Ocean Market Balancer Simulations
For Token Engineering Academy

May 21, 2021
Trent McConaghy

@trentmcO @oceanprotocol
[video] /' A

https://www.youtube.com/watch?v=TDG53PTbqhQ&ab_channel=TokenEngineering

Outline

Summary: Research Q’s

Intro

 What's Ocean?

 EE Simulation & Verification

 TE Simulation & Verification
Ocean System TE

 Base

 SW Verification w TokenSPICE
Ocean Market TE

« V3 base

V4.1 base

V4.1 SW Verification w TokenSPICE & EVM
Roadmap - this research & beyond
Conclusion

—
—_ =
‘,_‘ = = ;

Summary: Research Q’s

Basis:
* Ocean Market uses Balancer AMMSs
« Doing TE to model, verify and optimize Ocean Market is highly useful on its own
« And it's well-defined subset of broader Balancer ecosystem; we can extend scope
once we’ve got a handle on Ocean Market dynamics

Research Q’s
« Can we capture the dynamics of Ocean Market / data ecosystem for Ocean V3?

(system identification problem). Includes capturing observed issues .
 Ocean has new mechanisms, aiming to address the observed issues. How well do

those mechanisms work?

« Tool: use TokenSPICE with EVM-in-the-loop
https://qithub.com/oceanprotocol/tokenspice

https://github.com/oceanprotocol/tokenspice

What’s Ocean?

® Ocean V3isnow live 2

Tools for the Web3 Data
Economy

Use Ocean Market app to earn by selling data and curating / staking
on data. Use Ocean Protocol libraries to build your own app for
secure, privacy-preserving data exchange.

In Ocean Protocol, each data service gets its own datatoken. This
enables data wallets, data exchanges, and data co-ops by directly
leveraging crypto wallets, exchanges, and more.

\%/

OocCean

Ocean Datatokens: On-ramp data services into data assets, and off

(Create
datatokens)

o
e ®
.o

ocean

Custody, Data Mgmt

...............................

Data wallets: Data

-

®® METAMASK

TREZOR Ledger

! Pillar
MyEtherWallet
WalletConnect

...............................

..............................

@ ARAGON \2

coloNyY

o)
@ DAOstack moLocH

kyber ; () Ox Bancor
networ .)
coinbase Uniswap &<

--

m CoinMarketCap
o’

ETHERSCAN 5 4 CoinGecko

...

: Data Insurance, Data Baskets, !

Data as Collateral...

Nexus o$e Mutual
AAVE gynTHETIX

@ntrifuge

Set

(Consume
datatokens)

o
e @
. e

ocean

OCean

Electrical Engineering (EE)
Simulation & Verification

T — S ——
TN

- -

e e —
- . = e

Variation = atoms out of place
...Propagating from devices to performance & yield

o Device performance

. variation 1 50 -

),

(L
i

([II/

ity

s

%

Y

8nm Channel
Snm Channel

7% ;:; ¢ :///////////////////

Circuit performance
variation 1

/

.10 0.15 0.20

Rare Event Verification for Memory: Problem

Consider a 256Mb SRAM:
- 256M bitcells

— 04k sense amps

— 4k bitcells / sense amp

Bitline Precharge

Want overall yield to be 90-99%.

For the SRAM to yield, need:
Bitcell sigma ~= 60
Sense Amp sigma ~= 4.50

1% improvement in overall yield makes a huge
difference.

Sense Amplifiers

Memory is the leading edge of billion dollar
fabs...

Rare Event Verification of a Memory Bitcell
via SPICE-in-the-loop & Al tricks to reduce # sims

e 6 devices x 10 local process variables / device = 60 variables
e Simulated 1M MC samples. Each dot in curve is a sample.
o The bend means quadratic response in that region
o The dropoff / vertical means a flat response in that region (in this case, transistors turning off)

Quantile(cell i)

- - MC (1M sims.)

0.000000 0.000005 0.000010 0.000015
cell i

Rare Event Verification of a Memory Sense Amp
via SPICE-in-the-loop & Al tricks to reduce # sims

e 15 devices x 10 local process variables / device = 150 variables
e The three vertical “stripes” mean

@)

O

©)

©)

three modes
tight distributions in each mode, almost flat response
left mode is “off”, right mode is “extreme”

gaps between stripes imply a discontinuity in response
ol ; .

Quantile(delay)
o

=6k - - MC (1M sims.)

0.0 0.5 1.0 1.5
delay le—9

Worst-Case Verification for VCO of a PLL: Problem

Q: Does circuit meet constraints on all 3375 “PvT 28
corner” combos? M RN

ARvDD.T P
a AF
(1

DFM_apt
mac o My

Fhaeo . T '
s MO | » v % s v x5 55 5 a0 » S EE ;
. . vebN) oine— P VCOINM -
Result: used 171 evaluations to verify 3375 = S A
corners o AJ'. SPREm S AW W @] ﬂi AAAAA
e T 4 [T ==

= > = <L
O 3375/171 = 19.7x speedup BING 'TA\?%#LWDD o - VeOLV
o]| ...e8 |
O 65.6 h — 3.3 h (1 core) or 20 min (10 cores) -RING. a1 2w a 3?‘ T .
U e o] e [k 7 AR
-------------- U-)TAH\/SS = pwo VCOLV. |

................. a1

R

Worst-Case Veritication tor VCO of a PLL: Solution

SPICE-in-the-loop + Al/optimization to reduce # sims
90 |
80 |
70
%_60 3
3
50 |
0 Predicted output value |
Output value
Max output value
30 | Predicted output CI
0 50 100 150

Samples

—
—_ =
‘,_‘ = = ;

On Verifying Token-Based
Systems

A Token Engineering perspective

Q Trent McConaghy

Jul 14 - 11 min read L Minll f RS

I “Trust, but verify” — Russian proverb

Defining the Problem

TE Verification is about evaluating the token-based system to find out
whether it meets the specified requirements. The system could be a
simple tool or a full tokenized ecosystem, instantiated as one or more smart

contracts or even L1 blockchain networks.

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

OocCean

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

As a starting point, let’s recognize that we are talking about dynamical
systems. A failure is when the dynamical system gets stuck in a region of

state space that does not reflect design intent: it’s a dynamical system fault.
It’s like getting caught in the wrong loop.

There could be failures on the logic side; this is a digital problem. There
could be failures on the incentives side; this is an analog problem. There
could be failures on the combination; this is a mixed-signal problem.

Parallel in Circuit

Examples

Type of TE : .
Verification Type of TE Design Verify What?
Digital Digital: Discrete time Digital behavior, instantiated Single smart contract, or
Verification (clocked), discrete-valued in smart contract logic. a set of smart contracts.
signals (typically binary).
Analog Analog: Continuous time, Analog behavior, instantiated Single smart contract,
Verification or continuous valued- in smart contracts incentive set of smart contracts, or
signals design / economic model and system level (may be
other analog signals. across >1 chains).
Mixed- Mixed-signal: Some digital Mixture of analog and digital Set of smart contracts,
Signal and some analog blocks. behavior. or system level.

