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ABSTRACT
Automated analog sizing is becoming an unavoidable solu-
tion for increasing analog design productivity. The com-
plexity of typical analog SoC subsystems however calls for
efficient methods that can handle design hierarchy, in terms
of both performance estimation and hierarchical design op-
timization method. This paper discusses and compares re-
cent developments in this area, with special emphasis on
automated modeling and on multi–objective bottom–up hi-
erarchical design.

1. INTRODUCTION
Analog design automation has progressed to the point

where there are industrially useful and commercially avail-
able tools at the cell level, for both automated sizing and for
automated layout. These tools are targeted for circuits hav-
ing up to about 50–100 transistors (read : design variables).
However, automation for larger systems with many more de-
sign variables is not prevalent in industry yet. This is largely
because all the pieces of the system–level design puzzle are
not fully in place. The challenge is to have a methodology
that makes the complexity of the problem tractable.

There are many methodology alternatives, and they can
be organized according to two key dimensions: how perfor-
mance estimation is done, and how the design space is or-
ganized and traversed. Performance estimation can be done
“flat”, or hierarchy can be leveraged as well. There is ad-
ditional freedom in the accuracy / speed tradeoff of a given
performance estimator, going from transistor–level accura-
cies up to higher–level (behavioral or functional) modeling.
We explore these issues further. The problem of perfor-
mance estimation can be considered to be roughly orthogo-
nal to how design space is organized. The design space can
be flat, and traversed in a flat manner (i.e. all at once).
Or, it can be organized hierarchically into subproblems, and
traversed according to a hierarchical design methodology.
Interestingly, there are different ways how a hierarchical
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methodology can be developed; this also has many impli-
cations, which we will explore later.

This paper is organized according to these two dimensions.
Section 2 discusses performance estimation techniques, start-
ing at the cell level and progressing to the system level. Sec-
tion 3 discusses design space traversal options, including flat,
bottom–up hierarchical, concurrent hierarchical, top–down
constraint–driven (and the feasibility–modeling bottom–up
extension), and multi–objective bottom–up methodologies.
Section 4 finishes with some conclusions.

2. PERFORMANCE ESTIMATION
Figure 1 summarizes different performance estimation ap-

proaches.

Figure 1: Performance Estimation Approaches

2.1 Cell–Level Performance Estimation
We now explore the challenge of performance estimation

for automated sizing further, first at the cell level, then to
larger systems, with an emphasis on more recent techniques.
The ideal is to have the most accurate performance estima-
tion (i.e. SPICE) at least for the final designs, within the
constraints of overall runtime of an automated sizer. One
inevitably finds that there is a tradeoff between accuracy
and speed. But, modeling can be used in various creative
ways to improve runtime without hurting final accuracy.

At the cell level, the problem is the simplest, so let us
start our discussion there. Until the early 1990’s, SPICE–
like simulators were not feasible within the loop of a circuit
design optimization problem because they were too slow.



So, many performance estimation techniques were devised
that sacrificed accuracy for speed, such as ISAAC [16], AWE
[34]; for a review see [17]. But, Moore’s Law drove CPU
speeds to progress to the point where SPICE–in–the–loop
optimization was feasible, and academia soon exploited it
(e.g. [24, 2]), as well as industry [42, 4, 29, 31]. So, SPICE
has become the (dynamic) performance estimator of choice
for cell–level design.

There is still payoff to having faster optimization, and
many sizing schemes that aim for speed, leverage perform-
ance–estimation techniques that map design variables to
performances, but work in conjunction with SPICE. GP-
CAD [21] had manually–written, SPICE–tuned posynomials
to model circuits, which were then subsequently optimized
(and verified with SPICE after sizing). The advantage is
that posynomials are especially easy to optimize on, but
the disadvantages are that posynomials cannot model the
multi–modality that many analog circuits have, and also
that the models needed to be built manually. It is pos-
sible to automatically build models before sizing that do
not have multi–modality constraints; [47] demonstrated this
with neural networks, and recently showed on splines how
the sampling can be more adaptive [46]. The problem with
this approach is that the model tries to capture the whole
mapping to a target error level, even for regions of the per-
formance space that are useless, therefore needing far more
samples than necessary and constraining the number of pos-
sible input dimensions.

