FFX: Fast, Scalable,
Deterministic Symbolic
Regression Technology

Trent McConaghy
Solido Design Automation Inc.
Canada

IIIIIIIIIIIIIIII

Outline

Introduction

Background

FFX: Fast Function Extraction
Results

Scaling Higher?

Discussion

Technology

Technology
The Exciting New F* ("Fork Fan”)

Designed by World Renown Fntrepeneur: Rod Ryan

Cools down all those “too hot” to eat
foods betfore they get to your mouth!

Never burn your tounge again!

Go ahead, be in a hurry.
Never wait for your

food to cool down
ever again.

Featuring:
* High Tech Ergonomic Design
* Two Speed “Whisper Quiet” Fan
* Right and Left Handed Compatible
* Stainless Steel Anti-Corrosion Materials
* Dishwasher Safe!

“This is the BEST new kilchen innovation | have ever seen! ldeal for prison food!” Martha Stewart

Yigizee e BE TS 0 0.V W
o amesie Mbearthiink. o

>
o
O
O
C
L
O
&
_I

Technology

Technology

Technology — Alternate Definition

“We can say that solving least-squares problems
... Is a (mature) technology, that can be reliably
used by many people who do not know, and do
not need to know, the details.”

« Boyd and Vandenberghe, Convex Optimization, 2004

Technology — Alternate Definition

| would say that least squares is a mature
technology. ...This is the highest praise. ...What
It means is that other people know enough about
the theory, the algorithms, and the

Implementations are so good and so reliable that
the rest of us can just type “A / B”.

— Transcript of Steve Boyd Stanford lecture on convex optimization.
http://see.stanford.edu/materials/Isocoee364a/transcripts/ConvexOptimizationl-LectureO1.pdf

Technology — Alternate Definition

Here's the really cool part about linear
programming .. [these problems] are solved.
Unless your problem is huge or you have some
super real time thing like in communications,
then [once you formulate the problem and run
LP] there’s a sense in which you’re kind of done.

— Transcript of Steve Boyd Stanford lecture on convex optimization.
http://see.stanford.edu/materials/Isocoee364a/transcripts/ConvexOptimizationl-
LectureO1.pdf

SVM Envy?

« SVMs were introduced in the late 90s

— And have become a standard tool in the
practitioners’ toolbox

» Convex optimization was popularized in the late
90s

— And is becoming a standard tool in practitioners’
toolbox

« GP was popularized in the early 90s

— And is not a standard tool in the practitioners’
toolbox

GP and Technology

Last year, a gauntlet was thrown:

“How can GP be scoped so that it becomes another
standard, off-the-shelf method in the “toolboxes” of
scientists and engineers around the world? Can GP
follow in the same vein of linear programming?

“Scalability is always relative. GP has attacked fairly
large problems, but how can GP be improved to solve
problems that are 10x, 100x, 1,000,000x harder?”

— McConaghy, Riolo, and Vladislavleva, “Genetic programming
theory and practice: an introduction”, GPTP VIII, Springer, 2010

On Symbolic Regression (SR)

GP is a popular approach to do SR

Many successful GP-based applications
* Finance, medicine, industrial processing, ...

SR is a popular app among GP researchers

So, a meaningful advance in SR can influence
overall GP theory and practice

-GP SR and Technology

For this GPTP, my gauntlet to myself:

“How can-&P SR be scoped so that it becomes another
standard, off-the-shelf method in the “toolboxes” of
scientists and engineers around the world? Can GB SR
follow in the same vein of linear programming?

“Scalability is always relative.- &P SR has attacked fairly
large problems, but how can GR. SR be improved to
solve problems that are 10x, 100x, 1,000,000x harder?”

| Summary:
Aiming for SR* as a Technology

- &

o ’

I | ’
N

= D 4=

* SR # Shopping Robot

SR Problem Definition

Given (X,y)

Find a whitebox model (or models)
That minimizes error

And minimizes complexity

Error (%)

Complexity

SR Problem Definition

Given (X,y)

Find a whitebox model (or models)
That minimizes error

And minimizes complexity

Desirable Features:
» Scalable (# variables, # samples)
 Fast

« Reliable, consistent results
— Derandomized — deterministic? (CMAES — X/y)

 |deal: simple algorithm

— Arch. Altering Ops — Push — ...
— FFNNs — SVMs

 Ideal: hits global optimum (on problem formulation)

Summary of Goal
Speed of LS, Accuracy of GP-SR

0.18
0.16® @ linear (LS)

O ¢ quad (LS)
0.14

0.1 4 GP-SR
0.10
0.08

0.06

0'@>>Target)

100 200 300 400 500 600 700
Build time (s)

Average test error

Outline

Introduction

Background

FFX: Fast Function Extraction
Results

Scaling Higher?

Discussion

Background

1D Linear Least-Squares Regression

1D Linear LS Regression

Many possible linear models!

1D Linear LS Regression

Find linear model that
minimizes) (yhat-y,)?
for all /in training data

1D Linear LS Regression

Find linear model that
minimizes (yhat-y,)?

That is:
[wo, 4" = argmin 3 (yhat;-y;)?
where yhat(x,) = wy + W, ™ X,

1D Linear LS Regression

y=1.1+23" X,

l.e. wy=1.1, w,=2.3

Found with “least-squares learning”
(amounts to =matrix inversion)

1D Quadratic LS Regression

[Wo, Wy, Wy4]* = argmin 3 (yhat-y;)?

