
FFX: Fast, Scalable,
Deterministic Symbolic
Regression Technology

Trent McConaghy

Solido Design Automation Inc.

Canada

Outline

• Introduction

• Background

• FFX: Fast Function Extraction

• Results

• Scaling Higher?

• Discussion

Technology

Technology

Technology

Technology

Technology

Technology

Technology – Alternate Definition

“We can say that solving least-squares problems
… is a (mature) technology, that can be reliably
used by many people who do not know, and do
not need to know, the details.”

• Boyd and Vandenberghe, Convex Optimization, 2004

Technology – Alternate Definition

I would say that least squares is a mature
technology. ...This is the highest praise. …What
it means is that other people know enough about
the theory, the algorithms, and the
implementations are so good and so reliable that
the rest of us can just type “A / B”.

– Transcript of Steve Boyd Stanford lecture on convex optimization.
http://see.stanford.edu/materials/lsocoee364a/transcripts/ConvexOptimizationI-Lecture01.pdf

Technology – Alternate Definition

Here’s the really cool part about linear
programming .. [these problems] are solved.
Unless your problem is huge or you have some
super real time thing like in communications,
then [once you formulate the problem and run
LP] there’s a sense in which you’re kind of done.

– Transcript of Steve Boyd Stanford lecture on convex optimization.
http://see.stanford.edu/materials/lsocoee364a/transcripts/ConvexOptimizationI-
Lecture01.pdf

SVM Envy?

• SVMs were introduced in the late 90s

– And have become a standard tool in the
practitioners’ toolbox

• Convex optimization was popularized in the late
90s

– And is becoming a standard tool in practitioners’
toolbox

• GP was popularized in the early 90s

– And is not a standard tool in the practitioners’
toolbox

GP and Technology

Last year, a gauntlet was thrown:

“How can GP be scoped so that it becomes another
standard, off-the-shelf method in the “toolboxes” of
scientists and engineers around the world? Can GP
follow in the same vein of linear programming?

“Scalability is always relative. GP has attacked fairly
large problems, but how can GP be improved to solve
problems that are 10x, 100x, 1,000,000x harder?”

– McConaghy, Riolo, and Vladislavleva, “Genetic programming
theory and practice: an introduction”, GPTP VIII, Springer, 2010

On Symbolic Regression (SR)

GP is a popular approach to do SR

Many successful GP-based applications

• Finance, medicine, industrial processing, …

SR is a popular app among GP researchers

So, a meaningful advance in SR can influence
overall GP theory and practice

GP SR and Technology

For this GPTP, my gauntlet to myself:

“How can GP SR be scoped so that it becomes another
standard, off-the-shelf method in the “toolboxes” of
scientists and engineers around the world? Can GP SR
follow in the same vein of linear programming?

“Scalability is always relative. GP SR has attacked fairly
large problems, but how can GP SR be improved to
solve problems that are 10x, 100x, 1,000,000x harder?”

Summary:
Aiming for SR* as a Technology

* SR ≠ Shopping Robot

0

5

10

15

20

25

0 50 100 150 200 250

First-

order

Detail

E
rr

o
r

(%
)

Complexity

SR Problem Definition
• Given (X,y)

• Find a whitebox model (or models)

• That minimizes error

• And minimizes complexity

SR Problem Definition
• Given (X,y)

• Find a whitebox model (or models)

• That minimizes error

• And minimizes complexity

Desirable Features:

• Scalable (# variables, # samples)

• Fast

• Reliable, consistent results
– Derandomized → deterministic? (CMAES → X/y)

• Ideal: simple algorithm
– Arch. Altering Ops → Push → …

– FFNNs → SVMs

• Ideal: hits global optimum (on problem formulation)

Summary of Goal
Speed of LS, Accuracy of GP-SR

Outline

• Introduction

• Background

• FFX: Fast Function Extraction

• Results

• Scaling Higher?

• Discussion

Background

1D Linear Least-Squares Regression

x1

y

1D Linear LS Regression

x1

y
Many possible linear models!

1D Linear LS Regression

x1

Find linear model that
minimizes ∑(yhati-yi)

2

for all i in training data

y

1D Linear LS Regression

x1

Find linear model that
minimizes ∑(yhati-yi)

2

y
That is:
[w0, w1]* = argmin ∑(yhati-yi)

2

where yhat(x1) = w0 + w1 * x1

1D Linear LS Regression

x1

y = 1.1 + 2.3 * x1

i.e. w0=1.1, w1=2.3
Found with “least-squares learning”
(amounts to ≈matrix inversion)

y

1D Quadratic LS Regression

x1

y

[w0, w1, w11]* = argmin ∑(yhati-yi)
2

where yhat(x1) = w0 + w1 * x1 + w11 * x1
2

We are applying linear (LS) learning on
linear & nonlinear basis functions. OK!

