convex optimization was popularized in the late 
90s

– And is becoming a standard tool in practitioners’ 
toolbox

• GP was popularized in the early 90s

– And is not a standard tool in the practitioners’ 
toolbox



GP and Technology

Last year, a gauntlet was thrown:

“How can GP be scoped so that it becomes another 
standard, off-the-shelf method in the “toolboxes” of 
scientists and engineers around the world? Can GP 
follow in the same vein of linear programming?

“Scalability is always relative. GP has attacked fairly 
large problems, but how can GP be improved to solve 
problems that are 10x, 100x, 1,000,000x harder?”

– McConaghy, Riolo, and Vladislavleva, “Genetic programming 
theory and practice: an introduction”, GPTP VIII, Springer, 2010



On Symbolic Regression (SR)

GP is a popular approach to do SR

Many successful GP-based applications

• Finance, medicine, industrial processing, …

SR is a popular app among GP researchers

So, a meaningful advance in SR can influence 
overall GP theory and practice



GP SR and Technology

For this GPTP, my gauntlet to myself:

“How can GP SR be scoped so that it becomes another 
standard, off-the-shelf method in the “toolboxes” of 
scientists and engineers around the world? Can GP SR  
follow in the same vein of linear programming?

“Scalability is always relative. GP SR has attacked fairly 
large problems, but how can GP SR be improved to 
solve problems that are 10x, 100x, 1,000,000x harder?”



Summary: 
Aiming for SR* as a Technology

* SR ≠ Shopping Robot
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SR Problem Definition
• Given (X,y)

• Find a whitebox model (or models)

• That minimizes error

• And minimizes complexity



SR Problem Definition
• Given (X,y)

• Find a whitebox model (or models)

• That minimizes error

• And minimizes complexity

Desirable Features:

• Scalable (# variables, # samples)

• Fast

• Reliable, consistent results
– Derandomized → deterministic? (CMAES → X/y)

• Ideal: simple algorithm
– Arch. Altering Ops → Push → …

– FFNNs → SVMs

• Ideal: hits global optimum (on problem formulation)



Summary of Goal
Speed of LS, Accuracy of GP-SR
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1D Linear Least-Squares Regression

x1

y



1D Linear LS Regression

x1

y
Many possible linear models!



1D Linear LS Regression

x1

Find linear model that
minimizes ∑(yhati-yi)

2

for all i in training data

y



1D Linear LS Regression

x1

Find linear model that
minimizes ∑(yhati-yi)

2

y
That is:
[w0, w1]* = argmin ∑(yhati-yi)

2 

where yhat(x1) = w0 + w1 * x1



1D Linear LS Regression

x1

y = 1.1 + 2.3 * x1

i.e. w0=1.1, w1=2.3
Found with “least-squares learning”
(amounts to ≈matrix inversion)

y



1D Quadratic LS Regression

x1

y

[w0, w1, w11]* = argmin ∑(yhati-yi)
2 

where yhat(x1) = w0 + w1 * x1 + w11 * x1
2

We are applying linear (LS) learning on 
linear & nonlinear basis functions.  OK!



1D Nonlinear LS Regression

x1

y

[w0, w1, wsin]* = argmin ∑(yhati-yi)
2 

where yhat(x1) = w0 + w1 * x1 + wsin * sin(x1)

We are applying linear (LS) learning on linear 
& nonlinear basis functions.  OK!



2D Linear LS Regression
[w0, w1, w2]* = argmin ∑(yhati-yi)

2 

where yhat(x) = w0 + w1 * x1 + w2 * x2

y

x1

x
2



2D Quadratic LS Regression

[w0, w1, w2, w11, w22, w12]* = argmin ∑(yhati-yi)
2 

where yhat(x) = w0 + w1 * x1 + w11 * x1
2 + w22 * x2

2 + w12 * x1 * x2

x1

x
2

y



Generalized Linear Model (GLM)
Generalized linear model (GLM) of B basis functions.

yhat(x) =  w0 + w1 * f1(x) + w2 * f2(x) + … + wB * fB(x) 

Just treat each basis function as an input variable, and LS-learn!
Examples: 

• yhat(x1) = w0 + w1 * x1 + w11 * x1
2

• yhat(x1) = w0 + w1 * x1 + wsin * sin(x1)
• yhat(x) = w0 + w1 * x1 + w11 * x12 + w22 * x22 + w12 * x1 * x2

• polynomials, SVMs, FFNNs, many GP SR.  Universal approximator!

x1

y

x1

x
2

y



Constraint on LS Regression?

x1

y

x1

y

(1D Example)

1 Sample – too few

2 Samples – enough

General rule?



