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Abstract—This paper presents SANGRIA, a tool for automated
globally reliable variation-aware sizing of analog integrated cir-
cuits. Its keys to efficient search are adaptive response surface
modeling, and a new concept, structural homotopy. Structural
homotopy embeds homotopy-style objective function tightening
into the search state’s structure, not dynamics. Searches at sev-
eral different levels are conducted simultaneously: The loosest
level does nominal dc simulation, and tighter levels add more
analyses and {process, environmental} corners. New randomly
generated designs are continually fed into the lowest (cheapest)
level, always trying new regions to avoid premature convergence.
For further efficiency, SANGRIA adaptively constructs response
surface models, from which new candidate designs are optimally
chosen according to both yield optimality on model and model
prediction uncertainty. The stochastic gradient boosting models
support arbitrary nonlinearities, and have linear scaling with
input dimension and sample size. SANGRIA uses SPICE in the
loop, supports accurate/complex statistical SPICE models, and
does not make assumptions about the convexity or differentiability
of the objective function. SANGRIA is demonstrated on four
different analog circuits having from 10 to 50 devices and up to
444 design/process/environmental variables.

Index Terms—Analog, design automation, integrated circuit,
process variation.

I. INTRODUCTION

UNCONTROLLABLE factors in semiconductor
manufacturing—process variations—have always ex-

isted. Up until recently, the effects would cancel out across the
billions or more atoms in a given transistor. However, transis-
tors have shrunk so much that even a single atom out of place
can affect a transistor’s behavior, leading to worsened circuit
behavior and even circuit failure. The variation is already large,
and will continue to get worse with future process technologies
[1]. Such variation is particularly problematic for analog cir-
cuits, which do not have the abstraction of binary digits to hide
small variations. Process variations are not the only problem.

Manuscript received December 8, 2008; revised March 16, 2009, May 22,
2009, and August 6, 2009. Current version published October 21, 2009. This
work was supported in part by IWT/Medea+ Uppermost, by Solido Design
Automation, Inc., and by FWO Flanders. This paper was recommended by
Associate Editor P. Li.

T. McConaghy was with the Department of Electrotechnical Engineering—
Microelectronics and Sensors (ESAT—MICAS), Katholieke Universiteit
Leuven, 3001 Leuven, Belgium. He is now with Solido Design Automation,
Inc., Saskatoon, SK S7N 3R3, Canada (e-mail: trent_mcconaghy@yahoo.com).

G. G. E. Gielen is with the Department of Electrotechnical Engineering—
Microelectronics and Sensors (ESAT—MICAS), Katholieke Universiteit
Leuven, 3001 Leuven, Belgium.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2030351

Layout parasitics, aging/reliability, electromagnetic com-
patibility, proximity, and other phenomena can affect circuit
behavior. However, because of their direct short-term impact on
circuit yields, addressing process variations is the most urgent.

Design of robustly behaving analog circuits is difficult and
time consuming. This has caused the analog portion of chips
to become the design bottleneck [1]. Yet, we cannot ignore or
bypass analog circuits, since they are crucial for digital circuits
to interface with the real world. As of 2006, 70% of systems on
chips or systems in packages have some analog functionality,
up from 50% in 2005 and 10% in 1999 [2]. We need a means
to design analog circuits which meet performance goals, have
high yield, with low area, all designed fast enough to succeed
in tight time-to-market schedules [3].

One option for designing robust analog circuits is to simply
design with worst-case corners. However, this can give unac-
ceptable performance margins or area increase, even if best-
practice layout techniques are used. Automated variation-aware
sizing is a promising alternative, and there has accordingly been
much recent research on the topic [4]–[12].

An industrially useful optimization tool must possess sev-
eral characteristics. 1) It must be SPICE accurate, support
accurate/complex statistical models such as [13], and reflect
these within its objective function. 2) It should be globally
reliable—the user should not need to worry about whether the
algorithm is stuck at a local optimum (and there is a difference
between a nominal optimum and a statistical optimum, as
Section II-B discusses). 3) Because the true objective function
mapping is not known, the tool should not make assumptions
about the convexity or continuity of the mapping. 4) Finally, it
should be able to scale to handle dozens of devices, dozens of
design variables, and hundreds of process variables.1 Using a
cluster for parallel computing is acceptable.

As Table I summarizes, none of the existing approaches
to yield optimization possesses all of these characteristics
(Section III has details). A new approach is needed, which is
the focus of this paper. The novel contributions of this paper
are the following.

1) An analog yield optimization approach that, unlike other
approaches, has the characteristics of: a) accurate varia-
tion model; b) escapes local yield/Cpk optima; c) handles
nonconvex/discontinuous mappings; and d) scales well.

1These are numbers for cell-level design. System-level design can be handled
through an appropriate hierarchical design methodology; that is beyond the
scope of this paper.
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TABLE I
COMPARISON OF ANALOG YIELD OPTIMIZATION APPROACHES

2) An enabling aspect of the algorithm is a novel homo-
topy [14] approach called structural homotopy which
continually explores new regions of design space with
loose evaluation, refines promising designs with suc-
cessively more evaluation, and fully evaluates the most
promising designs. It searches these different levels in the
exploration–exploitation spectrum simultaneously. Since
fresh regions are continually explored and refined, the
algorithm does not prematurely converge to local optima.

3) A second enabling aspect of the algorithm is model-
building optimization (MBO) with several novel aspects.
It uses stochastic gradient boosting (SGB) [15] for mod-
els. SGB has linear scaling with input dimension and
sample size [15], yet can handle nonconvex and discon-
tinuous mappings. To our knowledge, this is the first
time that SGB has been used for MBO, in analog siz-
ing, or otherwise. Unlike other MBO approaches in the
literature, model uncertainty is computed with ensembles
of SGB models, and employed within a Pareto-aware
multiobjective optimization [16] to find candidate de-
signs that tradeoff optimality (on the model) with model
uncertainty.

The approach is called SANGRIA: Statistical, accurate, and
globally reliable sizing algorithm.

The rest of this paper is organized as follows. Section II
describes the yield optimization problem. Section III reviews
past approaches to yield optimization. Sections IV and V
describe homotopy and response-surface-based optimization,
respectively. Section VI describes the SANGRIA algorithm.
Section VII gives experimental results for SANGRIA on a
suite of optimization problems, on circuits having hundreds of
variables. Section VIII concludes this paper.