1D Nonlinear LS Regression

x1

y

[w0, w1, wsin]* = argmin ∑(yhati-yi)
2

where yhat(x1) = w0 + w1 * x1 + wsin * sin(x1)

We are applying linear (LS) learning on linear
& nonlinear basis functions. OK!

2D Linear LS Regression
[w0, w1, w2]* = argmin ∑(yhati-yi)

2

where yhat(x) = w0 + w1 * x1 + w2 * x2

y

x1

x
2

2D Quadratic LS Regression

[w0, w1, w2, w11, w22, w12]* = argmin ∑(yhati-yi)
2

where yhat(x) = w0 + w1 * x1 + w11 * x1
2 + w22 * x2

2 + w12 * x1 * x2

x1

x
2

y

Generalized Linear Model (GLM)
Generalized linear model (GLM) of B basis functions.

yhat(x) = w0 + w1 * f1(x) + w2 * f2(x) + … + wB * fB(x)

Just treat each basis function as an input variable, and LS-learn!
Examples:

• yhat(x1) = w0 + w1 * x1 + w11 * x1
2

• yhat(x1) = w0 + w1 * x1 + wsin * sin(x1)
• yhat(x) = w0 + w1 * x1 + w11 * x12 + w22 * x22 + w12 * x1 * x2

• polynomials, SVMs, FFNNs, many GP SR. Universal approximator!

x1

y

x1

x
2

y

Constraint on LS Regression?

x1

y

x1

y

(1D Example)

1 Sample – too few

2 Samples – enough

General rule?

Constraint on LS Regression
General Rule:

• If n variables, need N ≥ N+1 training samples

Examples:
1D Lin: [w0, w1]* = argmin ∑(yhati-yi)

2

Needs ≥ 1+1 = 2 training samples.

2D Quad [w0, w1, w2, w11, w22, w12]* = argmin ∑(yhati-yi)
2

Needs ≥ 6+1 = 7 training samples.

x1

x
2

y

x1

y

LS Regression On High Dimensionality

Consider 10,000 basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes! (As long as ≥10,001 samples)*

Consider 1M basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes! (As long as ≥1M+1 samples)*

*and no memory issues etc

90 turn…

Trivia Q: State of the art in image search? (NIPS ’09)

A: BHALR!*

Q: State of the art in image search? (NIPS ’09)
A: BHALR!*

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.
Then apply linear regression or classification

Q: State of the art in image search? (NIPS ’09)
A: BHALR!*

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.
Then apply linear regression or classification

But 100 << 1M. HOW DO THEY DO IT??

Linear Regression
Q: What happens when samples N → # variables n ?

x1

y

x1

y

Linear Regression
Q: What happens when # samples N → # variables n ?

A: Model gets more sensitive!

x1

y

Linear Regression
Q: What happens when # samples N → # variables n ?

A: Model gets more sensitive!

Linear Regression
A model that’s “less sensitive”

x1

y

Linear Regression
A model that’s “less sensitive”

x1

y
Smaller |dy/dx| means less sensitive

Linear Regression
A model that’s “less sensitive”

x1

y

Smaller |dy/dx| means less sensitive

i.e. given yhat(x1) = w0 + w1 * x1

A smaller |w1| means less sensitive
or smaller ∑wi for n > 1 (ignore w0)

Linear Regression

Least-sensitive model has slope of 0
(By definition)

(And also when viewed pragmatically as a model)

x1

y

Linear Regression
A model that’s “less sensitive”

x1

y
“less sensitive” ≈ lower future prediction error

(in light of less training data)

Linear Regression

x1

y

• Aim: minimize future prediction error
• Pragmatic Issue: we only have access to training data!
• Trick: minimize sensitivity ≈ minimize future prediction error
• But do consider training data to bias the model (otherwise we
end up with a constant – useless!)
• So: minimize a combination of training error vs. sensitivity
(bias vs. variance tradeoff) (explanation-of-data vs. overfitting)

Linear Regression

x1

y

• Minimize a combination of training error and model sensitivity
• Formulation:

w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|)

training error model sensitivity

Linear Regression

• Minimize a combination of training error and sensitivity

• Formulation:
w* = argmin (∑(yhati(w) - yi)

2 + λ * ∑|wi|)
[Lasso]

OR

w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑wi

2)
[Ridge Regression]

… [Elastic Net, Gradient Directed Regularization, …]

This is regularized linear learning

Regularized Linear Regression

• Cool property #1: solving a regularized learning
problem is just as fast (or faster) than solving a least-
squares learning problem!