Verification Overall system is analog.

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

Multiplexers, floating-
point units, ARM cores

Amplifiers, filters,
memory bitcells.

Analog-to-digital
converters, RF
transceivers, memory
columns

OocCean

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

On TE Verification

It's pragmatic to do verification in phases of increasing fidelity:

1. Humans. Subjective discussions, with increasing # people. 1 —2 —key stakeholders

2. Software modeling, with increasing fidelity. Spreadsheet — agent-based sim — high-fid sim

3. Economic (live). Can ratchet value-at-risk over time. People can choose risk/reward tradeoff.
Phased approach.

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

SW modeling with increasing fidelity

1. Spreadsheet-based agent-based system. Each row is a different time
step. Some columns are state variables; some are input variables; some
are output variables. The next row’s state variable values are a function
of that row’s input variables and the previous row’s state variables.
Output variables are a function of the current row’s state variables and
input variables.

2. Custom software for agent-based modeling, with rough-grained
models. The rough grained models may be subroutines, differential
equations or other “behavioral models”. This approach takes more up-
front effort than (1), but offers more flexibility. Once that up-front effort
is invested, it’s also easier to maintain and test, towards building more
complex models.

3. Custom software for agent-based modeling, with fine-grained
“smart contracts in the loop”. This is even higher resolution than (2).
Simulation time is longer but it starts to go with shades of gray into real-
world behavior. It’s akin to hardware-in-the-loop simulation.

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf ocean

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

Ocean System TE: Process

<| did the following process over 8 weeks with a collaborator - Julien Thevenard @ Fabric.vc>

1. Goals:
a. Write out goals (first-cut)

2. Design:
a. Explore various designs to achieve the goals. Loop back to update goals.

3. Verification:
a. (Better formalize what “verification” can mean, and how to do it - see blog post on TE Verification)
b. Approach: Manual analysis & conversation. Loop back to update goals or design.
c. Approach: SW to answer Q’s. Loop back to update goals or design.
i. spreadsheet-based
ii. agent-based sim - TokenSPICE

OCean

Ocean System TE: Goals

Find a design to enable...

« Ecosystem sustainable and growing, towards ubiquity
* Funding goes to teams improving L1-L3 etc, over the long term (10+ years)
« $OCEAN grows as usage of Ocean network grows

Including:

« Basic design is simple to understand and communicate
« Can be implemented in a pragmatic fashion, over time
» Get people to do “work”,

» Encourage skin-in-the-game by users

A choice of system-level design will lead to goals of sub-blocks in the system.

OCean

Early 2020: BigchainDB is building Ocean data
ecosystem (on behalf of OPF).

Work™ to build Data
Ecosystem

How do we make the data ecosystem sustainable and
growing? Including having funds to keep improving
platform etc.

OCean

Get network revenue as % of marketplace
revenue

To pay for work

That grows marketplaces revenue

That grows network revenue

A loop! It's = the loop of any sustainable business.

But adapted for the Ocean Web3 ecosystem:
Give space for the community to discover more
value.

Work to grow
Network revenue?,
$OCEAN?

Network
revenue

OCean

Burn a % of all revenue so
that stakeholders benefit
from revenue growth.

Work to grow
Network revenuef,
$OCEAN?

Network
revenue

OCean

e Q1. How to ensure long-term sustainability? = Ensure long-term funding to core devs etc?
e Q2: Network revenue will not be significant for 4 or 5 years, and maybe a lot longer. How to fund before that?
e A: Disburse 51% of token supply, over decades to fund work by core devs etc. And use OPF treasury.

Dynamics for $OCEAN?
as usageft, incl.
stake/curate to get % of
sales.

Vote on grants.
Disburse =zGovernance
over token

decades

Work to grow
Network revenuef,
$OCEAN?

Network
revenue

OCean

Ocean System TE: Design Result — Schematic
New Pattern: Web3 Sustainability Loop

Vote on grants. Dynamics for SOCEAN?

Disburse =zGovernance
over token

as usageft, incl.
stake/curate to get % of

sales.
decades

Work to grow
Network revenuef,
$OCEAN?

Network
revenue

Ocean System TE: Design Result — Sub-block goals

The system-level design led to specific goals for sub-blocks.
-Top-down constraint-driven design methodology [ref Henry Chang et al].

Here are the goals for the sub-blocks in Ocean System:

- Datatoken contracts: as tx volume goes up, it drives SOCEAN.

 OceanDAO: curation of projects (governance) encourages skin-in-the-game and long-term
sustainability

« Marketplace: as $ volume goes up, it drives SOCEAN. Get “work” and skin-in-the-game by curators,
referrers, third-party marketplace owners

To implement:

« Datatoken contracts: implement by taking a % fee in consume.
* OceanDAO: see later section.
« Marketplace: see later section.

OCean

https://www.springer.com/gp/book/9780792397946

Ocean System TE
SW Verification

— -
P - S— —
e
-~ - - .

Ocean System TE Verification: Overall

1. Humans. Subjective discussions, with increasing # people. 1 —2 —key stakeholders
« Discussions among team (& Julien @ Fabric)

2. Software modeling, with increasing fidelity. Spreadsheet — agent-based sim
* more details later - TokenSPICE.

3. Economic (live). Can ratchet value-at-risk over time. People can choose risk/reward tradeoff.
* Doing this!
« Biggest ratchet of value-at-risk over time: OceanDAO funding. From OPF — from 51% in
ratcheted wya.

Ocean System TE Verification: SW Modeling

We built TokenSPICE to model Ocean ecosystem

Agent-based simulation, in python

Each “agent” is a class. Has a wallet, and does work to earn $

Model the system by wiring up agents, and tracking metrics (kpis)

It's easy to adapt for other projects doing Web3 Sustainability Loop, or
simply fork it and write new agents for any agent-based simulation
Initial version at: hitps://github.com/oceanprotocol/tokenspice0.
Continually evolving at https://github.com/oceanprotocol/tokenspice

https://github.com/oceanprotocol/tokenspice0.1
https://github.com/oceanprotocol/tokenspice

Block diagram: early model

Includes:

e >1 Publisher agents

e >1 Marketplace agents

e >1 Buyer agents

e Referrer/ curator

e (Ocean search
| [Trent] had started to build this in the tokenSPICE repo;
see early commits. However it had a lot of complexity, and
my questions were more system-level. So | compressed
all of the above into one block simply called “Data
ecosystem”. See next slide.

Block diagram:
actual

Work to improve
network parameters
(eg # mktplaces)
which lead to
network revenueft,

$OCEAN?

OCean

Key variables being modeled

e We can model Ocean revenue and $SOCEAN over time. This helps our decision-making.

(@)
@)

(@)

t=0:
mkts,
$/mkt/yr

F(): Ratio
— Growth

init $ from
BDB, OPF

We can model marketplaces’ revenue. Depends on initial parameters, and $ growth rates.