Constraint on LS Regression
General Rule: 

• If n variables, need N ≥ N+1 training samples

Examples: 
1D Lin: [w0, w1]* = argmin ∑(yhati-yi)

2 

Needs ≥ 1+1 = 2 training samples.

2D Quad [w0, w1, w2, w11, w22, w12]* = argmin ∑(yhati-yi)
2 

Needs ≥ 6+1 = 7 training samples.

x1

x
2

y
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y



LS Regression On High Dimensionality

Consider 10,000 basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes!  (As long as ≥10,001 samples)*

Consider 1M basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes!  (As long as ≥1M+1 samples)*

*and no memory issues etc



90  turn…







Trivia Q: State of the art in image search? (NIPS ’09)

A: BHALR!*



Q: State of the art in image search? (NIPS ’09)
A: BHALR!*

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.
Then apply linear regression or classification



Q: State of the art in image search? (NIPS ’09)
A: BHALR!*

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.
Then apply linear regression or classification

But 100 << 1M.  HOW DO THEY DO IT??



Linear Regression
Q: What happens when samples N → # variables n ?

x1

y



x1

y

Linear Regression
Q: What happens when # samples N → # variables n ?

A: Model gets more sensitive!



x1

y

Linear Regression
Q: What happens when # samples N → # variables n ?

A: Model gets more sensitive!



Linear Regression
A model that’s “less sensitive”

x1

y



Linear Regression
A model that’s “less sensitive”

x1

y
Smaller |dy/dx| means less sensitive



Linear Regression
A model that’s “less sensitive”

x1

y

Smaller |dy/dx| means less sensitive

i.e. given yhat(x1) = w0 + w1 * x1 

A smaller |w1| means less sensitive
or smaller ∑wi for n > 1 (ignore w0)



Linear Regression

Least-sensitive model has slope of 0
(By definition)

(And also when viewed pragmatically as a model)

x1

y



Linear Regression
A model that’s “less sensitive”

x1

y
“less sensitive” ≈ lower future prediction error

(in light of less training data)



Linear Regression

x1

y

• Aim: minimize future prediction error
• Pragmatic Issue: we only have access to training data!
• Trick: minimize sensitivity ≈ minimize future prediction error
• But do consider training data to bias the model (otherwise we 
end up with a constant – useless!)
• So: minimize a combination of training error vs. sensitivity
(bias vs. variance tradeoff) (explanation-of-data vs. overfitting)



Linear Regression

x1

y

• Minimize a combination of training error and model sensitivity 
• Formulation:

w* = argmin ( ∑(yhati(w) - yi)
2   +   λ * ∑|wi| )

training error model sensitivity



Linear Regression

• Minimize a combination of training error and sensitivity 

• Formulation:
w* = argmin ( ∑(yhati(w) - yi)

2  +  λ * ∑|wi|) 
[Lasso]

OR

w* = argmin ( ∑(yhati(w) - yi)
2  +  λ * ∑wi

2) 
[Ridge Regression]

… [Elastic Net, Gradient Directed Regularization, …]

This is regularized linear learning



Regularized Linear Regression

• Cool property #1: solving a regularized learning 
problem is just as fast (or faster) than solving a least-
squares learning problem!

• Why: convex optimization problem – one big hill



Regularized Linear Regression

• Remember BHALR image search problem?
• n = 1M variables, N=1000 samples



Regularized Linear Regression

• Remember BHALR image search problem?
• n = 1M variables, N=1000 samples

• Cool property #2: can have more coefficients than 
samples!  That is, can handle n >> N!

• Because the regularization term minimizes the 
sensitivity, i.e. the “degree of screwup”
w* = argmin ( ∑(yhati(w) - yi)

2 + λ * ∑|wi|)



Regularized Linear Regression

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|), 

What is a good value for λ?

• Case: λ=0 ∑(yhati(w) - yi)
2  + λ * ∑|wi|

…reduces to least-squares

0



Regularized Linear Regression

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|), 

What is a good value for λ?