• Why: convex optimization problem – one big hill

Regularized Linear Regression

• Remember BHALR image search problem?
• n = 1M variables, N=1000 samples

Regularized Linear Regression

• Remember BHALR image search problem?
• n = 1M variables, N=1000 samples

• Cool property #2: can have more coefficients than
samples! That is, can handle n >> N!

• Because the regularization term minimizes the
sensitivity, i.e. the “degree of screwup”
w* = argmin (∑(yhati(w) - yi)

2 + λ * ∑|wi|)

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?

• Case: λ=0 ∑(yhati(w) - yi)
2 + λ * ∑|wi|

…reduces to least-squares

0

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?

• Case: λ=0 ∑(yhati(w) - yi)
2 + λ * ∑|wi|

…reduces to least-squares

• Case: λ=∞ ∑(yhati(w) - yi)
2 + λ * ∑|wi|

…gives a constant (w0=const; w1=w2=… = 0)

0

0

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?

• Case: λ=0 ∑(yhati(w) - yi)
2 + λ * ∑|wi|

…reduces to least-squares

• Case: λ=∞ ∑(yhati(w) - yi)
2 + λ * ∑|wi|

…gives a constant (w0=const; w1=w2=… = 0)

• Case: λ in-between

…is a balance between constant & LS.

0

0

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?
Learn w* at many values of λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Train error

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?
Learn w* at many values of λ, and keep “best”
(“Best” = best error on a left-out test set.)

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

Regularized Linear Regression

Algorithm
λ= huge (e.g. 1e40)
w = 0
while λ > 1e-10

λ = λ / 10
w = solveAt(Xtrain, ytrain, λ, winit=w)
Compute error on test set

Return w with best test error

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

Solves
w* = argmin (∑(yhati(w) - yi)

2 + λ * ∑|wi|)

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

w3 “pops in”

(All other wi=0)

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

w6 “pops in”

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

w2 “pops in”

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

This is pathwise regularized linear learning

w5 “pops in”

Regularized Linear Regression

• Cool property #3: solving a full regularized path is ≈ as
fast as solving single regularized problem
(or a least-squares learning problem)

Algorithm
λ= huge (e.g. 1e40)
w = 0
while λ > 1e-10

λ = λ / 10
w = solveAt(Xtrain, ytrain, λ, winit=w)
Compute error on test set

Return w with best test error

Why fast:

Hot starts on

local optimize

Regularized Linear Regression:
The Error-Complexity Tradeoff

λ=∞ λ=0

Test error

Train error
Best

0 coefs 1 coef 2 coefs 4 coefs3 coefs

Regularized Linear Regression

• Cool property #4: solving a full regularized path gives
us error-complexity tradeoffs!

• train error versus # coefs (bases)
• test error versus # coefs (bases)

0

5

10

15

20

25

0 50 100 150 200 250

E
rr

o
r

(%
)

Complexity

Recap on Linear Regression

• Generalized linear models: nonlinear basis functions
with linearly-learned coefficients!

Path-based Regularized Linear Regression:
• Can have more coefficients than samples! That is, can
handle n >> N!

• BHALR: 1M basis functions for 1K samples
• Solving path is ≈ as fast as solving a least-squares
learning problem! (Convex problem!)
• Solving path gives error vs. complexity tradeoffs!

One final trick:
• Can cast a rational-learning problem f(x)/(1+g(x)) as a
linear-learning problem. See paper for details.

Outline

• Introduction

• Background

• FFX: Fast Function Extraction

• Results

• Scaling Higher?

• Discussion

FFX Step 1/3: GenerateBases()

“Replace linear bases

with a crazy amount of
nonlinear ones”

FFX Step 2/3: PathFollow()
[using BHALR]

“Generate set of

models, at increasing
complexity”

FFX Step 3/3:
NondominatedFilter()

Complexity

E
rr

o
r

Outline

• Introduction

• Background

• FFX: Fast Function Extraction

• Results

• Scaling Higher?

