
Smart contract development
with TokenSPICE & Brownie

PyCon Iran, Feb 16, 2022
Trent McConaghy

@trentmc0 @oceanprotocol

http://trent.st/content/pycon.pdf

http://trent.st/content/pycon.pdf

Overview

Who this talk is for:
• Py / ML developers
• Who are blockchain-curious
• Who could quickly become blockchain ninjas but don’t know it yet!

Outline

• Ninja strategy #1: a useful cheat

• Smart contracts background
• Ninja strategy #2: for rest of talk

• Py skills →Brownie
• ML algs → blockchain algs
• Py + ML skills →TokenSPICE

Ninja Strategy #1:
A useful cheat

Py + ML without Solidity dev, for ML use cases
Tokenize data & algorithms, share it, sell it (Ocean)

github.com/oceanprotocol/ocean.py

market.oceanprotocol.com

https://www.github.com/oceanprotocol.com/ocean.py
https://www.market.oceanprotocol.com

Background
on Smart Contracts

Web
App

Deploy smart
contract (as tx)

Verify smart
contract

Storage on chain,
holds state

EVM on chain,
runs smart contracts to update state

Sign & submit
tx

Write tx: call to
smart contract

Develop smart
contract

Read chain
state

Get insight, take
action

Develop &
deploy webapp

What a smart contract looks like (Solidity code)

https://github.com/oceanprotocol/contracts

https://github.com/oceanprotocol/contracts

Web
App

Deploy smart
contract (as tx)

Verify smart
contract

Storage on chain,
holds state

EVM on chain,
runs smart contracts to update state

Sign & submit
tx

Write tx: call to
smart contract

Develop smart
contract

Read chain
state

Get insight, take
action

Develop &
deploy webapp

Solidity,
JS, web3.js,

Truffle, Ganache

Reuse code,
Slither, auditors

Truffle,
Eth mainnet

JS, web3.js,
JS libs

Web
App

Deploy smart
contract (as tx)

Verify smart
contract

Storage on chain,
holds state

EVM on chain,
runs smart contracts to update state

Sign & submit
tx

Write tx: call to
smart contract

Develop smart
contract

Read chain
state

Get insight, take
action

Develop &
deploy webapp

Solidity,
JS, web3.js,

Truffle, Ganache

Reuse code,
Slither, auditors

Truffle,
Eth mainnet

JS, web3.js,
JS libs

Motivation

Why blockchain could look daunting to MLers:
• Different languages: Solidity, JS
• Different tools: Web3.js, Truffle, Ganache, ..
• Different building blocks: ERC20, ERC721, AMMs, multisig, DAOs, ..

Extra Worries:
• Is it start from zero? It looks like a long / steep learning curve
• Is it worth it? It looks like building webapps, not ML algorithms. Different

style.

Ninja Strategy #2:
Strategy for rest of talk

What if…

• Solidity, JS → Mostly Py, some Solidity
• Web3.js, Truffle, Ganache → Brownie (Py), Ganache (but hidden)
• ERC20, ERC721, AMMs, multisig, DAOs → treat as Py classes/objects:

Brownie

• Start from zero → Py & ML ninja skills are your big lever
• Webapps, not ML-like algs → ML-like algs via TokenSPICE (Py)

CLI
App

Deploy smart
contract (as tx)

Verify smart
contract

Storage on chain,
holds state

EVM on chain,
runs smart contracts to update state

Sign & submit
tx

Write tx: call to
smart contract

Develop smart
contract

Read chain
state

Get insight, take
action

Develop &
deploy for CLI

Solidity,
Py, Brownie(Py),

Ganache

Reuse code,
TokenSPICE(Py)
Slither, auditors

Brownie,
Eth mainnet

Py, Brownie,
Py libs,

maybe Jupyter

Learning Solidity

You still need Eth & Solidity basics.