II. YIELD OPTIMIZATION PROBLEM

A. Problem Formulation

Given a design space D, process parameter space S with
distribution pdf(s), environmental space Θ, and measurable
performances with associated specifications λ, the aim is to find
a vector-valued design point d∗ that maximizes the objective f

d∗ = arg max
d∈D

{f(d)} (1)

where the design space D = ⊗Nd
i=1{Di} having continuous or

discrete variables that include transistor widths W , transistor

lengths L, resistances R, etc. The range for each variable is
determined by technology process constraints and the user’s
setup. The objective f is a statistical robustness estimator. It
can be yield Y , which is the expected proportion E of feasible
circuits δ across the distribution of manufacturing variations
pdf(s)

Y (d) = E {δ(d, s)|pdf(s)} =
∫

s∈S

Ng∏
i=1

δi(d, s) ∗ pdf(s)ds

(2)

where the possible manufacturing variations S = �Ns include
variations in oxide thickness tox, substrate doping concentra-
tion Nsub, etc. These can be on a per-device level (local), or
across the circuit or wafer (global). For an accurate model,
both local and global variations must be modeled. s describes
the variations in a single manufactured design, i.e., “process
corner.” δi is the feasibility of instance {d, s} at constraint i

δi(d, s) = I (gwc,i(d, s) ≤ 0) (3)

where I(condition) returns one if condition is True (feasible),
and zero otherwise (infeasible). The quantity gwc,i is the worst-
case constraint value across possible environmental condi-
tions Θ

gwc,i(d, s) = min
θ∈Θ

{gi(d, s,θ)} (4)

where Θ = {�Nθ |θj,min ≤ θj ≤ θj,max; j = 1, . . . , Nθ}. En-
vironmental variables include temperature T , power supply
voltage Vdd, and load resistance Rload. θ is an “environmental
corner.” Each constraint gi corresponds to a performance spec-
ification λi which has an aim and a threshold, and translates
into an inequality constraint. For example, λ1 = {power ≤
(1e − 3)W} �→ {g1 ≤ 0; g1 = power − (1e − 3)}.

Performances can be measured by SPICE circuit simulation,
equations, or other means. A testbench ξ specifies how to
extract one or more performance measures at a given circuit
design, process point, and environmental point. All testbenches
are ξ = {ξ1, ξ2, . . . , ξj , . . . , ξNξ

}, to measure all performances
λ. The environmental space is actually testbench-dependent:
Θj = F (ξj). For example, some testbenches may have loads
that other testbenches do not have. Each testbench ξj has a
representative set of environmental corners Θ̂j ≈ Θ(ξj) where
Θ̂j = {θj,k}, k = 1, . . . , Nc(j).
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“Process capability” (Cpk) [17] is an alternative to yield
for the objective f . Cpk simultaneously captures the worst
performance’s spread and the margin above/below its specifica-
tion. Therefore, unlike yield, Cpk can distinguish between two
designs having a yield of 0%, or between two designs having
(estimated) yield of 100%. Cpk is defined as the worst-case
Cpi across all constraints

Cpk(d) = min
i∈1,2,...,Ng

{Cpi(d)} (5)

where Cpi is

Cpi(d) = (E (gi,wc(d)) − 0) /(3 ∗ σ (gi,wc(d)) (6)

where E is the expected value of gi,wc across s, and σ is the
corresponding standard deviation.

B. Local Versus Global Optimization

This section highlights the importance of global statistical
optimization, i.e., optimizing without premature convergence at
local yield/Cpk optima. The user wants the optimizer to keep
running until a target is hit (e.g., target yield), or to get the
best possible design subject to computational/time resources
(including the best design if the target is not achievable). While
the algorithm is running, the user should be able to trust its
convergence—the user should not need to worry about whether
the algorithm is stuck at a local optimum.

A popular way to “be global” is to first do global optimiza-
tion on the nominal objective(s), followed by local yield/Cpk
optimization. This will not always work, as we now illustrate.
Fig. 1 shows a simple yield optimization problem setup, where
the nominal performance is a multimodal function of W1
(top half). Process variation is modeled by simply adding a
Gaussian-distributed random variable to W1, leading to a map-
ping of W1 to yield, as shown in Fig. 1 (bottom). A nominal
optimizer would return a W1 corresponding to the tall narrow
hill of Fig. 1 (top); then starting there, the local yield optimizer
will return a similar W1 value for the top of the short hill
of Fig. 1 (bottom), i.e., a global nominal optimum led to a
local yield optimum, i.e., yield optimization is stuck at a local
optimum, which is undesirable. The problem can actually be far
worse, when design and process variables do not have such a
simple additive relationship.

We want an algorithm that the user can trust to continually
converge without getting stuck at local optima. To achieve
this, the search algorithm must consider global search and
yield search simultaneously—it cannot separate nominal and
statistical.

III. REVIEW OF YIELD OPTIMIZATION APPROACHES

A. Yield Optimization Using Direct MC

This can be considered a “baseline” approach. An optimiza-
tion algorithm explores the design space D

d∗ = arg max
d∈D

(
̂YMC,sim(d)

)
(7)

Fig. 1. Multimodality in performance space can lead to multimodality in
yield space or disjoint feasible regions. In this conceptual example, the global
nominal optimum will lead to a local optimum for yield.

where ̂YMC,sim is estimated with Monte Carlo (MC) sampling
and simulation. In MC sampling, NMC process points i are
drawn from the process distribution si ∼ pdf(s). SPICE simu-
lation is done at design point d, for each process point si, for
each testbench ξj , for each environmental point θj,k, giving
performance vectors λi,j,k and corresponding constraint-value

vectors gi,j,k. From the simulation data, ̂YMC,sim is the average
estimated feasibility across samples

̂YMC,sim(d) =
1

NMC
∗

NMC∑
i=1

δ̂i(d, si) (8)

where δ̂i = δ̂(d, si) is the feasibility of sample si. δ̂i has
value one only if at each testbench j, all constraints l at all
environmental corners k are feasible

δ̂(d, si) =
Nξ∏
j=1

⎧⎨⎩
Ng(j)∏
l=1

I

(
min

k
{gi,j,k,l} ≤ 0

)⎫⎬⎭ . (9)

We examine the typical runtime. If the time to simulate the most
expensive testbench (e.g., tran) is 1 min, Nc = 8 environmen-
tal corners per testbench, NMC = 50 process points, and five
simulators in parallel, then the total simulation time to evaluate
one design = (1 min) ∗ 8 ∗ 50/5 = 80 min. If an optimization
algorithm explores 1000 designs, then direct MC optimization
will take 80 ∗ 1000 = 80 000 min = 55 days.