From that, we can model Ocean network revenue. Depends on % mkts revenue to Ocean network.
From that, we can model fundamental valuation of Ocean network (e.g. P/S). Can compare this to
speculation-based component too.

We can also model # tokens, including effects of minting and burning

From valuation of Ocean network, and # tokens, we can model $OCEAN

Marketplaces Ocean Network Fundamental Total $OCEAN
Revenue Revenue Valuation Valuation
% to R&D Speculation
% of mkts vs burn Valuation

Mkts Revenue
revenue to

Growth Rate # burned

Ocean Network # Tokens
minted

Ratio of ($ to R&D) /
($ network sales) init # tokens

$ to R&D
(=work to improve F(): Time — OCEAN
network params) $ from dispensed

51%

Block diagram: simplified version for public

Dynamics that
make $TOKEN1
as usage?

Disburse over Vote on $ allocation.
years, decades, zGovernance token

or centuries

*Work™ to grow
Network revenuef,
$TOKEN1

Network
revenue

OCean

Modeling marketplaces growth rate
F(): Ratio — Growth

Growth should have these characteristics:
e As a function of ratio of ($ into Ocean R&D) / ($ Ocean revenue)
e Just like companies!
o Big slow-growth companies may put 5% of sales into R&D. Ratio =
0.05
o Small fast-growth companies (i.e. startups) may put 100% or even
300% of sales into R&D. Easy because sales are small.
o Larger but still fast-growing companies may put 30-50% of sales
into R&D (ratio=0.3-0.5), for 20-40% growth. E.g. Facebook,
Amazon, Apple.
o Negative growth if little or no $ into R&D, whether large or small
e Diminishing returns as more R&D $ injected

How we model, to capture the target characteristics:
e Model growth as an exponential. This captures diminishing returns.
e Overall marketplaces growth:

Has two components: # mkts, $ rev / market
Overall growth is a function of both
Growth = (1 + growth in # mkts) * (1 + growth in $ rev/mkt) - 1

e Set parameters for eah component as follows:

o annual growth rate if O sales = -11.8%, so that growth rate *2 is
-25%

o max annual growth rate = 41.5% such that overall rate is 100%

o growth range = (max annual growth - growth if 0 sales)

o tau = 0.6. This means: if ratio is 0.6, we’'ll get 50% of growth range.

If ratio is 2*0.6, we’ll get 75% of growth range. Etc. Like half life,
but not for time.

Growth rate

40.00%
— 20.00%
=
@
@
g
S 0.00%
o

-20.00%

0.00 1.00 2.00 3.00
(SR&D)/(Ssales) ratio

(Growth rate)”"2

100.00% =

75.00% s
£ 50.00%
Q
®
€ 25.00%
[=]
5

0.00%

/
/
-25.00%
0.00 1.00 2.00

(SR&D)/($sales) ratio

3.00

Modeling 51% supply schedule
F(): Time — OCEAN dispensed

Concerns to address:
1. Not have sharp dropoff of $ funding after e.g. 10 years
2. Avoid too much OCEAN entering the market too early, before there’s enough
liquidity
3. 51% supply is intended for OceanDAO, esp. for R&D. But early OceanDAO will
likely take years to stabilize, to be able to handle lots of OCEAN or $. That is:

OceanDAO needs to “bake slowly”, so §$ into it needs to reflect that —

How to handle:

e For (1), to avoid sharp dropoff: baseline schedule is *not* uniform for 10 years then
stop. Instead, make it an exponential, such that there’s funds in 10 years, 20 years,
even 50 years.

o Set the half-life for supply to be 4 years (like Bitcoin). That is, in this baseline,
50% of the (51%) tokens would be dispensed after 4 years, 75% after 8
years, etc. Supply stops after 34 halvenings (about 125 years).

e For (2)(3), modify the baseline schedule with a “ratcheting up” in the first few years:

o Ratcheting schedule (see plot on right):

OCEAN minted

m Forfirst 0.5 years: multiply baseline exponential function by 10% 01

m Fornext 0.5 years: 25%
m Fornext 1.5 years: 50%
m Then 100%
o This schedule ensures R&D funding is approx $100K/mo for the first decade.
After that, funding rises exponentially as SOCEAN rises exponentially.
o Ratcheting can be done programatically (“unstoppable”) or manually (until the
final 100%, at which time hardcoded). Manually may be more pragmatic, so
we can handle unforeseen issues, and tune the % for a steadier R&D $

supply.

3e+08 +

2e+08

le+08

Year

TokenSPICE results

« We have many experiments on TokenSPICE. with many results.
» We put each round of results into GSlides.
» Let's see an example.

https://github.com/oceanprotocol/tokenspice

Parameter Settings

e Simulation time 20 years
e Growth rate info:
o growth rate if 0 sales =-11.8% (for total = -25%)
o max_growth rate = 41.5% (for total = 100%)
o tau = 0.6 (ie ratio needs to be 0.6 just for half the total range. MUCH higher than before)
o $ R&D = grantTakersMonthlyRevenueNow(); $ sales = oceanMonthlyRevenueNow()
Ocean toll from marketplaces revenue:
Speculation valuation at t=0:
Growth rate of speculation valuation: _ /year
Fundamentals valuation approach: P/S = 30x
% of revenue to burn directly: 5%
Ramped exponential minting: like right side of 20200505: H=4.0, T0=0.5, T1=1.0, T2=1.4, T3=3.0,
M1=0.10, M2=0.25, M3=0.50. Stop after 34 halvings (about 125 years)
e DAO is funded by:
o minting
o OPF: uniformly per month over 36 months
o BDB: ", 17 months

Monthly R&D Spend ($M)

Monthly R&D Spend

Monthly R&D Spend (linear) Monthly R&D Spend (log)
=
<
©
=
@
Q.
(2]
Q
3
o
>
=
+
=
o
=
0 2 4 6 8 10 12 14 16 18 20 0 4 6 8 10 12 14 16 18 20
Year Year

OocCean

R&D/Sales Ratio and Marketplaces Growth Rate (%)

R&D/Sales Ratio, Marketplaces Growth Rate

R&D/Sales Ratio and Marketplaces Growth Rate (linear) R&D/Sales Ratio and Marketplaces Growth Rate (log)

—— R&D/sales ratio
4e+04 - ——— Marketplaces annual growth rate

—— R&D/sales ratio
- Marketplaces annual growth rate

le+04 -

3e+04 -

2e+04 - 1ekD;

le+04 -

le+02 -

R&D/Sales Ratio and Marketplaces Growth Rate (%)

.
.
.
.
.
.
.
-
.
.
.
.
d
.
.
.
.
.
4
.
.

