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Motivation 1/3

Can we find an equation to describe this?

(= Symbolic Density Modeling)



Motivation 1/3

Can we find an equation to describe this?

Snag #1: there is no y-data 
…it’s just samples in x-space 
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1/1M1/1B

Snag #2: by definition, statistical tails are improbable
• can we generate 1B samples? 
• can we model-fit 1B samples?
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(Why) Does Anyone Care 

About Statistical Tails?
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8GB memory 

32GB memory 

32GB memory (SD card)
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1-bit memory element (bitcell)
x 32 billion !! (for 32GB)

fab
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One transistor, 
in silicon

Random dopants cause 

performance variability, 

which affects yield
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How to get fired!

10% yield
(10% of chips meet power and timing specifications) 
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How to keep your job!

95% yield

(95% of chips meet specs) 
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How to keep your job!

95% yield
(95% of chips meet specs)

Therefore each bitcell must have yield of 

99.999999% or higher (>6 sigma)

…How??

Ideal: not only measure yield, but
analyze tradeoff between yield & spec
i.e. symbolic density models
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Samples of Tails



• We have statistical models for the transistors
• We can simulate a bitcell circuit (using SPICE)
• Can combine these for “Monte Carlo” (MC) sampling

MC Sampling
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MC Sampling

• If 1/1M samples fails, then with a moderate number of 
samples we typically will see 0 failures
• E.g. 50/50 samples means 100% of simulations passed
• But we know yield is not 100%! (Argh!)

r1
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Simulate50 MC 

samples:

Note how most samples are ≤3 σ’s
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MC Sampling

• MC sampling would need on average 1M samples just to 
get 1 failure
• And for a decent yield estimate, want ≥10 failures
• Therefore would need ≥10M samples

• Argh!!

Simulate10M MC 

samples:

• Is there a practical alternative?



Importance Sampling
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sample so that >> 1/1M infeasible!

• We don’t need to draw samples directly from the (true) 
distribution of process variations
• We just need to be aware of the distribution 

• Instead, we can sample “wherever we want”
• E.g. sample points with extremely low probability



1. Find highest-probability regions of process space that cause infeas.
• E.g. with evolutionary programming and SPICE-in-loop

2. Do a statistical sampling, but with sample pdf biased to those regions
• Remember each sample’s weight (= truepdf(r) / samplepdf(r))

3. Compute statistical estimates (e.g. extract pdf somehow…)
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10K Importance samples vs 1M MC samples (bitcell)
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Density Models



Disambiguation:
Dense Models vs. Density Models

Dense model

vout

d
e
n
s
it
y

Density model



• Aims to maximize the likelihood of the input sample points  
• Each point is treated equally (i.e. weights are the same, implicitly)

But…
• Not typically easy-to-analyze closed-form expressions
• How to handle importance-sampled data?

Density Estimation
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Aims:
• Explicitly outputs easy-to-analyze closed-form expressions
• Handles importance-sampled data (i.e. weighted samples)

Key approach: 
• Cast into a symbolic regression problem
• Apply genetic programming 

Symbolic Density Estimation
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• Three different views of the same distribution

Refresher: PDF, CDF, NQ
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Model in PDF vs CDF vs NQ?
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Constraint: integrate to exactly 1.0.

Constraint: model always ≥ 0.0

Constraint: monotonically increasing

Weakly-nonlinear model

Strongly non-linear model

Constraint: model always ≥ 0.0

Constraint: monotonically increasing

Nearly-linear model

Constraint: model starts at 0.0, ends 
at 1.0.  How to taper tails?

Extrapolates nicely at tails



Symbolic Density Estimation

• Given importance sampled data: {xi, wi}
• or plain MC data, just let wi=1

• Assume w normalized

1. Sort x and w in order of ascending x
2. Compute numerical cdf:  x→cdf

• cdfi = ∑ i
k=1wk

x (e.g. vout)

cdf



Symbolic Density Estimation

Given IS or MC data (xi, wi)
1. Sort in ascending x
2. Compute numerical cdf:  x→cdf

3. Compute numerical normal-quantile: x→nq

x (e.g. vout)

nq



Symbolic Density Estimation

• Given IS or MC data
1. Sort in ascending x
2. Compute numerical cdf:  x→cdf

3. Compute numerical normal-quantile: x→nq

4. With GP, find symbolic density model of x→nq

x (e.g. vout)

nq



Symbolic Density Estimation

• Given IS or MC data
1. Sort in ascending x
2. Compute numerical cdf:  x→cdf

3. Compute numerical normal-quantile: x→nq

4. With GP, find symbolic density model of x→nq

5. Compute model-based cdf (via inverse normal)
6. Compute model-based pdf (via differentiation)

x (e.g. vout)

nq

x (e.g. vout)

cdf

x (e.g. vout)

pdf



Some GP Implementation Details

• Overfitting not a big issue because have 5000-50,000 samples and 
just 1d input. (“Trivial”)

• Can use any GP symbolic regression system

• Can make it multi-objective, for a tradeoff between model complexity 
and model error

• I used CAFFEINE because:
• It returns easy-to-interpret equations because search is 

constrained to canonical-form functions.  Bloat not an issue.
• It has built-in bias to working off linear models (optional)
• It’s multi-objective 
• It was convenient!

• For extra speed, I pre-pruned the data to 50 points:
1. Took every nth sample to get to 250 points
2. Then applied SMITS balancing procedure to get to 50 points.

• At each iteration, remove the sample that has lowest “deviation 
from linearity”.  Calculate deviation via local linear fits.

• I actually post-pruned the Pareto Front using SMITS too
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Results



Results on bitcell: nq



Note the tails – extrapolation looks good

This is a valuable result for memory circuit designers.



Results: nq, cdf, pdf
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Conclusion



1. Symbolic Density Modeling
• We can apply SR to density modeling: symbolic density modeling

• Modeling in nq space greatly simplifies the problem
• Importance sampling enables models of one-in-a-billion tails
• Demonstrated this on a real-world problem (memory design)
• Many other real-world problems in density modeling…

2. On GP Real-World Applications
• One recipe for successful industrial application is: give GP problems 

that are trivial for GP!
• 1-D SR and 50 samples is trivial.  This is a good thing because…
• …GP can then quickly & reliably get high-quality results!!
• Just because problems are trivial for GP doesn’t mean the overall 

value is trivial – my memory design example means $$.

3. Tails

• Are funny☺

Take-Away Lessons for GPers



That’s All Folks!