The advantage of direct MC on SPICE is simplicity and ac-
curacy of results, but it has the major disadvantage of runtime.
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Fig. 2. Design-centering view of yield optimization.

Using symbolic [18] or regression models [19] as a substitute
for the SPICE simulations improves runtime a bit, but can be
inaccurate and is difficult to do for many input parameters
[19], [20]. Adaptive-modeling approaches such as [12] and [21]
choose new samples by maximizing the predicted performances
of the circuit. However, this can get stuck in a local optimum
due to the model’s blind spots [22].

B. Yield Optimization Using Corners

The core idea of all corners-based approaches is as follows:
If corners are “representative” of process and environmental
variations, and all corners can be “solved,” then the final
design’s yield will be near 100%

d∗ = arg max
d∈D

( ∏
Ξi∈Ξ

δ(d,Ξi)

)
�→ Y (d∗) ≈ 100% (10)

where to “solve at a corner” means to find a design d ∈ D
which is feasible across all constraints at the corner Ξi, i.e.,
δ(d,Ξi) = 1. To “solve at corners” means to find a design
that is feasible at all those corners {δ(d,Ξ1) = 1, δ(d,Ξ2) =
1, . . .}. Different approaches have different choices for “repre-
sentative” corners, but they are either inaccurate (e.g., FF/SS)
or too pessimistic (e.g., semiinfinite programming [4]).

C. Yield Optimization Using Device Operating Constraints

Device operating constraints (DOCs) [5], [18] are topology-
specific constraints to ensure that devices are operating in the
intended region (e.g., transistor must be in saturation), and
building block behavior is as expected (e.g., currents in current
mirrors must match). References [5] and [6] found that yield
using DOCs in optimization is significantly better than yield
not using DOCs. References [23] and [24] show that using
them within the context of a yield optimizer will improve the
optimizer’s convergence.

D. Design Centering in Feasibility Region

In this approach, the optimizer aims to find a design point d
that shifts the performance contours in the process space S (and
therefore the feasible region) to align favorably with the fixed
distribution pdf(s). Fig. 2 shows the design-centering view of
yield optimization.

One variant of design centering models each performance’s
feasibility δi as a linear classifier ψi : δ̂i = ψi(d, s,θ). Each
classifier is built from a sensitivity analysis and SPICE simu-

lations. The linear models are concatenated to form an approx-
imation of the overall feasibility region δ̂ =

⋂
i{ψi(d, s,θ)}.

By definition, δ̂ is a convex polytope. Using δ̂, the algorithm
finds a sizing that shifts the polytope approximation to align
“favorably” with the fixed pdf(s). The algorithm then repeats
with further sensitivity analyses. “Favorable” can be 1) max-
imum worst-case distance from the center of the probability
density function (pdf) to the closest feasibility boundary [25]
or 2) maximum yield [7], [23], i.e., maximum volume under
the pdf that is in the polytope feasible region.

Another variant [8], [26] views δ̂ as an ellipsoid rather than
a convex polytope, then aims to maximize the volume of the
ellipsoid. The final design is the ellipsoid’s center.

A drawback of this approach is that linear models have
very poor accuracy in modeling circuits on modern processes,
which means that the convex polytope approach will lead to
suboptimal designs.

E. Nominal Tradeoffs

This approach does nominal multiobjective optimization,
followed by local yield optimization from each Pareto-optimal
design [9], [10], [12]. Unfortunately, the approach relies upon
a tight correlation between nominal and robust designs, which
may not be the case in practice as Section II-B discussed.

The next two sections describe two foundational technolo-
gies for our SANGRIA solution to address the globally reliable
variation-aware sizing of analog circuits.

F. Past Approaches Using MBO

The idea in MBO [22] is to build response surface models on-
the-fly during each iteration of optimization, and to optimize on
the regression models to propose new designs. In [12], a kriging
model taking both design variables and process variables as in-
puts was used. In [11], a projection-based polynomial was used.
One problem with these approaches is blind spots—because of
few samples in a design region, the macromodel thinks that
the region is poor, whereas, in reality, the region is good. This
can cause convergence to a local optimum. The other issue
is the specific modeling choices: Kriging models have very
poor scaling in the number of input variables ([12] had < 10
design variables), and the projection-based model makes strong
assumptions about the nature of the mapping (quadratic).

G. Density Estimation

Some of the approaches above [10], [27] get help from
density estimation. Given a small number of SPICE-simulated
MC samples at design point d, density estimation approximates
the pdf across the performances space, p̂df(λ), then estimates
yield by

ŶDE(d) =E
{

δ(d,λ)|p̂df(λ)
}

=
∫

λ∈�Ng

Ng∏
i=1

δi (λi(d)) ∗ p̂df(λ,d)dλ (11)
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where δi(λi(d)) is one if λi is feasible, and zero otherwise.
Yield estimates from p̂df can be more accurate than binomial
count-based yield estimates [(8)]. Unfortunately, several per-
formance metrics mean that many simulations are needed for
an accurate p̂df . Furthermore, estimates of pdf(λ) make strong
assumptions about the nature of the distribution. For example,
the approach [10] finds ten random points “which make the
distribution the most Gaussian,” or the approach [27] models
the frequency distribution as a linear-time-invariant system,
which makes the pdf have ringing at sharp drop-offs in density.

IV. FOUNDATIONS: HOMOTOPY

Homotopy or continuation methods ([14, Sec. 11.3]) are an
optimization strategy in which the original optimization prob-
lem of solving f(d) = 0 is not solved directly. Instead, an
easy problem is first set up. This easy problem is gradually
transformed to the true problem, and during the transformation,
the solution to the problem is continuously tracked. Eventually,
the problem has become the true problem, and therefore its
solution is the true solution.

We now give an example where the solution to the initial
problem can be trivially set as a. Define the homotopy map
H(d, η) as

H(d, η) = η ∗ f(d) + (1 − η) ∗ (d − a) (12)

where η is a scalar parameter and d, a ∈ �Nd . When η = 0,
(12) becomes the easy initial problem H(d, η) = d − a; and
therefore when solved to H(d, η) = 0, d takes the value of the
easy initial solution a. H(d, η) becomes the original problem
f(d) when η = 1. The steps in between, i.e., the path in the
space of d ∪ η where H(d, η) = 0 for various values of η, is
called the zero path.