Token count

OCEAN Token Count (linear) OCEAN Token Count (log)
1.4e+03]
—— Total supply TEH0TE
—— Tot # Minted
@ 1.2e+039 ___ 14t 4 Burned & I
o o
= = 1e+02 5
£ 1e+03 A £ |
£ £
g .
3 8e+02 3
= &
et L
= s
3 6e+02 3 17
o o
c c
- 4e+02 <]
2 P 013
- =]
h o
9 2e+02 7 9] —— Total supply
0.01 3 - Tot # Minted
0 -] —— Tot # Burned
0 2 < 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Monthly # OCEAN Minted & Burned (count, in millions)

Monthly # OCEAN minted & burned

Monthly # OCEAN Minted & Burned (linear)

— # Minted/mo
— # Burned/mo

Monthly # OCEAN Minted & Burned (count, in millions)

Monthly # OCEAN Minted & Burned (log)

— # Minted/mo
— # Burned/mo

Year

12 14 16 18 20

OocCean

DAO Income

Monthly OceanDAO Income ($M)

Monthly OceanDAO Income (log)

- Income as USD (ie network revenue)
——— Income as OCEAN (ie from 51%; priced in USD)
-~ Total Income

LJ LJ LJ LJ L] L) L] L) L L)

0 2 B 6 8 10 12 14 16 18 20

Year

Questions,
With Answers from Modeling Experiments

OOOOOO

Q: Benefit of Worker-51% schedule?

e (Q: How much do we need 51%7?
e Results: 51% drives 30x more value to SOCEAN
e Conclusion: use 51%

Note: this sheet is filled manually

' Tokens deployed in DAO VALUATION IN 2028 (DCF) VALUATION IN 2028 (P/E) TOKEN PRICE IN 2028 (DCF) TOKEN PRICE IN 2028 (P/E)
100M
200M
300M
400M
500M
600M
700M
800M
886M

N N A N N N N N b

OCean

Q: Best Schedule for 51% distribution?

e Q: What is the best schedule for 51% distribution?
e Results:
o Run 1: distribute uniformly over 10 years. Image below left.
m Observed: funding dropoff is too sharp.

o Run 2: Bitcoin-style exponential. Image below middle
m Observed: it solves dropoff, but in early years too aggressive: much $ & downwards $OCEAN pressure.

o Run 3: ratcheted exponential. Image below right
m Observed: it solves dropoff, not aggressive in early years and allows “bake slowly” with manual intervention.

e Conclusion: Ratcheted exponential is best; use it.

Run 1: uniform Run 2: exponential Run 3: ratcheted exponential

Ocean DAO Income Per Month vs. Year (log) Ocean DAO Income Per Month vs. Year (log) Monthly OceanDAO Income (log)

USD - USD > 1 Income as USD (e network revenue
OCEAN (pnced in USD) OCEAN (pnced in USD ”~ ncome as OCEAN (e from 51%; priced in USD)
Tota — Tota > i 1 Total Income

I\ ‘,-' P . 1

y O«

an O

= =
w v -
= * o
£ B8 - 1
€ = ¥ 4
O Q <
b 2 ©
3 o [
a o -~ ~
(3 [7 <
: = x 0
= o ” £
v} o
[c Y
o o
< <t
= A
(=
-
©
v
v,
A
O

2 - 6 8 10 12 14

16

18

T
20

—
—_ =
‘,_‘ = = ;

Ocean Market V3 TE: Process

Goals

Design
Implementation
Verification

Ocean Market V3 TE: Goals

3PM = Third Party Marketplace (e.g. dexFreight)

Main:
« Drives value of SOCEAN: as mkt $ vol goes up, $OCEAN goes up
* Incentivizes people to “do work”, aka add value such as more datasets or curation
* Drives virality, i.e. incentivizes people to refer others to Ocean
« Basic design is simple to understand and to communicate. (2nd-order complexities are ok, if needed)
« Each 3PM can also get all the characteristics here. E.g. virality
« 3PMs drive data liquidity to Ocean Market: ie aiding discovery by OPM

Secondary (generally straightforward to solve, once main are solved):

« Design accounts for Ocean Market, and for each 3PM

» Incentivizes people to learn about Ocean implicitly, via a more specific extrinsic incentive

« Actually does something useful. I.e. does not bolt on something useless

* Reasonable to implement & maintain

« For the live deployment, de-risk by ratchet up skin-in-game over time

» Accounts for our actual numbers: actual token supply, liquidity now, liquidity in future

« Avoid front running and flash staking. Eg. see a buy tx, flash stake, earn $$. A solution: need to stake for >24 h t
earn.

....O

Ocean Market V3 TE: Design exploration

Many designs were explored against the criteria.

Cand A: Ocean Market as sales channel for 3PM (metasearch), “free” listing ﬁ;’i‘r“’g& Ocoan Market;as sales;channal for, 3PM (metasearch);; paldt
o

Ocean buyer
cii ii ﬁ Dscovery curator

=
Referrai

D:cmry
Indirect
monetization
Reterral Seller eth
address.
buyer
dexFreignt L
S50
whatever. Up to

dexFreight)

Sesier eth
address.

dexFreight

Appendix:
Marketplace TE:
Account for 3PM: Promising Designs

dF chooses.
Here, set s 3%

hannel for em
over 3P

. 3PMs sz schema org standsrd 1o past st t Ter Sies, WHRCh are e Nidexed by web Crowters. OPM adds al at

% morth e S they spend)

Can dexFregHt marketpi:

aizn get 2
DexFrelgh chonses whasever 1 wars

antve cata b

109 110 111

Cand E: tit-for-tat sharing of metadata Ocean Market .- 3PM Cand E, cont'd: tit-for-tat sharing of metadata

Cand D: Shared metadata & backend PR

address

Reterrer-

s100
curator
Seller eth
‘adare:
buyer
51
possibilties, cl.
incenaes

ceure e tfo ng actusy raggers?
oo, he ke & pesid m S HEmOIabl way. EEIn moltet + THEGHagh, o pest o wet W schea g et o IPFS5

it

e biggest prosiem was that Relyess it ke sharing fees.

EARh

SRR —

Cand C: Ocean Market as sales channel for 3PM (metasearch), “free” + “paid” listing
Reterrer.
curator

- ' -
=

Setier eth
address

dexFreignt
whatever: et
dexFreight)

e e rep
ogie . O vice

ee" and “paks lisings. Exch wa
chicn, hen adkd 1 Pl Just e

Ocean Maket ras b
+ Wecansitwin

9 Con dexret mkepn
& So-50. DexFiengh choo:

§oes e mitoce it s iy 1o comurty mhphce?
ves

112

Cand G: OPF incentives to share data w community mkt

buyer 503
= Reterrer.
Txtees curator
APID
metadata
Seller et

OPF community
fund { “inflation”

@)
@
D
Q
)

Ocean Market V3 TE: Chosen design

25%

N
Y
dF OCEAN
stake > $xK?

-
st
o
__

As $ volume goes up, it drives SOCEAN.