• Case: λ=0 ∑(yhati(w) - yi)
2  + λ * ∑|wi|

…reduces to least-squares

• Case: λ=∞ ∑(yhati(w) - yi)
2  + λ * ∑|wi|

…gives a constant (w0=const; w1=w2=… = 0)

0

0



Regularized Linear Regression

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|), 

What is a good value for λ?

• Case: λ=0 ∑(yhati(w) - yi)
2  + λ * ∑|wi|

…reduces to least-squares

• Case: λ=∞ ∑(yhati(w) - yi)
2  + λ * ∑|wi|

…gives a constant (w0=const; w1=w2=… = 0)

• Case: λ in-between

…is a balance between constant & LS.

0

0



Regularized Linear Regression

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|), 

What is a good value for λ?
Learn w* at many values of λ

λ=∞ 
(reduces to constant)    

λ=0
(reduces to LS)    

Train error    



Regularized Linear Regression

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|), 

What is a good value for λ?
Learn w* at many values of λ, and keep “best”
(“Best” = best error on a left-out test set.)

λ=∞ 
(reduces to constant)    

λ=0
(reduces to LS)    

Test error

Train error    
Best



Regularized Linear Regression

Algorithm
λ= huge (e.g. 1e40)
w = 0
while λ > 1e-10

λ = λ / 10
w = solveAt(Xtrain, ytrain, λ, winit=w)
Compute error on test set

Return w with best test error

λ=∞ 
(reduces to constant)    

λ=0
(reduces to LS)    

Test error

Train error    
Best

Solves
w* = argmin ( ∑(yhati(w) - yi)

2 + λ * ∑|wi|)



Regularized Linear Regression:
How Coefficients Change With λ

λ=∞ 
(reduces to constant)    

λ=0
(reduces to LS)    

Test error

Train error    
Best

w3 “pops in”

(All other wi=0)



Regularized Linear Regression:
How Coefficients Change With λ

λ=∞ 
(reduces to constant)    

λ=0
(reduces to LS)    

Test error

Train error    
Best

w6 “pops in”



Regularized Linear Regression:
How Coefficients Change With λ

λ=∞ 
(reduces to constant)    

λ=0
(reduces to LS)    

Test error

Train error    
Best



Regularized Linear Regression:
How Coefficients Change With λ

λ=∞ 
(reduces to constant)    

λ=0
(reduces to LS)    

Test error

Train error    
Best



Regularized Linear Regression:
How Coefficients Change With λ

λ=∞ 
(reduces to constant)    

λ=0
(reduces to LS)    

Test error

Train error    
Best

w2 “pops in”



Regularized Linear Regression:
How Coefficients Change With λ

λ=∞ 
(reduces to constant)    

λ=0
(reduces to LS)    

Test error

Train error    
Best

This is pathwise regularized linear learning

w5 “pops in”



Regularized Linear Regression

• Cool property #3: solving a full regularized path is ≈ as 
fast as solving single regularized problem 
(or a least-squares learning problem)

Algorithm
λ= huge (e.g. 1e40)
w = 0
while λ > 1e-10

λ = λ / 10
w = solveAt(Xtrain, ytrain, λ, winit=w)
Compute error on test set

Return w with best test error

Why fast:

Hot starts on 

local optimize



Regularized Linear Regression:
The Error-Complexity Tradeoff

λ=∞ λ=0

Test error

Train error    
Best

0 coefs 1 coef 2 coefs 4 coefs3 coefs



Regularized Linear Regression

• Cool property #4: solving a full regularized path gives 
us error-complexity tradeoffs!

• train error versus # coefs (bases)
• test error versus # coefs (bases)
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Recap on Linear Regression

• Generalized linear models: nonlinear basis functions
with linearly-learned coefficients!

Path-based Regularized Linear Regression:
• Can have more coefficients than samples!  That is, can 
handle n >> N!

• BHALR: 1M basis functions for 1K samples
• Solving path is ≈ as fast as solving a least-squares 
learning problem!  (Convex problem!)
• Solving path gives error vs. complexity tradeoffs!