• Discussion

FFX Experiments

• High Speed CMOS OTA

• 13 design variables

– Vds, Vgs, Ids
(operating-point driven
formulation)

• orthogonal hypercube
sampling

• 243 training samples

• 243 testing samples

FFX Setup

FFX Step 1: The 176 Candidate
1-Variable Bases

FFX Step 1: Some Candidate
2-Variable Bases (3374 total)

FFX Step 2: PathFollow:
First Four Bases (ALF problem)

FFX Step 3: Nondominated Filter
Error vs. # Bases (ALF problem)

FFX Step 3: Final Pareto-Optimal Set

Total Runtime <5 s (1 GHz CPU)
This is Fast Function Extraction

FFX Functions with Lowest Test
Error on 6 Different Problems.

Reference GP-SR Setup
(CAFFEINE)

CAFFEINE models with <10% error

- 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2
+ 109.72 / id1

SRn

2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2
+ 4.63e+8 * id1

SRp

- 2.00e-3voffset

90.5 + 190.6 * id1 / vsg1 + 22.2 * id2 / vds2PM

10^(5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1)fu

-10.3 + 7.08e-5 / id1
+ 1.87 * ln(-1.95e+9 + 1.00e+10 / (vsg1*vsg3)

+ 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2))

ALF

ExpressionPerf.

CAFFEINE Prediction Performance
• CAFFEINE models actually predict better than several state-of-the-art blackbox

regression techniques (shown: benchmark suite of 6 circuit problems)

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

C
o
n
s
ta

n
t

(R
e
f.

)

L
in

e
a
r

S
te

p
w

is
e
 P

o
s
y
n
o
m

ia
l

P
ro

je
c
ti
o
n
-b

a
s
e
d
 q

u
a
d
ra

ti
c

F
u
ll

q
u
a
d
ra

ti
c

M
A

R
S

 (
S

te
p
w

is
e
 P

W
P

)

C
A

F
F

E
IN

E

F
F

N
N

B
o
o
s
te

d
 F

F
N

N

S
V

M

K
ri
g
in

g

A
v
g

.
p

re
d

ic
ti

o
n

 e
rr

o
r

fu

offsetn

srp

srn

lfgain

pm

Compare FFX vs. GP-SR
Average test time & build errors over 6 problems

FFX

Outline

• Introduction

• Background

• FFX: Fast Function Extraction

• Results

• Scaling Higher?

• Discussion

FFX So Far

• Problems: 13 input variables, 256 samples

• Results: <5 s, best error

• Pretty good!

• What about 100-1000 input variables…?

12 Larger Problems
Up to 1468 input variables

Other Approaches
on 30T Opamp Problems

(215 input vars.) [McConaghy GPTP 2009]

• A “direct” GP-SR approach did terrible
• Resorted to a latent-variable SR approach for good results

Scaling Up FFX

• What about 100-1000 input variables…?

• Summary of results:

– Out of memory

– Time for some theory…

Computational Complexity of FFX?

Computational Complexity of FFX?

FFX

Computational Complexity of FFX?

The complexity of FFX is the maximum of steps one,
two, and three, which is O(N * n4).

FFX

samples # input variables

Improving FFX

A batch-style riff on MARS.

Revised FFX Algorithm:
1.Learn univariate coefficients
2.Only combine the k ≤ O(√n) most important basis

functions
3.Pathwise-learn univariate & combination
4.Nondominated filter

Complexity down to O(N*n2) !

Improving FFX
A batch-style riff on MARS.

Revised FFX Algorithm:
1. Learn univariate coefficients
2. Only combine the k ≤ O(√n) most important basis functions
3. Pathwise-learn univariate & combination
4. Nondominated filter

Complexity down to O(N*n2) !

Two more tricks:
• Add MARS-style “hinge” bases: max(0, xi-thr), max(0, thr-xi)

• Buys us ≈universal approximation ☺
• Repeat steps 1-3 six times: maybe interactions, maybe

rational, maybe hinge functions, maybe log/abs.

Improving Complexity to O(N*n2):
A batch-style riff on MARS.

Revised algorithm:
1. First learn univariate coefficients
2. Only combine the k ≤ O(√n) most important basis functions
3. Pathwise-learn univariate & combination
4. Nondominated filter

Complexity down to O(N*n2) !

Two more tricks:
• Add MARS-style “hinge” bases: max(0, xi-thr), max(0, thr-xi)
• Repeat steps1-3 six times: maybe interactions, maybe

rational, maybe hinge functions, maybe log/abs.

Overall runtime 5-30 s

Test Error vs. Complexity
Large Problems 1-3 (of 12). <30 s!

Opamp AV Opamp BW Opamp PM

bases

T
e
s
t

e
rr

o
r

bases # bases

Test Error vs. Complexity
Large Problems 4-6 (of 12). <30 s!