We are applying linear (LS) learning on
linear & nonlinear basis functions. OK!

1D Nonlinear LS Regression

[Wo, Wy, Wgio]* = argmin 3 (yhat-y;)2
where yhat(x;) = Wy + W; * X4 + Wy, * Sin(Xy)

We are applying linear (LS) learning on linear
& nonlinear basis functions. OK!

2D Linear LS Regression

[Wo, Wy, Wo]* = argmin 3 (yhat-y;)
where yhat(x) = wy + Wy ™ Xy + W, ™ X,

iIc LS Regression

2D Quadrat

[W05 W‘] ’ W25

)2

W,o]" = argmin) (yhat;-y,

Wy, Wop,

* *

2

Generalized Linear Model (GLM

Generalized linear model (GLM) of B basis functions.
yhat(x) = Wy + Wy " f(X) + W, " f(X) + ... + wg ¥ fz(X)

Just treat each basis function as an input variable, and LS-learn!
Examples:

* yhat(x,) = Wy + W, * Xy + Wy, * X2

* yhat(x,) = Wy + W, * Xy + W, * Sin(X,)

* yhat(X) = W + Wy ™ Xq + Wqq ™ Xqp + Wop ™ Xpp + Wy ™ Xq ™ X

 polynomials, SVMs, FFNNs, many GP SR. Universal approximator!

Constraint on LS Regression?
(1D Example)

> K 1 Sample —too few

X4

8 / 2 Samples — enough

X4

General rule?

Constraint on LS Regression

General Rule:
* If n variables, need N 2 N+1 training samples

Examples:
1D Lin: [w,, w,]* = argmin (yhat-y,)?
Needs = 1+1 = 2 training samples.

2D Quad [wy, Wy, W,, W,4, Wos, Wy,]* = argmin) (yhat-y,)?
Needs = 6+1 = 7 training samples.

LS Regression On High Dimensionality

Consider 10,000 basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes! (As long as 210,001 samples)”

Consider 1M basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes! (As long as 21M+1 samples)”

*and Nno memory issues etc

90" turn...

Google

images

genetic programming ‘ Search Images | Advanced Image Search

Mew! Finding the right image just got easier with sorting. Learn more.

Advertising Programs ~ Business Solutions About Google

@ 2011

¥’) genetic programming - Google Search - Mozilla Firefox
Fle Edit View History Bookmarks Tools Help
*§ genetic programming - Google Seai + |

\(_-/!:- *3 hitp://www.google.ca/search?tbm=isch&hi=en&source=hp&biw=1920&bih=1027&q=genetic+programming&gbv=2&aq=f&agi=g18&agl=&0q= -l [y PS8~
Web Images Videos Maps MNews Translate Gmail more v gtrent@gmail.com | Settings ¥ | Sign out
' 0 ngle genetic programming Seh SafeSearch mederate ¥
About 467,000 results (0.16 seconds) Go to Google.com Advanced search

Pt o vt gt

3 | Everything
Images
W videos
7 News

W Books

. Blogs

~| More

(23-(%))+(7vcu5|\“|)

Mutation

Sort by relevance
Sort by subject

Any size
Large
Medium

lcon

Larger than... .
Exactly. . T | W avse

Any color
Full color
Black and white ssung| = |lusFug

50] 0 (T
EOOE .

Any type
Face

Photo

Clip art

Line drawing

Standard view
Show sizes

Click here to ses
video
demenstration

Progrim Fancoam Nodk Pragran Tommiss e

153

Trivia Q: State of the art in image search? (NIPS '09)
A: BHALR!*

Q: State of the art in image search? (NIPS ’09)
A: BHALR!

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.
Then apply linear regression or classification

Q: State of the art in image search? (NIPS ’09)
A: BHALR!

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.
Then apply linear regression or classification

But 100 << 1M. HOW DO THEY DO IT??

Linear Regression
Q: What happens when samples N — # variables n ?

Linear Regression
Q: What happens when # samples N — # variables n ?
A: Model gets more sensitive!

Linear Regression
Q: What happens when # samples N — # variables n ?
A: Model gets more sensitive!

Linear Regression
A model that’s “less sensitive”

Linear Regression
A model that’s “less sensitive”

Smaller |dy/dx| means less sensitive

Y

Linear Regression

A model that’s “less sensitive’
Smaller |dy/dx| means less sensitive

l.e. given yhat(x,) = wy + Wy ™ X,
A smaller |w,| means less sensitive
or smaller > w, for n > 1 (ignore wy)

Linear Regression

Least-sensitive model has slope of 0
(By definition)
(And also when viewed pragmatically as a model)

Linear Regression
A model that’s “less sensitive”

“less sensitive” = lower future prediction error
(in light of less training data)

x .

Linear Regression

« Aim: minimize future prediction error

» Pragmatic Issue: we only have access to training data!

« Trick: minimize sensitivity = minimize future prediction error

» But do consider training data to bias the model (otherwise we
end up with a constant — useless!)

