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Overview

Who this talk is for:
• Py / ML developers 
• Who are blockchain-curious
• Who could quickly become blockchain ninjas but don’t know it yet! 



Outline

• Ninja strategy #1: a useful cheat

• Smart contracts background
• Ninja strategy #2: for rest of talk

• Py skills →Brownie
• ML algs → blockchain algs
• Py + ML skills →TokenSPICE



Ninja Strategy #1: 
A useful cheat



Py + ML without Solidity dev, for ML use cases
Tokenize data & algorithms, share it, sell it (Ocean)

github.com/oceanprotocol/ocean.py

market.oceanprotocol.com

https://www.github.com/oceanprotocol.com/ocean.py
https://www.market.oceanprotocol.com
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What a smart contract looks like (Solidity code)

https://github.com/oceanprotocol/contracts 

https://github.com/oceanprotocol/contracts
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Motivation

Why blockchain could look daunting to MLers:
• Different languages: Solidity, JS
• Different tools: Web3.js, Truffle, Ganache, ..
• Different building blocks: ERC20, ERC721, AMMs, multisig, DAOs, .. 

Extra Worries:
• Is it start from zero? It looks like a long / steep learning curve
• Is it worth it? It looks like building webapps, not ML algorithms. Different 

style.



Ninja Strategy #2:
Strategy for rest of talk



What if…

• Solidity, JS → Mostly Py, some Solidity
• Web3.js, Truffle, Ganache → Brownie (Py), Ganache (but hidden)
• ERC20, ERC721, AMMs, multisig, DAOs → treat as Py classes/objects: 

Brownie

• Start from zero → Py & ML ninja skills are your big lever
• Webapps, not ML-like algs → ML-like algs via TokenSPICE (Py)
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Learning Solidity

You still need Eth & Solidity basics.

This is the best path to a solid foundation.
amazon.com/Mastering-Ethereum-Building-Smart-C
ontracts/dp/1491971940/ 

And, JS not needed

https://www.amazon.com/Mastering-Ethereum-Building-Smart-Contracts/dp/1491971940/
https://www.amazon.com/Mastering-Ethereum-Building-Smart-Contracts/dp/1491971940/


Py skills →Brownie



Recall: what if…

• Solidity, JS → Mostly Py, some Solidity
• Web3.js, Truffle, Ganache → Brownie (Py), Ganache (but hidden)
• ERC20, ERC721, AMMs, multisig, DAOs → treat as Py classes/objects: 

Brownie



Brownie Quickstart

Let’s walk through “Getting Started With Brownie”

Part 1 - Install

Part 2 - Brownie projects

Part 3 - Basic functionality

1: https://iamdefinitelyahuman.medium.com/getting-started-with-brownie-part-1-9b2181f4cb99

2: https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f 

3: https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f  

https://iamdefinitelyahuman.medium.com/getting-started-with-brownie-part-1-9b2181f4cb99
https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f
https://betterprogramming.pub/getting-started-with-brownie-part-2-615a1eec167f


ML Algs → Blockchain Algs



Recall: what if…

• Webapps, not ML-like algs → ML-like algs 



Incentives & Blockchains

“Show me the incentive, and I will show you the outcome” 
-- Charlie Munger

Incentives are conceptually easy in blockchain:
Get people to do stuff, by paying them in tokens.

How to implement incentives in blockchains: 
Develop, verify, and deploy Solidity code



From ML Algorithm Design To Incentive Design

How do we design the incentives? 

This problem is a lot like ML algorithm design: 
It’s an optimization problem formulation!

Minimize fi(x)
S.t. gj(x) <= 0
And hk(x) = 0

This is design of analog / continuous-valued systems, vs digital / discrete.

In blockchain land, incentive design = Token Engineering.



Verification
How do we verify the incentives? 

Three ways:
1. Manual → human feedback
2. Economic → deploy live, ratchet up risk
3. Software-based → need appropriate SW



Verifying Continuous-Valued Systems: Analog Circuits

SPICE sample circuit - diode clamp

*independent voltage source with DC value, AC value, and
*transient square wave. -10V to +20V extent, with 2ms period
V1 1 0 1 AC 1 pulse -10 20 0 1.e-8 1.e-8 1e-3 2e-3

*capacitor for clamping
C1 1 2 1e-6

*diode for clamp - model name is dclamp
D1 2 0 dclamp

*load resistor - large enought that RC >> 2 ms
*model for diode
.model dclamp D(IS=1e-14)

*DC transfer function generated for this circuit
.DC V1 -20 20 .1

*AC frequency sweep - assumes circuit is biased with V1 = 

(Manufacture 
circuit)

Verify with SPICE 
simulator

Design analog 
circuit



Verifying Continuous-Valued Systems: Incentives
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Py + ML skills →TokenSPICE



Recall: what if…

• Start from zero → Py & ML ninja skills are your big lever
• Webapps, not ML-like algs → ML-like algs via TokenSPICE (Py)



TokenSPICE Quickstart

Let’s walk through TokenSPICE’s README

github.com/tokenspice/tokenspice 

https://github.com/tokenspice/tokenspice


Conclusion



Conclusion

• You know Py + ML, and you want to do cool stuff in blockchain
• Ninja strategy #1: skip Solidity, use ocean.py to tokenize data & algs
• Ninja strategy #2: dev on Solidity, use Brownie & TokenSPICE

@trentmc0
@oceanprotocol
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