There are various strategies for shifting from the easy prob-
lem at η = 0 to the true problem at η = 1. The most obvious
one is to gradually change η from zero to one, and solve at each
step along the way. However, this may not always work because
the zero path may not always follow monotonically increasing
values of η. More successful strategies track the zero path itself,
rather than the η value. However, we must note that even the
more successful strategies can get stuck at local optima on the
path, needing to backtrack to looser objective functions or to
different design regions.

We will use the concept of homotopy in SANGRIA—the
novel structural homotopy approach. Note that in SANGRIA,
the easiest problems will not be trivial like the example here.

V. FOUNDATIONS: MBO

A. MBO Description

Despite limitations of current MBO approaches
(Section III-F), MBO is promising, so we describe it further.

To find a design d that maximizes f , MBO works as follows.
Its initialization step does space-filling sampling in the design
space, e.g., with Latin Hypercube Sampling [28]. In each
iteration, the new design(s) are evaluated on f , a model f̂ is
built, and inner optimization on the model is performed to find

Fig. 3. MBO at the first iteration. There is a single design variable d. Each
diamond is a training datapoint {dj , fj}. The xguess is chosen by maximizing
the infill criterion (mountainlike curve).

Fig. 4. MBO at the second iteration, after the first iteration’s xguess was
simulated and the regressor was updated, which uncovered a new optimum.
Merely maximizing f̂(d) would have missed it.

a new design xguess. The inner optimization uses an “infill
criterion” objective function that combines maximizing f̂ and
maximizing the model’s uncertainty (to identify blind spots).

Few MBO approaches account for model optimality and
uncertainty, while modeling the global design space. A notable
exception is [22]. It uses a kriging regression model which
naturally reports prediction uncertainty. Building on it, [29]
tests various infill criteria approaches, and found that the “least-
constrained bounds” (LCB) criterion gave the most reliable
MBO convergence.

Figs. 3 and 42 show two iterations of MBO on a simple 1-D
problem. Here, model uncertainty is merely the distance to
the closest training point3: u(d) = min{abs(d − d1), abs(d −
d2), . . .}. The LCB infill criterion is Λ(d) = (1 − wexplore) ∗
ψ(d) + wexplore ∗ u(d), where wexplore is the relative weight
for exploration compared to exploitation; wexplore ∈ [0, 1].
Since uncertainty is a function of the distance to the closest
training point, the LCB curve gets a mountainlike shape on top
of the regressor’s curve.

2The regressor for this illustration is a neural network [30].
3Using distance is just one way to compute uncertainty; more on this later.
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B. MBO Shortcomings

MBO algorithms are promising because they make max-
imum use of available data. However, the versions in the
literature have several issues.

1) Inadequate Regressors: The typical regressor, kriging,
scales very poorly with the number of input dimensions and
samples. While quadratic-based MBOs like [31] scale better, they
only manage to circumvent the nonflexible structure of quad-
ratics by limiting their application to local search, whereas we
want to do global search for reasons discussed in Section II-B.

2) Issues in Uncertainty: Most regressors do not have a
natural way to compute uncertainty. Linear models do, but
do not handle nonlinearity. Kriging and density estimation
compute uncertainty, but scale poorly. A regressor-independent
technique is to compute uncertainty as a function of the
Euclidian distance from the closest training point(s), as the
example in Section V-A described, and with LCB leads to
the “mountains.” This is fine for a few dimensions, but past
10–15 dimensions, the Euclidean measure is ineffective be-
cause all points are very far from each other [32].

3) Sensitivity of Infill Criterion: While LCB is relatively ro-
bust compared to expected improvement [22] and other criteria
[29], it still shows sensitivity to its wexplore setting [29]. We
do not want a poor wexplore to constrain the ability to perform
efficient search and effectively escape local optima.

4) Too Few Samples for High-Dimensional Prediction:
Even if we overcome the other issues, if the number of design
variables ≥ 50 dimensions, and the number of simulations is
limited, there is simply too little data to make any meaningful
prediction at all. In such cases, MBO will degenerate to random
search.

VI. SANGRIA ALGORITHM

Now that we have described some foundations of
SANGRIA—homotopy and MBO—we are prepared to de-
scribe SANGRIA itself. We first its high-level structure, then
its high-level algorithm, and finally present the details.

A. High-Level Structure

Fig. 5 shows the structure of SANGRIA. Its key elements are
structural homotopy and high-dimensional MBO.

1) Structural Homotopy: A set of search layers approxi-
mates the exploration-versus-exploitation spectrum; all layers
conduct search simultaneously. The lowest layer has the loosest
objective function (which happens to be cheaper to evaluate).
The intermediate levels refine and further test promising candi-
dates from lower layers, and the top level has the full objective
function to thoroughly evaluate the most promising designs.
New randomly generated designs are continually fed into the
lowest (loosest) layer, which enables SANGRIA to keep trying
new design regions and therefore avoid getting stuck in local
optima.

2) High-Dimensional MBO: MBO uses training samples
from past MBO candidates and from structural homotopy. It
uses SGB [15], which handles arbitrary nonlinearities and has
excellent predictive ability even in high dimensionality. Ensem-

Fig. 5. SANGRIA structure. The left half has structural homotopy, where all
layers search simultaneously. Randomly generated designs are continually fed
into the (cheap) lowest layer, and higher layers refine the designs. The right half
does MBO to efficiently uncover the design-to-objective mapping. Structural
homotopy and MBO share search information, each side using the other side’s
strengths to overcome its own weaknesses.

bles of SGB models allow computation of model uncertainty
u(d) as the standard deviation across the SGBs’ outputs. The
sensitivity of LCB is resolved by replacing a single-objective
optimizer on the infill criterion with a multiobjective opti-
mizer Nondominated Sorting Genetic Algorithm-II [16], which
maximizes f(d) and u(d). If there is still insufficient data
for predictive models in MBO, the structural homotopy side
of search still drives the search forward, i.e., the SANGRIA
algorithm does not need MBO, but if MBO suggests useful
design candidates, then the search can exploit them.

Each structural homotopy layer is an evolutionary algorithm
(EA) to optimize a population of candidate designs (“indi-
viduals”), as shown in Fig. 5 (left). The layers are organized
according to the degree to which the candidate designs have
been optimized (“age”), i.e., an age-layered population struc-
ture (ALPS) [33]. Randomly drawn designs enter the lowest
layer as zero-age designs, and if they do well, they get promoted
to ever-higher layers while being further optimized (and aging
+1 unit per generation). Each layer has a maximum age: 10 for
layer 0, 20 for layer 1, etc. (giving some chance to improve,
but not too much to stagnate with; similar to [33]). If a design
gets too old for a given layer, then it is ejected from that layer,
thereby preventing wasted search effort on a stagnated design.