* S0: minimize a combination of training error vs. sensitivity
(bias vs. variance tradeoff) (explanation-of-data vs. overfitting)

Linear Regression

» Minimize a combination of training error and model sensitivity
* Formulation:

w* = argmin () (yhat(w) - y;)2 + A* X |w])

_— Y

[

training error model sensitivity

Linear Regression

« Minimize a combination of training error and sensitivity
« Formulation:
w* = argmin (X (yhat(w) - y)? + A~ X |wj)
[Lasso]
OR

w* = argmin (3 (yhat(w) - y)® + A" 2 w?)
[Ridge Regression]

... [Elastic Net, Gradient Directed Regularization, ...]

This is regularized linear learning

Regularized Linear Regression

« Cool property #1: solving a regularized learning
problem is just as fast (or faster) than solving a least-
squares learning problem!

« Why: convex optimization problem — one big hill

Regularized Linear Regression

« Remember BHALR image search problem?
* n= 1M variables, N=1000 samples

) genetic programi Google Search - Mozilla Firefox

Fle Edt Vew History Bookmarks TIools Help
|8 genetic programming - Google Sea...| + |

t)‘ *3 http://wvw.google.ca/search?tbm=ischahl=engsource=hp&biw=19208bih= 10278q=genetic+ programming&gbv=2&aq=fRagi=g1&agl=&og= MR B s
Web Images Videos Maps Mews Translate Gmail more ¥

gtrent@gmail.com | Settings v
GO L !Sle genetic programming

Search | SafeSearch moderate ¥

Sign out A

About 457,000 resuls (0.16 seconds) Go to Google.con

B | Everything 5 : > #
B videos

 News

W Books { !

W Biogs =Tt =

Syrvial of the Fitest gin

¥ More

Sort by relevance
Sort by subjsct

® o
Any size
Large

Medium

Regularized Linear Regression

« Remember BHALR image search problem?
* n= 1M variables, N=1000 samples

» Cool property #2: can have more coefficients than
samples! That is, can handle n>> N!
« Because the regularization term minimizes the
sensitivity, i.e. the “degree of screwup”
w* = argmin (3(yhat(w) - y)2+ A * 3|w)

Regularized Linear Regression

When solving w* = argmin (Y (yhat(w) - y.)2+ A * > |wi|),
What is a good value for A?
0

«Case: A=0 } (yhat(w) -y)? m’

...reduces to least-squares

Regularized Linear Regression

When solving w* = argmin (Y (yhat(w) - y.)2+ A * > |wi|),
What is a good value for A?
0

«Case: A=0 } (yhat(w) -y)? m’

...reduces to least-squares
0

« Case: A=x (Ynat(w) - y.)5 + A ™) |wj|

...gives a constant (w,=const; w,=w,=... = 0)

Regularized Linear Regression

When solving w* = argmin (Y (yhat(w) - y.)2+ A * > |wi|),
What is a good value for A?
0

«Case: A=0 } (yhat(w) -y)? m’

...reduces to least-squares
0

« Case: A=x (Ynat(w) - y.)5 + A ™) |wj|

...gives a constant (w,=const; w,=w,=... = 0)
« Case: A in-between

...Is a balance between constant & LS.

Regularized Linear Regression

When solving w* = argmin (Y (yhat(w) - y.)2+ A * > |wi|),
Wheatis-a-goed-ratuefori?—

Learn w* at many values of

Train error
—_—
=00 A=0
(reduces to constant) (reduces to LS)

Regularized Linear Regression

When solving w* = argmin (Y (yhat(w) - y.)2+ A * > |wi|),
Wheatis-a-goed-ratuefori?—

Learn w* at many values of A, and keep “best”
(“Best” = best error on a left-out test set.)

Test error

Train error
—

=00 A=0
(reduces to constant) (reduces to LS)

Regularized Linear Regression

Algorithm

A= huge (e.g. 1e40)

w=0

while A > 1e-10
A=A/10 Solves
W = SOIVEAL(Xirains Yirains A Wing=W) <~ W =argmin (Z(yhat(w) - y)? + A * 3 w)
Compute error on test set

Return w with best test error

/Test error

Lrain error
A=0
(reduces to constant) (reduces to LS)

\

[

Coefficient
=]
]

Regularized Linear Regression:
How Coefficients Change With A

w, “pops in”
(All other w;=0)

Regularized Linear Regression:
How Coefficients Change With A

== 00

(reduces

0.2

0.0

Coefficient

W “pops in”

Regularized Linear Regression:
How Coefficients Change With A

\

| Q

B¢

== 00

(reduces to consta

0.2

Coefficient
=]
]

Regularized Linear Regression:
How Coefficients Change With A

== 00

(reduces to constant)

Coefficient
=]
]

Regularized Linear Regression:
How Coefficients Change With A

Te

| [I I
= I A=(
(reduces to constant) (reduces

Coefficient
=]
]

w, “pops in”

Regularized Linear Regression:
How Coefficients Change With A

Test error
\ > | > | > | />

B?st :
. _ ——— Trainerror
A=c0 I A=0
(reduces to constant) (reduces to LS)
0.2 /
W “pops in”

Coefficient
=]
]

This is pathwise reqularized linear learning

Regularized Linear Regression

« Cool property #3: solving a full regularized path is = as
fast as solving single regularized problem
(or a least-squares learning problem)

Why fast:

Hot starts on

] local optimize
Algorithm

A= huge (e.g. 1e40)
w=0
while A > 1e-10

A=A/10
W = SOIVeAt(Xtraim Yirain:)\’
Compute error on test set

Return w with best test error

Regularized Linear Regression:
The Error-Complexity Tradeoff

Test error
B?st]
rain error
A= A=0
0 coefs 1 coef 2 coefs 3 coefs /4 coefs

Coefficient
o
]

Regularized Linear Regression

« Cool property #4: solving a full regularized path gives
us error-complexity tradeoffs!

e train error versus # coefs (bases)

* test error versus # coefs (bases)

Error (%)

Complexity

Recap on Linear Regression

e Generalized linear models: nonlinear basis functions
with linearly-learned coefficients!