This is the best path to a solid foundation.
amazon.com/Mastering-Ethereum-Building-Smart-C
ontracts/dp/1491971940/

And, JS not needed

https://www.amazon.com/Mastering-Ethereum-Building-Smart-Contracts/dp/1491971940/
https://www.amazon.com/Mastering-Ethereum-Building-Smart-Contracts/dp/1491971940/

Py skills →Brownie

Recall: what if…

• Solidity, JS → Mostly Py, some Solidity
• Web3.js, Truffle, Ganache → Brownie (Py), Ganache (but hidden)
• ERC20, ERC721, AMMs, multisig, DAOs → treat as Py classes/objects:

Brownie

Brownie Quickstart

Let’s walk through “Getting Started With Brownie”

Part 1 - Install

Part 2 - Brownie projects

Part 3 - Basic functionality

1: https://iamdefinitelyahuman.medium.com/getting-started-with-brownie-part-1-9b2181f4cb99

2: https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f

3: https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f

https://iamdefinitelyahuman.medium.com/getting-started-with-brownie-part-1-9b2181f4cb99
https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f
https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f

ML Algs → Blockchain Algs

Recall: what if…

• Webapps, not ML-like algs → ML-like algs

Incentives & Blockchains

“Show me the incentive, and I will show you the outcome”
-- Charlie Munger

Incentives are conceptually easy in blockchain:
Get people to do stuff, by paying them in tokens.

How to implement incentives in blockchains:
Develop, verify, and deploy Solidity code

From ML Algorithm Design To Incentive Design

How do we design the incentives?

This problem is a lot like ML algorithm design:
It’s an optimization problem formulation!

Minimize fi(x)
S.t. gj(x) <= 0
And hk(x) = 0

This is design of analog / continuous-valued systems, vs digital / discrete.

In blockchain land, incentive design = Token Engineering.

Verification
How do we verify the incentives?

Three ways:
1. Manual → human feedback
2. Economic → deploy live, ratchet up risk
3. Software-based → need appropriate SW

Verifying Continuous-Valued Systems: Analog Circuits

SPICE sample circuit - diode clamp

*independent voltage source with DC value, AC value, and
*transient square wave. -10V to +20V extent, with 2ms period
V1 1 0 1 AC 1 pulse -10 20 0 1.e-8 1.e-8 1e-3 2e-3

*capacitor for clamping
C1 1 2 1e-6

*diode for clamp - model name is dclamp
D1 2 0 dclamp

*load resistor - large enought that RC >> 2 ms
*model for diode
.model dclamp D(IS=1e-14)

*DC transfer function generated for this circuit
.DC V1 -20 20 .1

*AC frequency sweep - assumes circuit is biased with V1 =

(Manufacture
circuit)

Verify with SPICE
simulator

Design analog
circuit

Verifying Continuous-Valued Systems: Incentives

Deploy smart
contract (as tx)

Verify with
TokenSPICE

simulator

Develop smart
contract

Py + ML skills →TokenSPICE

Recall: what if…

• Start from zero → Py & ML ninja skills are your big lever
• Webapps, not ML-like algs → ML-like algs via TokenSPICE (Py)

TokenSPICE Quickstart

Let’s walk through TokenSPICE’s README

github.com/tokenspice/tokenspice

https://github.com/tokenspice/tokenspice

Conclusion

Conclusion

• You know Py + ML, and you want to do cool stuff in blockchain
• Ninja strategy #1: skip Solidity, use ocean.py to tokenize data & algs
• Ninja strategy #2: dev on Solidity, use Brownie & TokenSPICE

@trentmc0
@oceanprotocol

CLI
App

Deploy smart
contract (as tx)

Verify smart
contract

Storage on chain,
holds state

EVM on chain,
runs smart contracts to update state

Sign & submit
tx

Write tx: call to
smart contract

Develop smart
contract

Read chain
state

Get insight, take
action

Develop &
deploy for CLI

Solidity,
Py, Brownie(Py),

Ganache

Reuse code,
TokenSPICE(Py)
Slither, auditors

Brownie,
Eth mainnet

Py, Brownie,
Py libs,

maybe Jupyter