Gets “work” and skin-in-the-game by curators, referrers, third-party marketplace owners
If you’re doing referrals and you drive volume?, for more rewards you need stake?
Same for curation

-

OCean

Referrer- Referrer —
Ocean Market V3 TE: 612 $1.00 0.

referral
Detailed version of chosen design

referral] ev share
e X% to OceanDAO
- * 100-X% to buy & burn
$100 OCEAN

25% of commission fees go to
buying and staking OCEAN, until
$50K of OCEAN staked.

dF OCEAN

$8 stake > $50K

Many possibilities, incl.
seller incentives to
referrers

$90

Concern: liability to whoever runs the unified metadata store; OPF can’t. Solution: decentralized metadata store. Options: (1) Eth mainnet + TheGraph, (2) IPFS + pinning, maybe Filecoin (3) arweave + some
search, (4) [maybe] publish on the Web, and then the Ocean Market crawler *only* crawls the websites of Publishers. All must follow schema.org schema.

Concern: for many 3PMs, give up too much control, so they won’t use this. Answers: we can still capture revenue at L1, maybe L2 REST API, and maybe other L3 stuff like Oceansearch. And, we should make the
Ocean Market frontend compelling enough for most people to stick around. E.g. more convenience, UX, liquidity. Just like Shopify did.

Top right: Curation is nice, referral is even more important. Because referral drives more traffic to the platform. So pay referral more. If you refer only, you earn a nice referral fee
If you refer & curate, you earn a bigger one. If you just curate, you earn a smaller one.

» Daily referrer reward = max($1, min(3, P% * daily_sales, 5% * amt_staked))
» Give referrers a little bit even if they haven’t staked anything
» Only get big reward if big sales and big amt_staked.

« Reward for iust curation: FIXME

Ocean Market V3 TE: Implementation

A realization: using AMMs implements the “Chosen TE design”, and meets “TE Goals”.

Design details:
+ Datatoken-OCEAN AMMs. LPing = staking = curating. LPs get a % of swap volume.
+ Store metadata on-chain
* Deploy to Ethereum mainnet
+ Datatoken consume() sends a % to marketplace runner, and to Ocean community

How the Market design implements the “Chosen TE design”:

. As $ volume goes up, it drives SOCEAN.
 [YES - as $ volume up, more OCEAN is staked, driving $OCEAN]
. [YES - as $ volume up, the $ from % fees goes up, some of that goes to burning, driving SOCEAN]
. Gets “work” and skin-in-the-game by curators, referrers, third-party marketplace owners
. [YES - LP rewards] If you're doing referrals and you drive volume?, for more rewards you need staket
. [YES - LP rewards] Same for curation

How it meets “TE Goals”:

« [YES] Drives value of SOCEAN: as mkt $ vol goes up, $OCEAN goes up

* [YES] Incentivizes people to “do work”, aka add value such as more datasets or curation
* [YES] Drives virality, i.e. incentivizes people to refer others to Ocean

* [YES] Basic design is simple to understand and to communicate.

* [YES] Each 3PM can also get all the characteristics here. E.g. virality

* [YES] 3PMs drive data liquidity to Ocean Market: ie aiding discovery by OPM

OCean

Ocean Market V3 TE: Verification

1. Humans. Subjective discussions, with increasing # people. 1 —2 —key stakeholders
« Discussions among team, and Julien @ Fabric)
« Discussions with Fernando @ Balancer

2. Software modeling, with increasing fidelity. Spreadsheet — agent-based sim
« Built Py & JS drivers for Balancer, and make extensive unit tests
« Did not do high-fidelity simulations of token dynamics. Why: (a) AMMs are already live (b) given the
first point it wasn’t worth the time commitment.

3. Economic (live). Can ratchet value-at-risk over time. People can choose risk/reward tradeoff.
« Launched Ocean Market with lots of writings & caveats (e.g. “beta”). “Test in prod” ;)
« People did choose risk/reward tradeoff. Some made $, some lost, some simply tested.
* Observed community response to Ocean Market, and token dynamics.
« Made adjustments accordingly. Being live was key to rapid improvements in what mattered.
« Most notable TE adjustment: 10/90 OCEAN/DT — 50/50 — 70/30. It helped a /ot.
« Further TE improvements identified around “Better IDOs” and more. For Ocean V4.1.

OCean

Ocean V3 (with Ocean Market) went live in the fall

d C N & market.oceanprotocol.com al@ A B8 ®

Ocean Market B3 PUBLISH HISTORY Get MetaMask o

Ocean Market

A marketplace to find, publish and trade data sets in the O

Leading retail brands and consumer preferences - Altcoin Sentiment Data Bitcoin Sentiment Analysis
over 36,000,000 points of data @ suilding Block Group @ suilding Block Group
@ suilding Block Group

2,011.976 B 4,098.248
3,447.227 I

http://market.oceanprotocol.com

http://market.oceanprotocol.com

—
—_ =
‘,_‘ = = ;

Ocean Market V4.1 TE: Process

Goals
* Design
* Implementation
« Verification

« Highlight: TokenSPICE with EVM-in-the-loop on all of the Ocean smart contracts,

including datatokens & factory, Balancer AMMs & factory, etc. So that | can model
Ocean Market dynamics with high fidelity.

Ocean Market V4.1 TE: Goals

Simple

-easy to understand. Mental model plays well with existing

-smart contract SW simple: to implement, understand, maintain
-GUI SW simple: to implement, understand, maintain

Avoids large price swings when people just want to stake OCEAN
Solves price spikes at beginning

Solves price spikes in market equilibrium

No risk of exit scam after IDO

Good incentive for publisher to publish initially

Address risk of datatoken price decoupling from what people will pay for it to consume it
//

Incentivize for actual consumption

OCean

Ocean Market V4.1 TE: Status Quo V3 Design

Criterion

Simple

-easy to understand. Mental model plays well with existing

-smart contract SW simple: to implement, understand, maintain
-GUI SW simple: to implement, understand, maintain

Avoids large price swings when people just want to stake OCEAN
Solves price spikes at beginning

Solves price spikes in market equilibrium

No risk of exit scam after IDO

Good incentive for publisher to publish initially

Address risk of datatoken price decoupling from what people will pay

for it to consume it //
Incentivize for actual consumption

Ocean V3

v

X

Vv

OCean

Mental Model: Life Cycle of a Data Asset

1. Publish DT contract. No tokens minted yet. Token cap set.

2. IDO /I Burn-In Phase. Initial tokens are distributed to a primary market, according to
some rules.

3. Equilibrium Phase. Token’s on the open market without rails. >0 secondary markets.

Sometimes 2 & 3 can blend together.

Ocean Market V3 Design, in context of Life Cycle

1. Publish DT contract.
2. IDO /I Burn-In Phase.

Publisher creates a pool

Publisher mints 10-100 DTs into pool, alongside 70% OCEAN tokens s.t. price is ok
That's it!

3. Equmbrlum Phase.

The initial pool tends to be the largest market

There can be secondary markets. E.g. some publishers have put DT pools on Uniswap.