Path-based Regularized Linear Regression:
« Can have more coefficients than samples! That is, can
handle n>> N!

« BHALR: 1M basis functions for 1K samples
« Solving path is = as fast as solving a least-squares
learning problem! (Convex problem!)
 Solving path gives error vs. complexity tradeoffs!

One final trick:
» Can cast a rational-learning problem f(x)/(1+g(x)) as a
linear-learning problem. See paper for details.

Outline

Introduction

Background

FFEX: Fast Function Extraction
Results

Scaling Higher?

Discussion

FFX Step 1/3: GenerateBases()

Inputs: X #input training data
Outputs: B #list of bases

Generate univariate bases

. B1={}

2. for each input variable v = {1, 79, ... }

3. for each exponent exp = {0.5, 1.0, 2.0 }

4, let expression ht.w = prF

5. if ok(eval(besp. X))

6. add h,.d,p to B4

7. for each operator op = {abs(), logyg. ... } 1 =

8. let expression b, = op(besp) Replace Ilnear bases
0. if ok(eval(bop. X)) n

1. add by 0 B with a crazy amount of

Generate interacting-variable bases n O n I I nea r O neS ”
11. B2 ={}

12. fori =1 to length(B1)

13. let expression b; = B [2]

14. forj=1toi—1

15. let expression b; = B1[j]

16. if b; is not an operator # disallow op() * op()
17. let expression bj,¢er = b; % b;

18. if ok(eval(by,per. X))

19. add b; e, to Ba

20, return B = By U By

FFX Step 2/3: PathFollow()

[using BHALF

pi NV

]

Inputs: X.y. B #input data, output data, bases
Outputs: A #list of coefficent-vectors

Compute X g

1. fori=1 tolength(B)

2. Xplt] =eval(B[z]. X)

Generate A ye. = range of A values
mar — ”“.r";!}l::|XTy|::I,-".Il{ff * .'”\I

3. A
4. Avee = logspace(logio(Amaz * €ps), l0g10(Amaz), N2)

Main path-following
5. A={)

6. Npgses =0

7. 1=0

8. a=1{0,0,...}

9. while Npgses < Nimar—bases and i < length(Ayee)
10. A = Apee|?]

11. a = elasticNetLinearFit(X 5. y. A, p. a)

“Generate set of
models, at increasing
complexity”

12. Niases = number of nonzero values in a (not counting offset)

13. if Npases < Nmaz—bases
14, add a to A

15. i=1+1

16. return A

FFX Step 3/3:
NondominatedFilter()

Error

| Comblexity |

Outline

Introduction

Background

FFX: Fast Function Extraction
Results

Scaling Higher?

Discussion

FFX Experiments

High Speed CMOS OTA

13 design variables

— Vds, Vgs, Ids
(operating-point driven
formulation)

orthogonal hypercube
sampling

243 training samples
243 testing samples

P e e e
E| e B e
EE: o s fomn]—on

el €D

n:ﬂl a3 %”:n

FFX Setup

Up to NV, ar—bases=2 bases are allowed. Operators allowed
are: abs(x), logig(x), min(0,x), max(0,x); and exponents on variables are
2112 (= V (7)), 2! (=7), and 2%. By default, denominators are allowed; but if
turned off, then negative exponents are also allowed: r—1/2 (=1/ \ﬂ x)), 1
(=1/z), and x 2 =1/ 22). The elastic net settings followed good defaults: p =
0.5, eps = le-40, and J'T\'rﬁa-mbda = 1000.

Because the algorithm 1s not GP, there are no settings for population size,
number of generations, mutation/crossover rate, selection, etc. We emphasize
that the settings in the previous paragraph are very simple, with no tuning
needed by users.