An alternative is to adaptively build models during op-
timization, and use these models to make more intelligent
choices of where to simulate next. The most well–known
model of this type is sequential quadratic programming,
which makes a local quadratic model mapping design vari-
ables to performances; the quadratic model is iteratively
updated using an update scheme such as BFGS. However,
one can be very flexible in the choice of modeling scheme;
one could use automatically–created posynomials [7], neural
networks [32], splines [27], genetic programming [27], krig-
ing [27], boosted neural networks [27], or support vector
machines [23]. Figure 2 compares the predictive abilities of
these schemes (adapted from [27]). Each of these techniques
has different strengths and weaknesses; what is most impor-
tant is prediction ability, scalability to input dimensionality,
and sufficiently small training time.

One can even make models after optimization with all the
simulation data from the run, as demonstrated by [25] on
boosted neural networks. Such a model might perhaps be
used within a hierarchical methodology, or it could be used
to improve understanding, as suggested in [26] in combina-
tion with genetic programming. Advanced regression model-
ing has also been used to mitigate potentially high runtimes
when taking into account manufacturing variations [2, 40,
12, 41] and layout effects [3, 15].

2.2 System–Level Performance Estimation
Let us now discuss performance estimation for larger de-

signs, beyond the cell level. Remember, design methodol-
ogy is somewhat orthogonal to performance estimation. If
we want, we can have a flat design methodology and hierar-
chical simulation. Or, we can have some sort of hierarchial
design methodology and always flat SPICE–like simulation,
though the problem is of course runtime. It may not be as
bad as one might think, however, if the design spaces at the

Figure 2: Comparison of Prediction Error on Six
Modeling Problems (Within the Context of Opti-
mization)

non–cell levels are sufficiently small. ’Flat’ simulation may
be better than one might expect too, if we use high–capacity
simulators [30, 5, 43, 28]. From the perspective of the user,
high–capacity simulators appear to simulate the circuit as if
it were flat, even though there may be underlying hierarchi-
cal elements. The disadvantage of high–capacity simulators
is that because they get speed by exploiting regularity in
the circuit, they only result in effective speedups for certain
types of circuits. Besides SPICE–like simulation, one could
also use other performance estimators such as symbolic anal-
ysis or AWE, but these also have scaling issues.

To directly exploit hierarchy in performance estimation
is promising for attaining sufficient accuracy in reasonable
runtime. At each node of the hierarchy, all subcomponents
would have ’compact’ behavioral models rather than full
SPICE models. Those compact models can be manually
created, which is a long and tedious process, though the re-
sulting models could be quite trustworthy. The most mod-
ern models can actually be tuned to a given manufacturing
process.

Automatic creation of behavioral models is therefore of
great interest. Model–order reduction (MOR) and regres-
sion are the two main approaches. MOR approaches find
projections to map the system’s states into a smaller set,
yet roughly maintain the same behavior; [38] is a survey.
Recent MOR research has explored modeling nonlinear cir-
cuits. Piecewise–linear [36] and piecewise–polynomial ap-
proaches [10] do this by tying together linear or polynomial
models along likely trajectories in the state space. Alter-
natively, kernel methods [22, 33] nonlinearly map the state
space into a higher–dimensional space that is then handled
with linear regression. The results for kernel methods are
particularly promising.

Regression approaches create models that learn from the
(SPICE) simulation waveforms of the circuit’s inputs and
outputs. They have traditionally been synonymous with
’black box’ behavioral models because the model is a black
box and because the circuit’s internal states are not used, as
in [37]. However, [27] demonstrates how to generate inter-
pretable equations to describe the state transitions. While
[27] automatically generates its own internal states, it is also
conceivable to generate interpretable equations that describe
state transitions among a subset of the circuit’s states, mak-
ing it a MOR approach. Thus, perhaps a better way to dis-
tinguish among behavioral modeling methodologies is along
the dimensions of: (1) use/reduce measured internal states
y/n, and (2) model is interpretable y/n.