Publisher is able to mint more DTs to inject into any market. They may have a *lot* of
DTs.

Ocean Market V3 Design - Issues in Context of Life Cycle
(there are other framings too)

Here's what's happening (bold = problems):

1. Publisher publishes a dataset. To not have to put in too much OCEAN stake for their initial price,

they pick the minimum # DTs to publish
Stakers come along and stake. Price skyrockets. Low supply, high demand -> high price.

2.
3. Price is highly volatile, because so few DTs
4. There's no GUI affordance for publisher to add more DT. If there was one, publishers may dump

DTs.

We've seen this problem before. It's the question of how do you release a crypto token to the market, to
get the token into many hands that want it, to get a decent price, to get decent liquidity, etc.

This is the realm of fund raising of any token project, with tools like vesting, ICOs, IEOs and more. This
is what we call an "IDO".

Ocean Market V4.1 | E: Design Iterations 1/2 (w/ Manual

Criterion Ocean 1SS LB 1SS + 1SS+ LB + 1SS +LB + 1SS +

V3 LB Dutch:Pub Dutch:Pub Dutch:Pub
+riCO

Simple v v v v =y x v

-easy to understand. Mental model plays well

with existing

-smart contract SW simple: to implement,

understand, maintain

-GUI SW simple: to implement, understand,

maintain

Avoids large price swings when people just want x 4 x 4 4 v 4

to stake OCEAN

Solves price spikes at beginning % R x 3 v v v

Solves price spikes in market equilibrium 2 3 v v v v v v

No risk of exit scam after IDO R v 4 ® ® v ®

Good incentive for publisher to publish initially Vv 4 x x v v 4

Address risk of datatoken price decoupling from ® ® ® ® ®

what people will pay for it to consume it //
Incentivize for actual consumption

1SS + 1SS +
Dutch:Pool Dutch:Pool

+ Vested
Premine

(4 v

v v

(4 4

(4 v

(4 (4

% 4

® ®

OCean

Ocean Market V4.1 | E: Design Iterations 2/2 (w/ Manual
Verification)

Criterion Ocean V3 1SS + Dutch:Pool + 1SS + Dutch:Pool
Vested Premine + Vested Premine
+

Soft cap on ratio

Simple v v =~y
-easy to understand. Mental model plays well with existing

-smart contract SW simple: to implement, understand, maintain

-GUI SW simple: to implement, understand, maintain

Avoids large price swings when people just want to stake OCEAN E v v

Solves price spikes at beginning 2 v v

Solves price spikes in market equilibrium 4 v

No risk of exit scam after IDO XX v v

Good incentive for publisher to publish initially Vv v v

Address risk of datatoken price decoupling from what people will pay x x v

for it to consume it //

Incentivize for actual consumption e®%e

teset

OCean

Ocean Market V4.1 TE
SW Verification

— — ——
.~—g . C — _9__-
- & -

——

Outline

 Ocean System TE

* Interlude: On TE Verification

* Ocean System TE - SW Verification w TokenSPICE

« OceanDAO TE

e Ocean Market V3 TE

« Ocean Market V4.1 TE

e Ocean Market V4.1 TE - SW Verification w TokenSPICE & EVM
* Conclusion

Ocean Market V4.1 TE: Verification
Goal: TokenSPICE with EVM-in-the-loop

Motivations:
* Model Ocean Market V3 with high fidelity, avoiding error-prone translations
« Model Ocean Market V4.1 with high fidelity, trying out many variants quickly
« (Eventually) Set ourselves up to do what-if scenarios on live running contracts
* (Bonus) hardening of Ocean Market V4.1 smart contracts

Review: SW Simulators

1. Spreadsheet-based agent-based system. Each row is a different time
step. Some columns are state variables; some are input variables; some
are output variables. The next row’s state variable values are a function
of that row’s input variables and the previous row’s state variables.
Output variables are a function of the current row’s state variables and
input variables.

2. Custom software for agent-based modeling, with rough-grained
models. The rough grained models may be subroutines, differential
equations or other “behavioral models”. This approach takes more up-
front effort than (1), but offers more flexibility. Once that up-front effort
is invested, it’s also easier to maintain and test, towards building more
complex models.

3. Custom software for agent-based modeling, with fine-grained
“smart contracts in the loop”. This is even higher resolution than (2).
Simulation time is longer but it starts to go with shades of gray into real-
world behavior. It’s akin to hardware-in-the-loop simulation.

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

Google Sheets
Excel

TokenSPICE
cadCAD

TokenSPICE 2

cadCAD future?
Gauntlet? (proprietary)

OocCean

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf
https://github.com/oceanprotocol/tokenspice2

Block diagram: Ocean Market V3

For each DTx pool. Each dodecagon is an agent. Line thickness is observed volume.

$O Stake on

Publish DT1 $DT1, $O
pool & stake SRRTA
< | Stakerspeculator 1
Publisher 1 pool1 , Init: $O
o i $BPT Init: unlimited $BPT1 ldkl Wants: more $O
Init igl’ir:ﬂlelrgléﬁaaljﬂ’ Sell BPT1 O Wants: $DT1 and $O (for Value-Creating Actions:
Wants: more $O liquidity) e stake (earns tx
Value-breating Actions: Value-Creating Actions: fees, gets $DT1
° pUbllSh DT1 pOOI & e sell $BPT for $O exposure)
- e charge tx fees
e give datal access
DI 1
D11
data1 Access $ $O
access $data1
Buy $DT1

Dataconsumer 1
Init: $O
Wants: more $O
Value-Creating Actions:
e use data1 to create $O

OCean

https://en.wikipedia.org/wiki/Dodecagon

Block diagram: Ocean Market V4.1

Stake on

with 1SS + Dutch:Pool + Vested Premine + soft cap on vol:consume ratio
F h DT |. Each dodecagon i t. Line thick i ted vol $Q pooI1V Staker 1
or eac X pool. Eac odecagon Is an agent. Line thiCKNessS IS expected volume. e
SBPT1 / Init: $O
Publish DT1 $0 Wants: more $O
pool & stake " 8[| Value-Creating Actions:

Publisher 1

DT t(vesting), $BPT1 pool1 $BPT1 i13g] © Stake (eamns tx
with 1SS + Dutch:Pool ﬂ\\ fees, gets $DT1

Init: unlimited $BPT1, exposure)

Init: $O, unlimited $0T1, YNGR 2oP T - $DT
unlimited data . — S0 Wants: ;$DT1 and $O (for
Wants: more $O Iquidity ' '
Value-Creating Actions: $DT1 Value-Creating Actions: $0
e publish DT1 pool & =ALNMAN $0 e sell $DT1 for $O in

Dutch auction
e sell $BPT for $O
charge tx fees

stake
e give datal access

Buy DT1

DN Speculator 1
$DT1 Init: $O
data1 Access $O
access $data1 Wants: $DT1 and more $O
Buy $DT1 Value-Creating Actions:
e buy $DT1 for $O in
Dataconsumer 1 Dutch auction
Init: $O e trade $DT1/$0 in
Wants: more $O equilibrium

Value-Creating Actions:
e use data1 to create $O

OCean

https://en.wikipedia.org/wiki/Dodecagon

TokenSPICE with EVM

Done so far:

* Wrote Ocean Market V4.1 smart contracts

* Drew schematics for V3 & V4.1

« Adapted TokenSPICE code
« Run EVM end-to-end via ganache
« Lets third-parties deploy to ganache, then uses at their ABIs
« ABIs are wrapped as classes, which are inside agents.
» Already include: Ocean datatokens, Ocean datatoken factory, Ocean friendly fork of

Balancer AMM, Balancer AMM factory, etc. Have Unit tests for all.