FFX Step 1: The 176 Candidate
1-Variable Bases

a_ggﬁﬁ_ abs(i.-g'fl), maxz(0, vg ‘5;1) min(0, v g } 50910(12951), sgl bsli?..'sgj_}, max{D,i.-Sgljs min(0, Vsgl
Eagln(qul) Uggi’ mawxz(0, qgl) min (0, Egl) Ioglg(zlg), g“{) aba{z.'g's%j, ??1(1.1:([}.1!3%%)_ min(0, LE*—%
Ioglg{tgf"}), vgs2. abs(vgsa). max(0, ":.'gqr)) min(0, 1'959) log1o(vgs2). 1'352, ??1&$(D.1.-§qq}_ min(0, L’gsg
Iogln(e_!gsgj, 1'2552 abs(i.'g's%), max(0, 1' j min (0, j lagio('vd q’,‘; i'.-'dqr) aqu' 9 ?na:e:(ﬂ.”c.'d‘_g
min(0, vggal. logio{vgso). vl dso- max(0, ;‘d 9). min(0, ?‘d) loglg(tdqq]‘l ngS abq{ilsg‘%) ??1&$(U.L!E'g%
??Li’ﬂ(ﬂ.ilng) E{}QID{I'HQBJ ’5g3- abs {nggj max{0, 1‘&93:‘ min(0, 'tqg3j Iagln(a_qggj 2 q. maxz(0, 1!293
nu’ﬂ(ﬂ.”uSQS), Eagiﬂ(ilqggj, 19g4 abs {ng_l) max(0, 'i‘.'_‘g4:l min(0, ﬁtlsg) Eaglo{a_qg_l) qg,_l ab“(a_sg4
max (0, vsgq4). min(0, 1qg_1) logig(t'qg,_l} :?g-l max (0, t'ﬁg_l) min(0, '?gr-ij Eoglg{tqg_l) TQQJ abs (ng%
max(0, v EQ‘) min(0, v qgoj 50910("'-:95 Vgghe ab':('tqg5), ??1-:1.1(0.1qg5) min(0, "-“-g5‘" logiﬂ(l'igaﬁ g
nlax(ﬂ.t-gQE} min(0, v ng} 50910(1'Q95} g abm{il d")’ ??1-:1.1:(0.":'0 ‘J} min(0, ?"-:d'} 30910“—\@;,) ’sdﬁ-

2 9
8

abs(i_-'L ds) mam(ﬂ.uquJ mzn{ﬂ Vads): loglﬂ“"sdﬁl v g5 max(0, gda)’ mir (0, qu) Dng(ﬁusdE'
Ed% abs Uledﬂ} max{0, “:'S GJ min(0, ':dﬂ}' Eoglg(tg'd%) veda. abs(vgggl. max(0, vggg). min(0, t'ng}.
logig(vsda)- qd@ max(0, dG) min(0, v dG) Eeng{quGj iqg1. abs(igq). max(0, %dl;' min(0,igq).

maxz(0, i;l). nnﬂ([}.z’gl), loglg(i;}[l). EEEQF' ab._(igg). max(0, igg). nnﬂ{ﬂ.zdg). Eoglg(idg). i49. Q.b._l:idgjl.
max(0, igg). min(0, idr)) log1p(iga). égg max(0, z'%q} min(0, 7.:.3{)) Eoglo{igg) t'g'i‘ﬁ__abs(i'g'lﬁ‘,l_ ??1(13:(0.3'2'15}_
nli’ﬂ(ﬂ.zgl Eang{ibi). ipt- abs (ibl) max{0, %bij min(0, zbi‘,l Eoglﬂ{zbl) 'max(D,igl), min(0, igl).
Ioglg{z'bl"j, zbgr, abs{zbg). max{0, %bﬁ). min(0, ibg . Eoglg{ibg). ip9. abs{zbg}, max(0, igg). min(0, ipo),
logig(ipa). égg, max(0, égg}, min (0, a'ggj, Eong(a’EQ}_ a'g'gs, abs{égé‘ﬁj, max(0, 1335j min(0, 2535} Iogl[}{ég:&‘ﬁ}_

ipg- abs{z'bg]‘l,ma:e:{ﬂ. ibS]" min (0, ibS}" Eoglu{ibg},igg. max(0, i'%gj._ min(0, z'ggj._ loglg{igg}

FFX Step 1: Some Candidate
2-Variable Bases (3374 total)

log1o(7; .3]*1, ;'m;m{f,bg)*k, z'UJm(z 3]*551 z'r;{;m(LH}*L {5 ;’f)Jlgo{Lba}*L ;’m;m{s, .3]*
152, !r)Jlg(a 3}*5 ;’nqm(z,gg)*z Jlogio(i 3}*553 log1o(izq) * i34

(and 3364 more)

FFX Step 2: PathFollow:
First Four Bases (A g problem)

Coefficient for base * 1e3

e min(0, vds272) * vds2™2 [denom]
B min(0, vsd57™2) * vsd572 [denom]
0.4 « min(0, vsd6”™2) * vsd6™2 [denom]
< loglO(id27~2) * vds2”2 [denom]
0.2} //
0.0 ttntnnnnnnnnnnl\\
-0.2
-0.4}
ded 3ed 2ed Ted

Lambda

FFX Step 3: Nondominated Filter
Error vs. # Bases (A g problem)

25
—a
15
S
— & Training Pareto-
g 10 Optimal Set
LLl -0~ Test Pareto-
Optimal set
5
—
0

0 1 2 3 4 5
Number of Bases

FFX Step 3: Final Pareto-Optimal Set

Total Runtime <5 s (1 GHz CPU)

This is Fast Function Extraction

Test error
(etest) (%)

Extracted Function

3.72 37.619
37.379
e 1.0—6.78¢e-5¢min(0,v7 5)*v7
3 45 37.020

1.0—1.22e-4xmin(0,v7 5)*v3_o—4.72e-5xmin(0,v2 .)*v

2

'y
sdb

FFX Functions with Lowest Test
Error on 6 Different Problems.