Model creation has traditionally been regarded as cleanly
divided between: ’automatic’ or ’manual’. The ability to
generate interpretable models [26, 27] opens a new possi-
bility: ’human–computer collaboration’ in which the user
interacts with the automated model, trying new variations
on model assumptions, then quickly getting feedback on pos-
sible models and examining their validity.

It should be noted that modeling techniques are not mu-
tually exclusive; for example one could use a combination
of simulation and adaptive modeling at the cell level, and a
mixture of high–capacity simulators and behavioral models
at higher levels. One could even use more than one type of
performance estimator to analyze a candidate design point.
At greater–than–cell levels, dynamic modeling will likely end
up being a combination of high–capacity simulators and be-
havioral modeling. Perhaps the fields will even converge,
e.g. high capacity simulators working on a wider range of
circuits, making all simulation look flat.

3. DESIGN SPACE ORGANISATION AND
TRAVERSAL

Figure 3 summarizes different approaches to design space
organization and traversal.

Figure 3: Approaches to Design Space Organization
and Traversal

3.1 Flat Methodology
A ’flat’ design methodology is one in which the whole de-

sign is attacked at once. Think of the complexity of design-
ing a whole A/D converter with all its transistors at once.
With possibly thousands of transistors, the problem is just
too complex to attack all at once. It takes also too long
runtimes for simulator–in–the–loop automated sizing tools.
However, it would actually be possible if one has a fast per-
formance estimator and an algorithm that can handle many
variables, such as posynomials with geometric programming
for A/D converters for instance [20]. The problem, how-
ever, is that the models need to be manually created, and
are constrained to convex surfaces (and analog circuit design
problems have no guarantee of being convex).

3.2 Bottom–Up Methodology
To cope with complexity, larger designs are almost always

broken up in a hierarchical fashion, then traversed according
to a hierarchical design methodology. Each sub–problem has
a size that is tractable for design by either a human or an
automated tool. We now review possible methodologies.

The ’Bottom–Up’ (BU) methodology is the way a typical
analog designer would design an analog circuit. In it, the
designer begins with a set of system specifications. Based
on knowledge of previous designs, the system–level design
is broken down into a set of sub–blocks, until all the blocks
are at the transistor level. This is typically a fast phase, as

no verification is done; it relies on designer experience and
instinct to break up the problem. The blocks are designed
in a bottom-up fashion. To compensate for non–idealities
and uncertainties in feasibility, lower–level blocks tend to
be overdesigned. Unfortunately, the complete system de-
sign has to be performed first before the performances can
be checked and compared to the specifications; if the system
doesn’t satisfy specs, there is no clear method to resolve the
problem; it may turn out that the complete bottom–up de-
sign may need to be done all over again, wasting precious
time. The ad hoc nature of BU is probably its most distin-
guishing feature – a discomforting thought to design team
managers who want to see predictability in their design flow.

3.3 Concurrent Constraint–Driven Methodol-
ogy

The Concurrent Constraint–Driven methodology[35] opti-
mizes at the system level and the cell level at the same time,
with a cost function that coerces the designs to agree. The
design space includes the cell–level design space (e.g. opamp
transistors’ widths and lengths), and system–level design
space (specifications of the system’s subblocks). The opti-
mizer goals are (a) to meet the system–level specifications,
and (b) ’glue’ constraints that coerce agreement between
the system–level’s design variables and what performances
the opamp is actually achieving. The problem with this
approach is that it cannot scale – the design space combin-
ing even two levels will be almost certainly too huge. Even
in [35], the authors had to force symmetry among several
amplifiers in order to make the search tractable, and the
runtime was still far longer than their comparable work at
just the cell level. Furthermore, this approach does not show
a clear path to handle more than two levels of hierarchy.

3.4 Top–Down Constraint–Driven Methodol-
ogy (TDCD)

Engineering schools throughout the world teach variants
of a hierarchical methodology colloquially referred to as ’The’
Engineering Design Methodology. It tends to have a struc-
tured means of traversing the design hierarchy, starting from
a set of system–level specifications. In analog CAD, this
methodology made its appearance as the Top–Down Con-
straint–Driven methodology [18], or TDCD, which formal-
ized how the traversal can be done with rigor.