One final trick:
• Can cast a rational-learning problem f(x)/(1+g(x)) as a 
linear-learning problem.  See paper for details.
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FFX Step 1/3: GenerateBases()

“Replace linear bases

with a crazy amount of
nonlinear ones”



FFX Step 2/3: PathFollow()
[using BHALR]

“Generate set of 

models, at increasing 
complexity”



FFX Step 3/3: 
NondominatedFilter() 

Complexity

E
rr

o
r
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FFX Experiments

• High Speed CMOS OTA 

• 13 design variables

– Vds, Vgs, Ids 
(operating-point driven 
formulation)

• orthogonal hypercube 
sampling

• 243 training samples

• 243 testing samples



FFX Setup



FFX Step 1: The 176 Candidate
1-Variable Bases



FFX Step 1: Some Candidate 
2-Variable Bases (3374 total)



FFX Step 2: PathFollow:
First Four Bases (ALF problem)



FFX Step 3: Nondominated Filter
Error vs. # Bases (ALF problem)



FFX Step 3: Final Pareto-Optimal Set

Total Runtime <5 s (1 GHz CPU)
This is Fast Function Extraction



FFX Functions with Lowest Test 
Error on 6 Different Problems. 



Reference GP-SR Setup
(CAFFEINE)



CAFFEINE models with <10% error

- 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2 
+ 109.72 / id1

SRn

2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2 
+ 4.63e+8 * id1

SRp

- 2.00e-3voffset

90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2PM

10^( 5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1 )fu

-10.3 + 7.08e-5 / id1 
+ 1.87 * ln( -1.95e+9 + 1.00e+10 / (vsg1*vsg3)

+ 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2) )

ALF

ExpressionPerf.



CAFFEINE Prediction Performance
• CAFFEINE models actually predict better than several state-of-the-art blackbox 

regression techniques (shown: benchmark suite of 6 circuit problems)
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Compare FFX vs. GP-SR
Average test time & build errors over 6 problems

FFX
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FFX So Far

• Problems: 13 input variables, 256 samples

• Results: <5 s, best error

• Pretty good!

• What about 100-1000 input variables…?



12 Larger Problems
Up to 1468 input variables



Other Approaches 
on 30T Opamp  Problems 

(215 input vars.) [McConaghy GPTP 2009] 

• A “direct” GP-SR approach did terrible
• Resorted to a latent-variable SR approach for good results



Scaling Up FFX

• What about 100-1000 input variables…?

• Summary of results:

– Out of memory

– Time for some theory…



Computational Complexity of FFX?



Computational Complexity of FFX?

FFX



Computational Complexity of FFX?

The complexity of FFX is the maximum of steps one, 
two, and three, which is O(N * n4).

FFX

# samples # input variables



Improving FFX

A batch-style riff on MARS.

Revised FFX Algorithm:
1.Learn univariate coefficients
2.Only combine the k ≤ O(√n) most important basis 

functions
3.Pathwise-learn univariate & combination
4.Nondominated filter

Complexity down to O(N*n2) !



Improving FFX
A batch-style riff on MARS.

Revised FFX Algorithm:
1. Learn univariate coefficients
2. Only combine the k ≤ O(√n) most important basis functions
3. Pathwise-learn univariate & combination
4. Nondominated filter

Complexity down to O(N*n2) !

Two more tricks: 
• Add MARS-style “hinge” bases: max(0, xi-thr), max(0, thr-xi)

• Buys us ≈universal approximation ☺
• Repeat steps 1-3 six times: maybe interactions, maybe 

rational, maybe hinge functions, maybe log/abs.  



Improving Complexity to O(N*n2):
A batch-style riff on MARS.

Revised algorithm:
1. First learn univariate coefficients
2. Only combine the k ≤ O(√n) most important basis functions
3. Pathwise-learn univariate & combination
4. Nondominated filter

Complexity down to O(N*n2) !

Two more tricks: 
• Add MARS-style “hinge” bases: max(0, xi-thr), max(0, thr-xi)
• Repeat steps1-3 six times: maybe interactions, maybe 

rational, maybe hinge functions, maybe log/abs.  

Overall runtime 5-30 s



Test Error vs. Complexity
Large Problems 1-3 (of 12). <30 s!

Opamp AV Opamp BW Opamp PM

# bases
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# bases # bases



Test Error vs. Complexity
Large Problems 4-6 (of 12). <30 s!