Other homotopy algorithms work by starting with an easier-
to-solve loosened version of the problem, then tightening the
problem dynamically. In contrast, structural homotopy embeds
the loosening into the algorithm’s data structure (state). The
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solution to each layer can be regarded as a point on the homo-
topy “zero path.” Therefore, we can view structural homotopy
as a new approach to traverse the zero path: Learn it coarsely
to begin with, and refine it over time. This gives structural
homotopy a useful advantage over traditional homotopy. Tradi-
tionally, if homotopy converges locally while on the zero path,
backtracking must be employed and a new branch of the zero
path explored. In contrast, structural homotopy sees several
regions at once, only refining the promising regions.

Specifically, as shown in Fig. 5, layer 0 is just simulated
at a single process/environmental corner of {dc/ac analyses,
nominal process point s, typical environmental point θ}.
Layer 1 is like layer 0. Then, layer 2 adds transient/other
analyses on the single {s,θ} corner. Layer 4 adds nonnom-
inal corners for dc/ac, and layer 6 adds nonnominal corners
for transient/other. The choice of corners is elaborated in
Section VI-G. Finally, layer 8 does a full MC simulation (with
blocking) on each candidate. This split of simulations was
chosen based on choosing analyses which give many key mea-
sures for less simulation cost (ac, dc), and deferring the more
expensive analyses which only give incremental measures of
quality (transient and corners). The core idea of structural
homotopy does not depend on the exact choice just presented,
however; an alternative would be to always simulate all test-
benches but have more MC samples at higher levels. The
number of layers is flexible as well—the core aim is to approx-
imate continual tightening of the problem, and discretization to
nine layers of tightening is reasonable; a few more or a few less
is fine too.

SANGRIA’s lower layers have larger populations which
shrink going upwards. This balances out the simulation cost per
age layer, encourages more exploration at the lower levels, and
reduces expensive top-layer simulation costs. The top layer has
a tiny population, hence the label “ultralocal.”

Each layer follows an EA framework for updating the popu-
lation with selection operators and search operators. Selection
for layer i is typical EA selection, except that individuals from
layer i − 1 are also considered.

SANGRIA’s search effectiveness is due to structural ho-
motopy, MBO, and their combination. Structural homotopy
allows continual coverage of the whole exploration-versus-
exploitation, cheap exploration, and a natural avoidance of
local optima. MBO improves efficiency because new candidate
designs can be selected more intelligently. The combination
means that the advantages of both structural homotopy + MBO
can be exploited (exploration + efficiency), while reducing
their disadvantages if each were standalone (lower efficiency +
poor prediction if few samples).

B. SANGRIA High-Level Algorithm

SANGRIA’s high-level algorithm, SangriaOptimization(), is
described in Table II. The algorithm’s inputs are the search
space bounds D, age gap Na (described later), maximum
number of layers K, and number of individuals NL(k) for each
layer k, and it outputs the optimal design d∗.

Line 1 initializes: the generation count, Ngen; the data struc-
ture P which will hold a population at each age layer Pk;

TABLE II
PROCEDURE SANGRIAOPTIMIZATION()

and all individuals encountered so far in the search, Pall.
Lines 2–13 are the generational loop, which repeats until stop-
ping conditions are met.

Lines 3–6 handle the case of an “age-gap” generation which
happens every Na generations. In an age-gap generation, the
zeroth layer gets NL(0) new space-filling individuals in the
ND-dimensional space D, including a “loose” layer-0 evalu-
ation. Space-filling sampling uses Latin Hypercube Sampling
[28] with uniform distribution across the whole design space
D. P starts out with just one layer. At the first “age gap”
generation, it grows a new layer. At each subsequent “age gap”
generation, it adds a new layer, until steady state with K layers
as Fig. 5 shows (|P | = K). MBO always feeds to the current
top (nonultralocal) layer P|P |.

In lines 7–9, each age layer Pi is updated. First, acceptably
young parents are selected from the current or next lower
layer. Then, each individual’s local state χ is updated, including
evaluations appropriate to the age layer k (in line with structural
homotopy). Line 10 updates all the individuals encountered so
far, Pall, just in time for the MBO inner optimization (line 11).
For efficiency, if a layer has solved all its constraints, it skips
the call to UpdateLocalOptState() for that layer.

Lines 12 and 13 update the best design so far d∗ and the gen-
eration count Ngen, respectively. When the search terminates,
d∗ is returned; and of course, during search, intermediate d∗s
can be returned.

The following sections elaborate on SANGRIA details.

C. SANGRIA Individuals

The atomic unit that SANGRIA processes is an “individual.”
In most EAs, an individual is a single design candidate, and new
designs are generated through mutation or crossover operators.
Unfortunately, those operators are slow because they do not
exploit the past information about search. Memetic EAs run a
local optimization as part of each individual’s evaluation, but
it is unclear how much optimization effort should be given to
each individual.

For efficient EA search, each SANGRIA individual is a
local optimization search state which takes exactly one step
per generation. Therefore, it exploits past information about
search, without the difficulties of memetic EAs. The search
state χ holds: 1) one or more design points; 2) associated circuit
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TABLE III
PROCEDURE SELECTPARENTS()

evaluations; and 3) local optimizer-specific state information
such that each individual’s local optimization can be paused and
restarted each generation.

D. Local Optimization Search Operator

The local optimizer is an efficient derivative-free algorithm
called dynamic hill climbing (DHC) [34]. DHC is a hillclimber;
when it finds improvements, it capitalizes on the direction of
improvement with acceleration and ridge walking.

DHC was chosen for a few reasons. First, derivatives are
costly to compute, which rules out classical nonlinear pro-
gramming algorithms such as quasi-Newton with Broyden–
Fletcher–Goldfarb–Shanno update [14]. Second, the search
space has discrete variables, ruling out many modern derivative-
free algorithms such as NEWUOA [31]. Nature-inspired algo-
rithms such as EAs, simulated annealing, and particle swarm
optimization are derivative free and can handle continuous or
discrete spaces, but have a global (not local) focus. Pattern
search algorithms [35], [36] are derivative free, can handle
mixed spaces, and have a local search focus. These are reason-
able choices, and have been used in other sizers [6]. DHC can
be viewed as a loosened version of pattern search—loosened
because it allows for step-size growth in order to improve
convergence rate, at the expense of losing some theoretical
properties of pattern search convergence. Since we have many
local optimizers in parallel, we are less concerned about prov-
able convergence per local optimizer, and more concerned with
convergence rate; hence, we chose DHC in SANGRIA.