» Started writing Python-level agent behaviors

Still to do:
* Finish writing Python-level agent behaviors
* Replicate Ocean Market V3 dynamics: run simulations and tune as needed
* Observe Ocean Market V4.1 dynamics: point at Ocean V4.1 contracts and run!

» lterate on sim and on design until satisfied
e THISISALOT!

OCean

TokenSPICE with EVM

Top-level agent architecture

e All agents inherit BaseAgent

e Controllable agents use EVM.

e Uncontrollable agents use pure Python. But each has EOA.
o Therefore the core dynamics are still on-chain

Controllables
Controllable agents (structure):

e What agents: just Pool (incl. Strategies and Pool Controllers).
e The agent's state is stored on blockchain. Deployment is not in the scope of TokenSPICE right now. TokenSPICE just sees ABIs.
e PoolAgent.py wraps BPool.sol. Agent's wallet grabs values from BPool.sol

o current design (.sol) is at oceanprotocol/contracts

o new design (.sol) is at branch 'feature/1mm-prototype_alex'

o how can PoolAgent see it? draw on btoken.py etc.

Controllable variables:

e Global design vars. E.g. schedule for token distribution.
e Design vars within controllable agents

OCean

TokenSPICE with EVM

Uncontrollables

Uncontrollable Agents:

e Uncontrollable agents use pure Python. But each has an Externally Owned Address (EOA) to interact w EVM. Implemented inside
Wallet.
e \What agents:
o Status quo design: Publisher, Dataconsumer, Stakerspeculator
o New design 1: Publisher, Dataconsumer, Staker, Speculator

Uncontrollable Variables (Env & rnd structure & params)

e Global rndvars & envvars.

e Rndvars and envvars within controllable agents

e Rndvars and envvars within uncontrollable agents

e Ranges for envvars, and parameters for rndvar pdfs, are in constants.py, etc.
Metrics

e These are what's output by SimEngine.py into the CSV, then plotted
e In the future, we could get fancier by leveraging TheGraph.

OCean

TokenSPICE with EVM

« Each Agent has an AgentWallet.

 Now, AgentWallet is the main bridge between higher-level Python and EVM.
« Each AgentWallet holds a Web3Wallet.

 The Web3Wallet holds a private key and creates TXs.

class AgentWallet:
"""An AgentWallet holds balances of USD, OCEAN, and DTs for a given Agent.
It also serves as a thin-layer conversion interface between
-the top-level system which operates in floats

-the EVM system which operates in basel8-value ints

USD is stored as a variable internally. OCEAN & DTs are on EVM. fiproperty
def _address(self):
return self._web3wallet.address
def __init__ (self, USD:float=0.0, OCEAN:fTloat=0.0):
self._web3wallet = web3wallet.randomWeb3wWallet() R e S =S RS S S S S S S =S
def BPT(self, pool:bpool.BPool) -> float:

Give the new wallet ETH to pay gas fees (but don't track otherwise) BPT _base = pool.balanceOf_base(self._address)

self._web3wallet.fundFromAbove(toBasel18(0.01)) #magic number return fromBasel8(BPT_base)

#USD

self._USD = USD #lump in ETH too

#0CEAN

globaltokens.mintOCEAN(address=self._web3wallet.address, ° Y °
value_base=toBasel8(0CEAN)) :0:0:

o ©® o,
self._cached_ OCEAN_base = None #for speed ce Qe

OCean

Using TokenSPICE 1/4 [added 20210616]

https://github.com/oceanprotocol/tokenspice

9 TokenSPICE: EVM Agent-Based Token Simulator

TokenSPICE can be used to help design, tune, and verify tokenized ecosystems in an overall Token Engineering (TE) flow.

TokenSPICE simulates tokenized ecosystems using an agent-based approach.

Each “agent” is a class. Has a wallet, and does work to earn $. One models the system by wiring up agents, and tracking
metrics (kpis). Agents may be written in pure Python, or with an EVM-based backend. (The original version was pure
Python. This repo supersedes the original.)

It's currently tuned to model Ocean Market. The original version was tuned for the Web3 Sustainability Loop. However you
can rewire the "netlist” of "agents" to simulate whatever you like. Simply fork it and get going.

TokenSPICE was meant to be simple. It definitely makes no claims on "best" for anything. Maybe you'll find it useful.

Documentation.

OocCean

https://github.com/oceanprotocol/tokenspice

Using TokenSPICE 2/4

https://github.com/oceanprotocol/tokenspice

Contents

e [z Initial Setup

e = Updating Envt

e 34 Do Simulations, Make Changes

e i TokenSPICE Design

o & Backlog

» & Benefits of EVM Agent Simulation

e §f License
[z Initial Setup

Set up environment

Open a new terminal and:

#ensure brownie's *not* installed. It causes problems
pip uninstall eth-brownie

https://github.com/oceanprotocol/tokenspice

Using TokenSPICE 3/4

https://github.com/oceanprotocol/tokenspice

Get Ganache running

Open a new terminal and:

cd tokenspice

#active env't
conda activate tokenspiceenv

#run ganache
./ganache.py

Note: you could run ganache directly, but then you have to add many special arguments. The script above does that for
you.

Deploy the smart contracts to ganache
Open a separate terminal.