Problem | Test error | Extracted Function
(€test) (%)
37.020
App 3.45 1.0—1.22e-4smin (0,02,)*v2 _,—4.72e-bxmin (0,02,)xv?
90.148
PM [.51 1 .0—8.796—6*min((),’U?gl)*-'U:fgl +2.28e-6xmin (0,07 ,)*v7_,
3 —5.21e7
S R; ! 2.10 1 .0—8.226—5*-'771?%(0,-'0382) *-’1}382
SR, 474 | 2.357
Voff.set 2.16 —0.0020 — 1.22¢e-23 * min(0, -'1)38_2) * -1;382
Zogm(fu) 2.17 0.74 — 1.10e-5 * min(0,vZ,,) * v3

+1.88e-5 x man(0, -ijQ) * -visg

gl

Reference GP-SR Setup
(CAFFEINE)

up to 15 bases functions, population size 200,
and 5000 generations. All operators had equal probability, except parameter
mutation was 5x more likely (to encourage tuning of a compact function). It
has many speedups including subtree caching (Kezer, 2004) and linear re-
oression to compute linear coefficients. Unary operators allowed are: \/f T),
logro(x), 1/, 2. sin(x), cos(z), tan(x). max(0,x), min(0,z), 27, and
10*, where 1s an expression. Binary operators allowed are 1 + x2, 211 * 29,
max(xry, xa), min(xy, x9), power(xry,rs), and x1/xr9. Conditional opera-
tors imncluded < (test Eapr, condExpr, exprl f LessT hanCond, else Expr)
and < (testExpr, 0, exprl f LessT hanCond, elseExpr). Any input vari-
able could have an exponent in the range {...., -1, 1, 2, ... }. Details are in
(McConaghy and Gielen, 2009).

Each CAFFEINE run took ~ 10 miutes on a 1-GHz CPU.

CAFFEINE models with <10% error

Perf. |Expression
A - -10.3 + 7.08e-5 / id1
+1.87 * In(-1.95e+9 + 1.00e+10 / (vsg1*vsg3)
+ 1.42e+9 *(vds2*vsdb) / (vsg1*vgs2*vsg5*id2))
f, 107(5.68 - 0.03 * vsg1/vds2 - 55.43 * id1+ 5.63e-6 / id1)
PM 90.5 + 190.6 *id1 /vsgl + 22.2 *id2/vds2
Voot |- 2.00€-3
SR, |2.36e+7 +1.95e+4 *id2/id1-104.69/id2 + 2.15e+9 " id2
+ 4.63e+8 * id1
SR - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2

+109.72 / id1

CAFFEINE Prediction Performance

« CAFFEINE models actually predict better than several state-of-the-art blackbox
regression techniques (shown: benchmark suite of 6 circuit problems)

1800°% ———(—(—(— - — - — - — - — - — - — - — - — - — - — @ fu _
@ offsetn
5 16.00% - o
= 14.00% - _ ,
0 ' @ srn
5 12.00% - ~ & faain |-
® 1000% @B N N apm |-
3 800% | \
; 6.00% - 11 .
<>I 4.00% - \ C — 7
2.00% - —55 — _
0.00%

Linear

CAFFEINE [J]

Full quadratic TR

Boosted FFNN

Constant (Ref.)
Stepwise Posynomial :FHEEE

MARS (Stepwise PWP) |

Projection-based quadratic ki

Compare FFX vs. GP-SR

Average test time & build errors over 6 problems

0.18

0.16® B |inear (LS)
O ¢ quad (LS)

0.14 > FFX

0.1 4 GP-SR

0.10

0.08

0.06

Average test error

0.04 <

>
0.02

0.00
0 100 200 300 400 500 600 700

Build time (s)

Outline

Introduction

Background

FFX: Fast Function Extraction
Results

Scaling Higher?

Discussion

FFX So Far

Problems: 13 input variables, 256 samples
Results: <5 s, best error
Pretty good!

What about 100-1000 input variables...?

12 Larger Problems

Up to 1468 input variables

Circuit # Devices | # Process variables Outputs Modeled
opamp 30 215 AV (gain), BW (bandwidth), PM (phase margin), SH (slew rate)
bitcell 6 30 cell; (read current)
sense amp 12 125 delay, pwr (power)
voltage reference 11 105 DV REF (difference 1n voltage), PW R (power)
GMC filter 140 1468 ATTEN (attenuation), IL
comparator 62 639 BW (bandwidth)

The opamp and voltage reference had 800

Monte Carlo sample points, the comparator and GMC filter
2000, and bitcell and sense amp 5000.

Other Approaches
on 30T Opamp Problems

(215 input vars.) [McConaghy GPTP 2009]

Problem GP Boost | Bootstr.
(CAFF- tree tree LVSR- LVSR-
EINE) (SGB) (RF) GDR | GDR-tune
30T AV >10.0 | 0.6418 0.8183 | 0.0765 0.1073
30T BW >10.0 | 0.5686 | 0.7730 | 0.0378 0.0442
30T PM >10.0 | 0.5894 | 0.7656 | 0.0732 0.0693
30T SR >10.0 | 0.5208 0.7436 | 0.1642 0.1403

« A “direct” GP-SR approach did terrible
* Resorted to a latent-variable SR approach for good results

Scaling Up FFX

« What about 100-1000 input variables...?

« Summary of results:
— Out of memory
— Time for some theory...

Computational Complexity of FFX?

e Step one. Let e be the number of exponents and o be the number of
nonlinear operators. Therefore the number of univariate bases per variable
is (0 + 1) xe. (The +1 i1s when no nonlinear operator 1s applied; or,
equivalently, unity). With n as the number of input variables, then the total
number of univariate bases 1s (04 1) x exn. With [N samples, the univariate
part of step one has a complexity of O((o+ 1) xexn x V). Since € and o
are constants, this reduces to O(n x [N). The number of bivariate bases 1s
p = O(n?), so the bivarate part of step one has complexity O(n” % N).