Starting from system–level specifications, an architecture
is chosen, and designed (optimized) at the architecture level
using an optimizer. The authors have equations to describe
what combinations of performances are feasible; the opti-
mizer’s constraints are to meet the performance constraints,
with the objective to ’maximize flexibility’. The design
space for the optimizer is the target specifications of the
next–lower–level design blocks. So, each sub–block is given
a set of specifications to meet, also known as ’constraint
transformation.’ The lower–level building blocks are opti-
mized in the same way, until all the blocks in the hierar-
chical tree are designed. At the leaf nodes of the tree are
the transistor sizes. If, during these mapping stages, a sub-
block is not feasible or the specifications can not be met,
then the hierarchy is climbed again to choose a different ar-
chitecture or a different mapping function. At the tail end
of the design process, a full bottom–up verification is done
with accurate performance estimation (i.e. SPICE). Other
authors have proposed similar methodologies [39, 44]. [1]



emphasizes the use of VHDL–AMS for modeling. Many of
these techniques have resulted in fully designed and fabri-
cated analog systems, which underscores the success of the
approach.

Remember that there are many performance estimation
options available to users of TDCD, which we have already
reviewed. Typically, manually–created behavioral models
are used during optimization, and a SPICE–like simulation
is done for verification.

In analog circuits, tradeoffs always exist. A designer might
typically find him/herself striking a compromise between
power, accuracy, speed, and area. Unfortunately, TDCD is
fundamentally constrained to give, at best, a feasible solu-
tion at the system level; understanding system–level trade-
offs is out of the question.

TDCD heavily relies on a model of what performances
are feasible. In early work at Berkeley and others, this was
done with manually created equations, which of course is
very time consuming, error–prone, and poor for adapting to
new processes.

3.5 Feasibility Modeling Bottom–Up Plus
TDCD

Researchers have recently been addressing the feasibility
problem associated with TDCD. The idea is to construct
feasibility models of a performance space in a bottom–up
fashion (FMBU), which is then followed by the traditional
TDCD scheme.

In [19], radial–basis–functions model the feasibility, and
the performance of subblocks at all levels of the hierarchy.
More recently, [8] uses Support Vector Machines and treats
the problem as merely a classification problem, with per-
formance values as inputs and feasible y/n as the output.
That work has an adaptive sampling scheme (or optimiza-
tion scheme, depending how you look at it) to iteratively
refine the detail of the feasibility model. In a similar vein,
[13] also models the region of feasibility, but with spec–wise
linearized models.

Thus, FMBU+TDCD overcomes the feasibility modeling
problem of plain TDCD. Another advantage is that once the
feasibility region for a subblock is generated for a given tech-
nology, it does not need to be generated again. Over time,
libraries of feasibility regions can be built. The FMBU half
also provides the opportunity to see system–level tradeoffs:
it’s merely the subset of the feasibility region at the system
level, specifically the nondominated performances.

A problem with FMBU+TDCD is that whenever a real
design needs to be done, the TDCD portion needs to be
carried out. This requires sizing at each node in the hierar-
chy, which can take considerable time (e.g. hours or more
per node). Even if the set of designs found during the ini-
tial feasibility modeling are retained, they may not meet
the exact specifications requested by the higher–level node,
necessitating a sizing run. Another problem is that during
FMBU, considerable simulation effort is expended to model
the whole feasibility region; there are designs on the feasi-
bility boundary that are worse in every way compared to
other designs on the boundary.

3.6 Multi–Objective Bottom–Up Methodology
Recent research suggests a way to avoid the extra work

that FMBU+TDCD has imposed upon itself. The core ideas
are (a) to determine just tradeoffs among the performance

objectives, not whole feasibility regions, and (b) to directly
use designed circuits rather than models. We now discuss
this in detail.