SANGRIA only sees that the (DHC) individual offers a
design point (x), an associated cost for that point, and a
routine to update the individual’s local optimization state
updateLocalOptState(), which alter χDHC according to [34].

E. ALPS Selection

Table III describes tournament selection of parents in
SANGRIA. Line 1 determines the candidate parents Pcand

by merging layer k and layer k − 1, and only keeping the
individuals with age ≤ maximum age at layer k. Lines 2–5 fill
the selected population: Lines 3 and 4 randomly draw parents 1
and 2 with uniform bias from Pcand, and line 5 selects the parent
with the lowest cost. Line 6 returns the updated population P ′

k.

F. SANGRIA MBO

This section describes how MBO is deployed within
SANGRIA. Table IV describes the high-level MBO algorithm
InnerOptimize(). Lines 1 and 2 build the training input and

TABLE IV
PROCEDURE INNEROPTIMIZE()

TABLE V
PROCEDURE EVALUATE()

output data, respectively, using the information of all the in-
dividuals so far, Pall. Pall,1 is the first individual in this list of
all individuals, Pall,2 is the second, and so on. Pall,1.d is the
design point of the first individual, and so on.

Line 3 constructs the regressor ψ, an SGB ensemble, from
the training data {X,y}. In line 4, an inner optimization
is run according to the problem formulation. Since there are
two objectives (rather than a single sensitive infill criterion), a
Pareto-optimal set of designs is returned to collectively approx-
imate ψ’s exploration–exploitation tradeoff. The multiobjective
optimization is performed using NSGA-II [16].

Multiobjective optimization could return a large number of
Pareto-optimal individuals. We do not want to evaluate all of
thesebecauseitcouldbecomecomputationallyexpensive.There-
fore, line 5 reduces the number of individuals from |Pinner|
to Ninner, using clustering. SANGRIA employs bottom-up
clustering (hierarchical agglomerative clustering) [37].

G. Setting Corners

SANGRIA’s objectives are computed by measuring perfor-
mance on a set of corners which are set at the beginning of
the run. Recall that the core idea of corners-based approaches
is as follows: If corners are “representative” of process and
environmental variations, and all corners can be “solved,” then
the final design’s yield will be near 100% [(10)].

The challenge is to choose corners that are representative of
the performance bounds, with a minimum count, and without
any assumptions on the mapping from process variables to
performance. SANGRIA’s approach is to: 1) take NMC,cand

(e.g., 100) samples of process points, simulate them all at
a typical environmental point, then 2) choose NMC,chosen

(e.g., 25) representative points (corners). Representative cor-
ners are chosen in two steps: 1) Do nondominated filtering
toward worst performance values, i.e., nondominated filtering
in the opposite directions of optimal, and 2) if needed, further
reduce the points by bottom-up clustering [37].

H. Evaluation and Cost Calculation

Table V describes the evaluation of a population at age
layer k, Pk. Each design candidate d at layer k must be
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evaluated sufficiently for use in selection at layer k and at
layer k + 1 (line 2). The min() accounts for the top (Kth)
layer. SANGRIA’s per-layer simulation specifications are
shown in Fig. 5 (left). For example, layer 2’s specification
is {dc/ac nominal, transient/other nominal}. Therefore, layer-1
individuals must also be simulated at those specifications, as its
individuals are available for selection in layer 2.

When an individual is evaluated “on nominal,” each of
its DHC state’s ds are simulated at {nominal process point
snom, typical environmental point etyp}. When evaluated
“on corners,” it means that the evaluated is simulated at:
1) all representative ss with etyp; and 2) all es with snom.
This avoids simulating all combinations of environmental and
process points. Then, the performance λ at a given {d, s,e} is
estimated as the performance at {snom,etyp}, summed with
deltas in performance due to s and e

λ̂(d, s,e) = λ(d, snom,etyp) + (λ(d, s,etyp)

− λ(d, snom,etyp)) + (λ(d, snom,e)

− λ(d, snom,etyp)) . (13)

When the algorithm estimates the cost of an individual,
the layer k is important. For example, an individual may
have enough simulations for layer 2, but is participating in a
layer-1 selection tournament; then, its cost calculations only
need to use the simulations that layer 1 specifies. The cost is
computed as follows:

cost(d) = costg(d) + costcpk(d) (14)

where costg measures the total cost of violating constraints and
costcpk is a contribution from measuring Cpk

costg(d) =
Ng∑
i

violation (ĝwc,i(d, λi)) (15)

violation(gi) =
{ 0, gi ≤ 0

gi−gi,min
gi,max−gi,min

, otherwise (16)

where ĝwc,i is the estimated worst-case value of performance
i across all {s,d} combinations. Performance is estimated at
each {s,d} combination with (13). gi,max and gi,min are the
minimum and maximum values of performance gi seen so far
in the optimization run.

The additional costcpk is activated when all constraints are
solved, and pulls cost < 0 depending on how high the Cpk is.
It enables the optimizer to increase the margin further, once the
estimated yield hits 100%

costcpk(d) =
{

0, costg(d) = 0
−(Cpk(d) + cpkoff) , otherwise

(17)

where cpkoff is a value sufficiently large to ensure that negative
values of Cpk do not make the overall value of cost be > 0. Cpk
is calculated with (5).

TABLE VI
TEST CIRCUIT SIZES

Fig. 6. Schematic of ten-device operational amplifier.

Fig. 7. Schematic of thirty-device operational amplifier.

VII. SANGRIA EXPERIMENTAL RESULTS

A. Circuit Problems

We used the test circuits outlined in Table VI and shown
in Figs. 6–9, which includes three opamps of increasing size
(from 10 to 50 devices), and a voltage reference (“vref”). For
each circuit, we performed several runs with different seeds to
the random number generator. We will analyze the results of
all runs.

Fig. 6 shows the 10T opamp. Specifications were: gain AV >
65 dB, bandwidth BW > 1 MHz, gain bandwidth GBW >
300 MHz, phase margin PM > 56◦, gain margin GM <
−10 dB, settling time ST < 12 ns, slew rate SR > 3e8 V/s,
overshoot OS < 12%, and total harmonic distortion THD <
−45 dB.

Fig. 7 shows the 30T opamp. Specifications were: AV >
37.5 dB, BW > 13.5 MHz, GBW > 300 MHz, PM > 59◦,
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Fig. 8. Schematic of fifty-device operational amplifier.