Computational Complexity of FFX?

e Step two. Elastic net path-following 1s the dominant part. The cost of
an older elastic-net learning technique, LARS, was approximately that of
one least-squares (LS) fitting according to p.93 of (Hastie et al., 2008).
Since then, the coordinate descent algorithm (Friedman et al., 2010) has
been shown to be 10x faster. Nonetheless, we will use LS as a baseline.
With p mput variables, LS fitting with QR decomposition has complexity
O(N x p*). Because p = O(n?), FFX has approximate complexity
O(N xn?).

Computational Complexity of FFX?

e Step three. Reference (Deb et al., 2002) shows that nondominated filtering
has complexity O(N, * Ny ondom) Where N, 1s the number of objectives,
and N,,,,.d0m 18 the number of nondominated individuals. In the SR cases,
N, 1s a constant (at 2) and N,,ondom < Npmar—bases Where Nyor—bases 1S @

constant (= 5). Therefore, FFX step three complexity is O(1).

The complexity of FFX is the maximum of steps one,
two, and three, which is O(N * n?).

/

samples # input variables

Improving FFX
A batch-style riff on MARS.

Revised FFX Algorithm:

1.Learn univariate coefficients

2.0nly combine the k < O(¥n) most important basis
functions

3. Pathwise-learn univariate & combination

4. Nondominated filter

Complexity down to O(N*n2) |

Improving FFX

A batch-style riff on MARS.

Revised FFX Algorithm:

1. Learn univariate coefficients

2. Only combine the k < O(¥n) most important basis functions
3. Pathwise-learn univariate & combination

4. Nondominated filter

Complexity down to O(N*n?) !

Two more tricks:

« Add MARS-style “hinge” bases: max(0, x;-thr), max(0, thr-x;)
« Buys us =universal approximation ©

* Repeat steps 1-3 six times: maybe interactions, maybe
rational, maybe hinge functions, maybe log/abs.

Improving Complexity to O(N*n?):

A batch-style riff on MARS.

Revised algorithm:

1. First learn univariate coefficients

2. Only combine the k < O(¥n) most important basis functions
3. Pathwise-learn univariate & combination

4. Nondominated filter

Complexity down to O(N*n?) !

Two more tricks:

« Add MARS-style “hinge” bases: max(0, x.-thr), max(0, thr-x;)

* Repeat steps1-3 six times: maybe interactions, maybe
rational, maybe hinge functions, maybe log/abs.

Overall runtime 5-30 s

Test error

Test Error vs. Complexity

Large Problems 1-3 (of 12). <30 s/

14
12
p

T T b T T T b T
14
14
12
12
10 H E
2 2 101
LiH] @ gH
4= o
wn n
¢ K
61 . 6}
at 1 4 .
2t {1 2 5
a 5 30 35 0 5 25 30 0

bases # bases # bases

Opamp AV Opamp BW Opamp PM

Test Error vs. Complexity
Large Problems 4-6 (of 12). <30 s/

Number of bases . Mumberofbases _ ~ Numheraf bases

Test error

16 \
5
5 § 5.0
E =
E 1t
13 4
4] 35t
k\g
20 20 —40 &0 80 100 120 140 a 10 2:3 30 4|0 BIDO 50 100 150 200 250
bases # bases # bases

Opamp SR Bitcell cell i Sense amp delay

Test error

L A
i 4
@Q 11
Ly F 210} -
6 15}]
20.5 R e
at J
10}]
0

Test Error vs. Complexity
Large Problems 7-9 (of 12). <30 s!

MNumber gf hases Mumber of hdses Number af b fA58S

L L 1 |
2 o 1 2 3 4 5 & 7 B

bases # bases # bases

Sense amp PWR Voltage reference Voltage reference
DVREF power

Test Error vs. Complexity
Large Problems 10-12 (of 12). <30 s!

Number of bases

Test error

bases # bases # bases

GMC filter IL GMC filter Comparator BW
ATTEN

Opamp PM Equations. <30 s!

Bases Test error Extracted Function
(€test) (%0)
0 155 59.6
1 6.8 59.6 — 0.303 * dxl
2 6.6 59.6 — 0.308 % dxl — 0.00460 * cgop
3 5.4 59.6 — 0.332 % dxl — 0.0268 * cgop + 0.0215 * dvthn
4 4.2 59.6 — 0.353 « dxl — 0.0457 % egop + 0.0403 * dvthn — 0.0211 * dvthp
5 4.1 59.6 — 0.354 * dxl — 0.0460 % cgop — 0.0217 % dvthp + 0.0198 x dvthn + 0.0134 * abs(dvthn) * dvthn
6 4.07 59.6—0.354+dxl—0.0466+cgop—0.0224xdvihp+0.0202xdvthn+0.0135xabs(dvthn) *dvthn+0.000550« DX L
46 1.0 (58.9 — 0.136 * dzl + 0.0299 * dvthn — 0.0194 * max(0,0.784 — dvthn) +...)/(1.0+...)

Voltage Reference DVREF. <30 s!