Recent cell–level analog CAD sizers in both academia [9,
14] and industry [42, 4] find the ’Pareto optimal sets’ (dis-
crete set of designs approximating a tradeoff) using multi–
objective algorithms (e.g. [45, 48]). These cell–level Pareto
optimal sets can be directly exploited for system–level de-
sign, as described in [11] in what amounts to a ’MUlti–
objective Bottom–Up’ (MUBU) methodology. The design
space for the next level up is the ’selection’ of a design for
each of the sub–blocks. A ’selected’ sub–block design is
actually pointing to a specific design from the lower–level
tradeoff Pareto–hypersurface of that sub–block. The hier-
archy traversal proceeds in an upwards fashion, in the end
providing an optimal system–level tradeoff. Figure 4 illus-
trates.
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Figure 4: Multi–Objective Bottom–Up Methodol-
ogy (MUBU) maps design points to performance
points via performance estimation as usual. It finds
and keeps just the tradeoff via multi–objective op-
timization. It then propagates tradeoffs upwards
where they combine to make the next level’s design
space.

In MUBU, the shape of the design spaces at non–cell lev-
els is perhaps surprising: it’s a discrete set of points, but
not on a Euclidean grid or any particular arrangement, ex-
cept for the fact that if one interpolated among them, one
would get a hypersurface. Thus, when doing system–level
optimization, the algorithm needs different operators which
jumps from discrete point to discrete point (with a bias to-
wards points that are nearby). Such an approach is common
in the layout literature (e.g. [6]).

In MUBU, and in contrast to TDCD, any design that is se-
lected on any level is already fully sized. An analog designer
just has to choose a solution at the system level according
to the performance specs, and immediately all the design
variables of the complete system are set. MUBU simultane-
ously provides both full sizings and flexibility in specs. In
addition, once a given block has had its Pareto optimal set
generated in a given techology, it can be reused. Figure 5
illustrates a system-level tradeoff for an A/D, generated by
MUBU (details in [11]).

In TDCD methodologies, a good feasibility–modeling ap-
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Figure 5: System-Level Tradeoffs Generated by
MUBU. These are tradeoffs of an A/D, shown in
parallel coordinates. Each 3-segment line represents
another design. Each design is fully sized (no top-
down traversal is needed).

proach is necessary for success (e.g. use FMBU). In con-
trast, MUBU completely avoids explicit modeling any per-
formance surfaces. The closest thing it has to a ’model’ is
the Pareto–optimal set, which collectively approximates a
performance surface. But it’s no more and no less than a
set of points. Of course, one could build a regression model,
for example by extending [9] for use in hierarchical design.
Doing this might give slight refinement in specs, but it then
requires that a new design is done for each new problem,
which is giving up a lot of the benefits of MUBU.

Recall that FMBU needs to generate a full feasibility model
for each node. In contrast, MUBU captures all the good cir-
cuits and nothing more (i.e. tradeoffs). Figure 6 illustrates.

TDCD feasibility models

Pareto−optimal MUBU models

System

.....

Figure 6: FMBU+TDCD vs. MUBU. The shaded–
out area in each block represents its performance
feasibility region, which FMBU generates bottom–
up. The line on one edge of one quadrant of the re-
gion represents the Pareto–optimal set that MUBU
generates bottom–up. FMBU has to work a lot
harder than MUBU, to merely learn about designs
not even on the tradeoff surface.

For these various design space traversal methodologies, we
have not discussed the choice of a particular optimization al-
gorithm. That choice can be orthogonal to the methodology;
the main thing is that the algorithm should efficiently ac-
complish its job. Popular choices in analog CAD include

variants and combinations of simulated annealing, evolu-
tionary algorithms, and pattern search. Some methodolo-
gies may have special requirements, most notably MUBU,
which needs an algorithm flexible enough to work on ar-
bitary landscapes, and needs to be multi–objective.

4. CONCLUSIONS
In this paper, we reviewed the state of the art for automa-

tion in analog system–level sizing, which we divided into two
issues: how to do performance estimation at each level, and
how to tackle the sizing such that the design space for any
given subproblem has a tractable size. Good techniques for
automated behavioral modeling, in combination with high–
capacity simulators, create the possibility of having simula-
tions for systems that are not excessively long in runtime,
yet sufficiently detailed. We paid particular attention to the
top–down constraint–driven methodology and its recent ex-
tension for bottom–up feasibility modeling, as well as the
multi–objective bottom–up methodology (MUBU). MUBU
points to a possible means of achieving analog IP libraries
that are both sufficiently ’hard’ (i.e. pre–designed) yet with
sufficiently flexible specifications.
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