Fig. 9. vref schematic.

GM < −10 dB, unity gain frequency FU > 265 MHz, ST <
5 ns, SR > 1.85e8 V/s, OS < 6%, and THD < −40 dB.

Fig. 8 shows the 50T opamp. Specifications were: AV >
30 dB, BW > 2.3 MHz, GBW > 50 MHz, PM > 65◦,
GM < −5 dB, FU > 50 MHz, ST < 15 ns, SR > 1.5e8 V/s,
OS < 5%, and THD < −40 dB.

Fig. 9 shows the vref. Specifications were: power PWR <
0.111 mW, temperature coefficient TC < −20 ◦C, mini-
mum temperature TMIN < −20 ◦C, maximum tempera-
ture TMAX > 85 ◦C, voltage-change reference DV REF <
600, minimum voltage V MIN < 0.78 V, maximum voltage
V MAX > 2.8 V.

B. Technology and Variation Model

The technology was Taiwan Semiconductor Manufacturing
Corporation 0.18-μm CMOS. The simulator was a propri-
etary SPICE-like simulator of a leading analog semiconductor
company, with accuracy and runtime comparable to HSPICE.
We used the process variation model of [13] because of its
excellent accuracy, and to illustrate the ability of SANGRIA
to handle a large number of process variables. Accordingly,
the local variation parameters for each transistor are the fol-
lowing: NSUB (substrate doping concentration), VFB (flatband
voltage), WINT (width variation), LINT (length variation),
U0 (permittivity), RSH (sheet resistance), and TOX (gate ox-
ide thickness). The per-resistor variation parameters are the
following: DRSH (sheet resistance), DXW (width variation),
and DXL (length variation); and the per-capacitor variation
parameters are the following: DXW (width variation), DXL
(length variation), and DTOX (oxide thickness). There is a
single global-variation parameter for each of NSUB, VFB, etc.,

as well. The variables s in the process variations’ pdf(s) are
normal, independent, and identically distributed.

C. Algorithm and System Settings

Each run of each circuit problem had identical algorithm
parameters. The parameters had little tuning, instead being set
based on reasoning, choosing to err on the side of reliability.
The maximum number of circuit simulations was Nsim,max =
100 000, which is easy to run overnight with a modestly sized
computer cluster. (Therefore, all the runtimes for each forth-
coming SANGRIA run are overnight or less.)

Similar to the parameters of ALPS [33], there were K = 9
age layers (in line with Fig. 5) with age gap Na = 10. The
lowest age layer’s population size NL(0) was 200 individuals.
Going to higher layers, the population size decreased linearly
from NL(0) = 200 to NL(7) = 8. The ultralocal layer had
NL(8) = 3 individuals, which allowed some exploration with-
out being overly computationally expensive. Population sizes
of 1–200 are common in EAs. cpkoff = 10.0.

In all cases, an initial “rough cut” design is supplied, which
took about 10–30 min for an expert designer to do. We do
this only so that we can have a baseline to compare the yield
and performance spread of initial versus resulting designs.
SANGRIA can leverage this, but does not rely on it, because
in every Na = 10 generations, it will inject randomly gener-
ated designs into age layer 0. NMC,chosen = 25 representative
process points were chosen from NMC,cand = 100 candidate
points using the approach of Section VI-G.

MBO settings were as follows. SGB parameters
were: learning rate α = 0.10, minimum tree depth = 2,
maximum tree depth = 7, and target training error = 5%.
There were five SGBs in an SGB ensemble. See [15] for details
about SGB parameters. NSGA-II parameters were: Npop = 25,
Ngen,max = 50, with a crossover probability of 0.2. The
number of individuals returned from an inner optimization
Ninner was set to five, which is large enough to get a good
spread of the exploration-versus-exploitation tradeoff without
becoming too expensive.

Final-result designs (from the optimizer’s perspective) had
NMC = 30 process points. The lower bound for 100% yield on
30 MC samples is 88.6%, with 95% confidence using Wilson’s
confidence interval for a binomial proportion [38]. For a more
accurate yield estimate, we also report final designs’ yield with
2000 MC samples. This also underscores our motivation to
make Cpk the objective function rather than yield: Even with
30 MC samples, Cpk means we can meaningfully improve a
design when 30/30 MC samples are feasible by increasing the
margin and reducing the spread of performances.

D. Experiments on the 10T Opamp Circuit: Run 1 Results

Fig. 10 shows the yield versus generation, and Cpk versus
generation for the first run. Each square in the plot is the
result of a full MC simulation of the current most promising
SANGRIA design across NMC = 30 process points. We see on
the far left of the plot that the initial design’s yield is 26.7%, and
that the next MC sampling happens at generation 60, giving
an improved yield of 56.7%. The best yield keeps improving
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Fig. 10. Best yield versus generation, and best Cpk versus generation, for
SANGRIA run 1 on the 10T opamp.

TABLE VII
BEST 10T OPAMP DESIGNS FROM FOUR SANGRIA RUNS

with passing generations, until hitting the maximum of approx-
imately 100% yield (30/30 MC samples) at generation 106.

Since the yield is not precisely estimated, SANGRIA contin-
ues to optimize the design using Cpk as the objective, which
will implicitly pull up yield as it increases the margin and
decreases the spread of performance metrics. Fig. 10 also shows
the best Cpk versus generation, denoted by the curve with the
◦s. We see that Cpk increases steadily prior to the approximate
100% yield design at generation 106, but it improves further
after achieving approximate 100% yield. The run stopped when
the 100 000 simulation budget was hit. The design with highest
Cpk was found in generation 123. (Accurate estimates for all
final yield numbers are presented in Table VII).

Note the squares below the curve of yield versus generation.
These are MC-sampled results where the candidate design did
not do as well as the best so far. It happens when the best design
so far on the “ultralocal” layer has already been simulated, so
a different design is tried, either from the ultralocal layer or a
lower layer.

We can gain insight about SANGRIA’s globally reliable
characteristic in practice by examining the figures of cost versus
generation for each age layer, such as Fig. 11. At generation 0,
only the zeroth age layer exists, so only its curve is plotted at
first. It was able to immediately meet all the layer-0 constraints
(ac/dc nominal), for a cost of 0. At generation 10 (the next
age-gap generation), layer 1 is added, and it can fully solve
the design as well because it has the same goals as layer 0. At
generation 20, layer 2 is added, and despite having more goals
(tran/other nominal), it was able to solve them, so its cost stays
at zero. At generation 30, the population formerly at layer 2
gets pushed into layer 3. The new individuals going into layer 2
do not immediately solve all the goals at generation 30, so their

best cost is > 0. In the plot, these are the ◦s at a cost value
of ≈48 for generations 30–33. However, those ◦s go back to
cost = 0 at generation 34 as the new individuals at layer 2
improved the designs.