Opamp SR Bitcell cell_i Sense amp delay

# bases
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# bases # bases



Test Error vs. Complexity
Large Problems 7-9 (of 12). <30 s!

Sense amp PWR Voltage reference
DVREF

Voltage reference
power

# bases

T
e
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rr

o
r

# bases # bases



Test Error vs. Complexity
Large Problems 10-12 (of 12). <30 s!

GMC filter IL GMC filter
ATTEN

Comparator BW

# bases

T
e
s
t 

e
rr

o
r

# bases # bases



Opamp PM Equations. <30 s!



Voltage Reference DVREF. <30 s!
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FFX Summary of Results

FFX

• ≈ as fast as LS-linear:
<5 s on smaller, <30 s on larger

• As accurate as GP-SR

• Gives error-complexity 
tradeoffs

• Scalable

• Simple

• Deterministic!

• O(N * n2) complexity. (Theory!)

This is Fast Function Extraction



Related Work

• Recasting SR from tree towards vector-valued 
optimization
– O’Neill and Brabazon 2006

– McConaghy and Gielen 2006

– Cerny et al 2008

– Veerhuis 2009

– Fonlupt and Robillard 2011

• Doing tree-based search with non-EA:
– O’Reilly PhD (SA, hillclimb)

• EDAs
– Derandomize EA search 

– Dispense with mutation, crossover

– On bitstrings, vectors, trees. Goldberg, Pelikan, Sastry, Looks, 
Iba, many more; “Modern era” 1999-present.



Related Work

• Vector-based optimization on just SR 
coefficients

– Topchy and Punch 2001

– And many since

• Recasting general tree-valued search into 
simpler spaces

– Rothlauf 2006

– And many more



Related Work

• Linear learning as part of individual’s fitness 
evaluation

– LS: McConaghy and Leung 1998.  Many more!

– Ridge regression: Nikolaev and Iba 2001

– PRESS statistic: McConaghy and Gielen 2005

– GDR: McConaghy and Gielen 2009

• Regularized learning to bias building blocks

– McConaghy and Gielen 2009



Related Work

• “Popping in” of complexity incrementally

– Stepwise-forward regression. Linear; 
nonlinear (eg MARS)

– Boosting

– FFNN practice: learn on 1 node. If hit target, 
stop.  Else add 1 node and repeat.

– NEAT: ≈ like above but automated + tricks

– More EA references…



But, not that related

• FFX has no selection, mutation, crossover

• No “individuals!  No population.

• Embarrassingly simple compared to GP

– Simple enough to develop theory here

• Just one (or two) convex optimizations

– SR as one big hill!

– Therefore globally optimal result

• Threw out randomization completely

– Deterministic!



Benefits of Deterministic
[Possibly Heretical Comments]

• Same result every time
– Just like typing “X/y”
– Just like calling sort()
– Just like using your telephone
– Just like typing your keyboard

• Imagine if any of these was stochastic?

• Ease of adoptability
• No “wondering if the next run will get it”

• At the very least: consider that stochastic is not 
necessarily a virtue!



An FFX-colored view of GP
[Trent’s Heretical Comments]

• Doing SR does not have to mean doing GP

• Reconsider other problems traditionally done with “GP”.

– GP may have been the first way.  The “most convenient”.

But it’s not necessarily the only way!

Possibility of dramatically different approaches.

– The approach may even be deterministic! Convex!

– Possible benefits: speed, scalability, simplicity, adoptability, $ ?

• Where might GP researchers go from here?

– Bias to problems that GP is best suited for?  Evolvability, …

– Re-attack GP problems with non-GP approaches

• Even by trying, you could learn a lot about your domain!

– Mix the approaches – plenty of fertile ground between GP and 
{ML, Convex Opt, MC methods, CLP, SAT, …}

– Use FFX as an off-the-shelf “baseline” in your GP research ☺

(I’m putting the code online at trent.st)



FFX ≠ Fork Fan Experience



FFX is SR Technology:
Fast, Scalable, Deterministic

Met my gauntlet:

“How can SR be scoped so that it becomes another 
standard, off-the-shelf method in the “toolboxes” of 
scientists and engineers around the world? Can SR  
follow in the same vein of linear programming?

“Scalability is always relative. SR has attacked fairly 
large problems, but how can SR be improved to solve 
problems that are 10x, 100x, 1,000,000x harder?”