Opamp SR Bitcell cell_i Sense amp delay

bases

T
e
s
t

e
rr

o
r

bases # bases

Test Error vs. Complexity
Large Problems 7-9 (of 12). <30 s!

Sense amp PWR Voltage reference
DVREF

Voltage reference
power

bases

T
e
s
t

e
rr

o
r

bases # bases

Test Error vs. Complexity
Large Problems 10-12 (of 12). <30 s!

GMC filter IL GMC filter
ATTEN

Comparator BW

bases

T
e
s
t

e
rr

o
r

bases # bases

Opamp PM Equations. <30 s!

Voltage Reference DVREF. <30 s!

Outline

• Introduction

• Background

• FFX: Fast Function Extraction

• Results

• Scaling Higher?

• Discussion

FFX Summary of Results

FFX

• ≈ as fast as LS-linear:
<5 s on smaller, <30 s on larger

• As accurate as GP-SR

• Gives error-complexity
tradeoffs

• Scalable

• Simple

• Deterministic!

• O(N * n2) complexity. (Theory!)

This is Fast Function Extraction

Related Work

• Recasting SR from tree towards vector-valued
optimization
– O’Neill and Brabazon 2006

– McConaghy and Gielen 2006

– Cerny et al 2008

– Veerhuis 2009

– Fonlupt and Robillard 2011

• Doing tree-based search with non-EA:
– O’Reilly PhD (SA, hillclimb)

• EDAs
– Derandomize EA search

– Dispense with mutation, crossover

– On bitstrings, vectors, trees. Goldberg, Pelikan, Sastry, Looks,
Iba, many more; “Modern era” 1999-present.

Related Work

• Vector-based optimization on just SR
coefficients

– Topchy and Punch 2001

– And many since

• Recasting general tree-valued search into
simpler spaces

– Rothlauf 2006

– And many more

Related Work

• Linear learning as part of individual’s fitness
evaluation

– LS: McConaghy and Leung 1998. Many more!

– Ridge regression: Nikolaev and Iba 2001

– PRESS statistic: McConaghy and Gielen 2005

– GDR: McConaghy and Gielen 2009

• Regularized learning to bias building blocks

– McConaghy and Gielen 2009

Related Work

• “Popping in” of complexity incrementally

– Stepwise-forward regression. Linear;
nonlinear (eg MARS)

– Boosting

– FFNN practice: learn on 1 node. If hit target,
stop. Else add 1 node and repeat.

– NEAT: ≈ like above but automated + tricks

– More EA references…

But, not that related

• FFX has no selection, mutation, crossover

• No “individuals! No population.

• Embarrassingly simple compared to GP

– Simple enough to develop theory here

• Just one (or two) convex optimizations

– SR as one big hill!

– Therefore globally optimal result

• Threw out randomization completely

– Deterministic!

Benefits of Deterministic
[Possibly Heretical Comments]

• Same result every time
– Just like typing “X/y”
– Just like calling sort()
– Just like using your telephone
– Just like typing your keyboard

• Imagine if any of these was stochastic?

• Ease of adoptability
• No “wondering if the next run will get it”

• At the very least: consider that stochastic is not
necessarily a virtue!

An FFX-colored view of GP
[Trent’s Heretical Comments]

• Doing SR does not have to mean doing GP

• Reconsider other problems traditionally done with “GP”.

– GP may have been the first way. The “most convenient”.

But it’s not necessarily the only way!

Possibility of dramatically different approaches.

– The approach may even be deterministic! Convex!

– Possible benefits: speed, scalability, simplicity, adoptability, $?

• Where might GP researchers go from here?

– Bias to problems that GP is best suited for? Evolvability, …

– Re-attack GP problems with non-GP approaches

• Even by trying, you could learn a lot about your domain!

– Mix the approaches – plenty of fertile ground between GP and
{ML, Convex Opt, MC methods, CLP, SAT, …}

– Use FFX as an off-the-shelf “baseline” in your GP research ☺

(I’m putting the code online at trent.st)

FFX ≠ Fork Fan Experience

FFX is SR Technology:
Fast, Scalable, Deterministic

Met my gauntlet:

“How can SR be scoped so that it becomes another
standard, off-the-shelf method in the “toolboxes” of
scientists and engineers around the world? Can SR
follow in the same vein of linear programming?

“Scalability is always relative. SR has attacked fairly
large problems, but how can SR be improved to solve
problems that are 10x, 100x, 1,000,000x harder?”