At generation 40, layer 4 is added and is immediately solved
by the individuals coming from layer 3. At generation 50,
layer 5 is added, and is solved immediately too. Throughout
the whole run, layers 4 and 5 have zero cost. Since the only
difference between them and layer 4 is adding corners on the
ac testbench, it implies that once a design can solve for the
process and environmental variations on ac performances, it
can solve for the nominal dc/tran/THD performances. It does
not imply that solving on nominal always means solving on
corners, however! In fact, we confirm this when layer 6 is added
at generation 60, where cost goes > 0.

Layer 8 further meets cost = 0 at generation 84. Since it is al-
ready considering all the testbenches and process/environmental
variations, it starts to aim for cost values < 0. It steadily reduces
the cost from generation 84 onwards (the stars curve).

E. Experiments on the 10T Opamp: Results for Runs 2, 3, and 4

We did a second run of SANGRIA on the 10T opamp
problem. The run’s convergence curves are shown in Fig. 12.
It achieved an approximate yield of 100% (30/30 MC samples)
at about generation 100. Run 2 illustrates a case of SANGRIA
escaping from a local yield/Cpk optimum. We see that the top
age layer does not get cost < 0 until generation 110 [Fig. 12
(bottom)]. There was an aborted attempt at generation 70,
where the second-highest layer got cost zero, but that design did
not translate to the top age layer with low cost. This illustrates
that taking steps from the initial design, no matter how promis-
ing, might lead to a local optimum. Therefore, there must be an
opportunity to try alternative regions. This reconfirms the need
to have globally reliable statistical optimization.

We did two more subsequent runs of SANGRIA on the 10T
opamp problem; each run hit approximate 100% yield (30 MC
samples) at about generation 100. The convergence curves had
similar profiles to runs 1 and 2. Table VII shows, for each run,
the area and yield (on 2000 MC samples). A yield of 99.55%
can be achieved while reducing the area by 11.6%. If one is
willing to compromise yield to 95.75%, a 23.4% reduction in
area is possible. To get the higher yield of 99.95%, area needs
to be increased by 3.8%.

F. Experiments on the 30T Opamp Circuit

We performed four independent SANGRIA optimization
runs on the 30T opamp. All four runs hit estimated 100% yield
on 30 MC samples, and > 99.0% yield on 2000 MC samples
as Table VIII shows. In each run, once 30/30 MC samples were
feasible, the run kept improving Cpk significantly beyond.

Each convergence curve shows the signature behavior seen
on the 10T problem. The convergence of 30T’s run 3 (Fig. 13)
is particularly interesting, because it only got good results very
late in the run. The lower age layers repeatedly try different
regions, until good results are achieved. This reconfirms the
value of SANGRIA’s age-layered approach to achieving global
reliability.
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Fig. 11. Best cost versus generation, for each age layer, on SANGRIA run 1 of the 10T opamp.

Fig. 12. Convergence curves for SANGRIA run 2 on the 10T opamp.
(Top) Best yield/Cpk versus generation. (Bottom) Best cost versus generation.

G. Experiments on the 50T Opamp Circuit

Recall that the 50T opamp has 97 design variables (W s, Ls,
etc.) and 342 process variables. Therefore, these experiments
demonstrate the ability of SANGRIA to scale to a very large
number of design variables and an even larger number of
process variables. The first, third, and fourth runs hit esti-
mated yield of 100% (on 30 MC samples) in under 100 000
simulations, and the second run got close. In the cost-per-

TABLE VIII
SUMMARY OF SANGRIA RESULTS. EACH RUN TOOK < OVERNIGHT

layer curves of the second run [Fig. 14 (top)], we see that
exploration continues throughout the run. Therefore, just like
the user would likely do, we allowed the search to continue
farther until it hit the target yield, which it got after 73 further
generations (generation 254). This is global reliability: The user
does not need to worry about whether the algorithm is stuck at
a local optimum. Accurate yield numbers are in Table VIII.

H. Experiments on the vref Circuit

We performed four independent SANGRIA runs on the vref
circuit. All four runs hit estimated yield of 100% on 30 MC
samples, and > 99.0% on 2000 MC samples as Table VIII
shows. Once again, each of the per-layer cost convergence
curves shows the signature behavior that we examined in detail
on the 10T problem.

I. Summary of Results

Table VIII summarizes the yield improvements made by each
of the 16 SANGRIA runs across the four different circuit test
problems. Final yield is estimated from 2000 MC samples. The
(upper, lower) values are 95% binomial confidence intervals.
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Fig. 13. Convergence curves for SANGRIA run 3 on the 30T opamp.
(Top) Best yield/Cpk versus generation. (Bottom) Best cost versus generation.

Fig. 14. Convergence curves for SANGRIA run 2 on the 50T opamp.
(Top) Best yield/Cpk versus generation. (Bottom) Best cost versus generation.

TABLE IX
SANGRIA SEARCH EFFORT WITH INCREASING PROBLEM SIZE

Table IX shows the effect of the problem size (number of
variables) on the overall search effort (number of generations
to hit a design with 100% yield on 30 MC samples). Going
from the 10T to the 30T problem (2.5× more variables), the
search effort only increases by 1.3× on average. Going from
the 10T to the 50T problem (4× more variables), search effort
only increases by 1.7× on average.

VIII. CONCLUSION

This paper has thoroughly specified the analog circuit
variation-aware sizing problem, then reviewed the existing ap-
proaches. No approach had the combination of: 1) an accurate
variation model; 2) ability to escape local yield/Cpk optima;
3) handling nonconvex/discontinuous mappings; and 4) good
scaling with more design and process variables. Then, this pa-
per has presented SANGRIA, which possesses characteristics
1)–4). SANGRIA’s key elements are structural homotopy and
improved MBO including scalable SGB regression models.

We have tested SANGRIA on four different circuit problems
ranging from 10 to 50 devices with a highly accurate process
variation model, having up to 444 variables, and several runs
per circuit. In all 16 runs, SANGRIA was able to attain near
100% yield and improve the margin within an industrially
feasible number of simulations and runtime, despite the high
parameter count and the evidence of multimodality.
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