Bases Test error Extracted Function
(€test) (%)

0 2.6 512.7

1 2.1 504/(1.0 + 0.121 * max (0, dvthn + 0.875))

2 1.8 503 — 199 % max(0, dvthn + 1.61) — 52.1 * maz(0, dvthn + 0.875)

3 1.6 496/(1.0 — 0.0447 * max(0, —1.64 — dvthp) * maz(0, dvthn + 0.875) — 0.0282 * maz(0, —1.90 — dzrw) *
maz(0,dvthn + 0.875) — 0.0175 * max(0, —1.64 — dvthp) * max(0, dvthn + 0.142))

8 0.9 476/(1.040.105*maz (0, dvthn+1.61) —0.0397 x max (0, —1.64 — dvthp) *max(0, dvthn+0.875) — 0.0371 x
maz(0, —1.90 — dzw) * maz (0, dvthn+ 0.875) — 0.0151 x max(0, —1.64 — dvthp) * maxz(0, dvthn +0.142) . ..)

Outline

Introduction

Background

FFX: Fast Function Extraction
Results

Scaling Higher?

Discussion

FFX Summary of Results

=~ as fast as LS-linear: .
0.16® inear (LS)
<5 s on smaller, <30 s on larger O @ quad (LS)
0.14 > FFX
As accurate as GP-SR 5 012 SICESR
Gives error-complexity g™
@ 0.08
tradeoffs S oo
<
Scalable 0.04 <
Simple o
0.00
. . . 0 100 200 300 400 500 600 700
Deterministic! Build time (s)

O(N * n2) complexity. (Theory!)

This is Fast Function Extraction

Related Work

Recasting SR from tree towards vector-valued
optimization

— O’Neill and Brabazon 2006

— McConaghy and Gielen 2006

— Cerny et al 2008

— Veerhuis 2009

— Fonlupt and Robillard 2011

Doing tree-based search with non-EA:
— O’Reilly PhD (SA, hillclimb)

EDAs

— Derandomize EA search

— Dispense with mutation, crossover

— On bitstrings, vectors, trees. Goldberg, Pelikan, Sastry, Looks,
lba, many more; “Modern era” 1999-present.

Related Work

 Vector-based optimization on just SR
coefficients

— Topchy and Punch 2001
— And many since
* Recasting general tree-valued search into
simpler spaces
— Rothlauf 2006
— And many more

Related Work

 Linear learning as part of individual’s fitness
evaluation
— LS: McConaghy and Leung 1998. Many more!
— Ridge regression: Nikolaev and lIba 2001
— PRESS statistic: McConaghy and Gielen 2005
— GDR: McConaghy and Gielen 2009

* Regularized learning to bias building blocks
— McConaghy and Gielen 2009

Related Work

- “Popping in” of complexity incrementally

— Stepwise-forward regression. Lineatr;
nonlinear (eg MARS)

— Boosting

— FFNN practice: learn on 1 node. If hit target,
stop. Else add 1 node and repeat.

— NEAT: = like above but automated + tricks
— More EA references...

But, not that related

FFX has no selection, mutation, crossover
No “individuals! No population.
Embarrassingly simple compared to GP

— Simple enough to develop theory here

Just one (or two) convex optimizations
— SR as one big hill!
— Therefore globally optimal result

Threw out randomization completely
— Deterministic!

Benefits of Deterministic

[Possibly Heretical Comments]

Same result every time

— Just like typing “X/y”

— Just like calling sort()

— Just like using your telephone
— Just like typing your keyboard

Imagine if any of these was stochastic?

Ease of adoptability
No “wondering if the next run will get it”

At the very least: consider that stochastic is not
necessarily a virtue!

An FFX-colored view of GP

[Trent’s Heretical Comments]
* Doing SR does not have to mean doing GP

« Reconsider other problems traditionally done with “GP”.
— GP may have been the first way. The “most convenient”.
But it's not necessarily the only way!
Possibility of dramatically different approaches.
— The approach may even be deterministic! Convex!
— Possible benefits: speed, scalability, simplicity, adoptability, $?

« Where might GP researchers go from here?

— Bias to problems that GP is best suited for? Evolvability, ...
— Re-attack GP problems with non-GP approaches
» Even by trying, you could learn a lot about your domain!

— Mix the approaches — plenty of fertile ground between GP and
{ML, Convex Opt, MC methods, CLP, SAT, ...}

— Use FFX as an off-the-shelf “baseline” in your GP research ©
(I'm putting the code online at trent.st)

FFX # Fork Fan Experience
The Exciting New F’ ("Fork Fan”)

Designed by World Renown Entrepeneur: Rod Ryan

Cools down all those “too hot” to eat
foods before they get to your mouth!

Never burn your tounge again!

Go ahead, be in a hurry.
Never wait for your

food to cool down
ever again.

Featuring:
* High Tech Ergonomic Design
* Two Speed “Whisper Quiet” Fan
* Right and Left Handed Compatible
* Stainless Steel Anti-Corrosion Materials
* Dishwasher Safe!

“This is the BEST new kitchen innowation / have ever seen' ldeal for prison food!” Martha Stewart

Y (e B8 G TE OOV W

FFX is SR Technology:
Fast, Scalable, Deterministic

Met my gauntlet:

“How can SR be scoped so that it becomes another
standard, off-the-shelf method in the “toolboxes” of
scientists and engineers around the world? Can SR
follow in the same vein of linear programming?

“Scalability is always relative. SR has attacked fairly
large problems, but how can SR be improved to solve
problems that are 10x, 100x, 1,000,000x harder?”