#Grab the contracts code from main, *OR* (see below)
git clone https://github.com/oceanprotocol/contracts

#0R grab from a branch. Here's Alex's V4.1 prototype branch
git clone --branch feature/imm-prototype_alex https://github.com/oceanprotocol/contracts

Then, deploy. In that same terminal:

https://github.com/oceanprotocol/tokenspice

Using TokenSPICE 4/4: Kanban

https://github.com/oceanprotocol/tokenspice

H oceanprotocol/ tokenspice

<> Code () Issues 8 Il Pull requests

MainProject
Updated 11 minutes ago

2 Backlog - longer term +

(® Implement Ocean V3 market dynamics, -
run simulations, tune as needed

Fl00f3
#28 opened by trentmc
Type: Enhancement -

(® Implement Ocean V4 market dynamics, ---
run simulations, tune until satisifed

Fl0of2
#29 opened by trentmc
Type: Enhancement -

(») Actions [Projects 1 (0 Security

Q Filter cards

5 Backlog - near term

(© Add Continuous Integration
#25 opened by trentmc
Status: Refined Type: Enhancement

(® Make code coverage more visible:
put at top of README

#26 opened by trentmc
Type: Enhancement

(® Only allow code merges if unit test
code coverage ratchets up

#27 opened by trentmc
Type: Enhancement

(© Be able to specify a netlist and run,
without having to fork

#30 opened by trentmc
Type: Enhancement

(® Finishifix DataConsumerAgent_test
#19 opened by trentmc

[~ Insights

®Watch v 10 W Unstar

§0

% Settings

AV

-+ Add cards

1 In progress

(® Get *some* overall loop running that
includes at least one EVM agent

#34 opened by trentmc

% Fork 12
] Fullscreen = Menu
5 Done

® Renamen
#38 opened

® Have non
prettier in

#35 opened

1 linked pull requ

® plot_1.py
uses Day:

#36 opened

® Fix web3 |
getTransa

[F100f3
#32 opened
Type: Enh:

Automated as D¢

https://github.com/oceanprotocol/tokenspice

Benefits of EVM agent simulation [added 20210616]

TokenSPICE 2 and other EVM agent-based simulators have these benefits:
« Faster and less error prone, because the model = the Solidity code. Don’t have to port any existing Solidity code into
Python, just wrap it. Don’t have to write lower-fidelity equations..
« Enables rapid iterations of writing Solidity code -> simulating -> changing Solidity code -> simulating. At both the
parameter level and the structural level.
« Can quickly integrate Balancer V2 code. Then extend to model other AMMSs. And other DeFi code. Etc etc.
» Plays well with other pure Python agents. Each agent can wrap Solidity, or be pure Python.
» Super high fidelity simulations, since it uses the actual code itself. Enables modeling of uncontrollable variables, both
random (probabilistic) ones and worst-case ones.
» Can build higher-level CAD tools, that have TokenSPICE 2 in the loop:
« 3-sigma verification - verification of random variables, including Monte Carlo analysis
» Worst-case analysis - verification across worst-case conditions
« Corner extraction - finding representative “corners” -- a small handful of points in uncontrollable variable space to
simulate against for rapid design-space exploration
» Local optimization - wiggle controllable params to optimize for objectives & constraints
* Global optimization - “, with affordances to not get stuck
» Synthesis - " but wiggle code structure itself in addition to parameters
« Variation-aware synthesis - all of the above at once. This isn’t easy! But it's possible. Example: use MOJITO
(http://trent.st/mojito/), but use TokenSPICE 2 (not SPICE) and Solidity building blocks (not circuit ones)
 Mental model is general enough to extend to Vyper, LLL, and direct EVM bytecode. Can extend to non-EVM blockchain,
and multi-chain scenarios. Can extend to work with hierarchical building blocks.
- Can also do real-time analysis / optimization / etc against live chains: grab the latest chain’s snapshot into ganache,
run a local analysis / optimization etc for a few seconds or minutes, then do transaction(s) on the live chain. This can Ieac}
to trading systems, failure monitoring, more.

OCean

http://trent.st/mojito/

—— — —— -

Summary: Research Q’s

Basis:
* Ocean Market uses Balancer AMMSs
« Doing TE to model, verify and optimize Ocean Market is highly useful on its own
« And it's well-defined subset of broader Balancer ecosystem; we can extend scope
once we’ve got a handle on Ocean Market dynamics

Research Q’s
« Can we capture the dynamics of Ocean Market / data ecosystem for Ocean V3?

(system identification problem). Includes capturing observed issues .
 QOcean V4.1 has new mechanisms, aiming to address the observed issues. How
well do those mechnaisms work?
* One-sided staking bot?
« Straight-up AMM vs Dutch auction vs LBP?

* Tool: use TokenSPICE with EVM Agent Simulation R
https://qithub.com/oceanprotocol/tokenspice evet

https://github.com/oceanprotocol/tokenspice

—
—_ =
‘,_‘ = = ;

Evolve Antennae (and Send into Space!)

Evolve Whitebox Functions of Circuits

Jﬁé E= - -

B~ E- - [:"> I SPICE ‘
anpoffd wia el o mmmf—oms

MJD—I
e S w e —
oo T Oy
Us Lese o — —
nao
==
=g ey ‘ CAFFEINE ‘
Perf. | Expression
ALr -10.3 + 7.08e-5/i1d1

+ 1.87 " In(-1.95e+9 + 1.00e+10 / (vsg1*vsg3)+ 1.42e+9 "(vds2*vsdS5) / (vsg1~vgs2*vsg5*id2))

.

10N S5S.68 - 0.03 * vsg1 /vds2 - 55.43 * id1+ 5.63e-6/id1)

PN 90.5 + 190.6 *id1 /vsg1 + 222 *id2 / vds2
Voizer | = 2.00€-3
SR, 2.36e+7 + 1.95e+4 *id2/id1 - 10469 /id2 + 2.15e+9 * id2 + 4. 63e+8 ™ id1
| e | " D./£ET/ -2 DOUST I U IUL) / VYSE T D.0JETO VUSL / VPSL T IUTL £/ 1A

[McConaghy 2005]

Evolve Analog Circuits

asf- Vw+f_—llf]
aof verfE—
Ny F
35f -
"
S 30f
E
§25- ﬂ
820' L G, |out
+——{
15k | F o
10+ e V]
5—
0 l

0.5 1
Gain-Bandwidth (GHz)

OocCean

Extend TokenSPICE: Evolve Solidity

e Evolve Solidity smart contracts for
whatever use case you want.

e Fitness function: Eth testnet running

many agents

e Design space: a grammar with many

Solidity code blocks

/// @title Voting with delegation.
contract Ballot
{
// This declares a new complex type which will
// be used for variables later.
// It will represent a single voter.
struct Voter

{
uint weight; // weight is accumulated by delegation
bool voted; // if true, that person already voted
address delegate; // person delegated to
uint vote; // index of the voted proposal

be

// This is a type for a single proposal.
struct Proposal

bytes32 name; // short name (up to 32 bytes)
uint voteCount; // number of accumulated votes

3

address public chairperson;
// This declares a state variable that

// stores a “Voter struct for each possible address.

mapping(address => Voter) public voters;

// A dynamically-sized array of ~Proposal’ structs.

Proposal[] public proposals;

/// Create a new ballot to choose one of ~proposalNames’

function Ballot(bytes32[] proposalNames)

{
chairperson = msg.sender;
voters[chairperson].weight = 1;
// For each of the provided proposal names,
// create a new proposal object and add it
// to the end of the array.

for (uint i = ©; i < proposalNames.length; i++)

// ~Proposal({...}) <creates a temporary
// Proposal obiect and “bpropbosal.push(

3=

@)
@
D
Q
)

Extend TokenSPICE: Evolve EVM Bytecode

e Ethereum Virtual Machine has about 100 operators
e GP could evolve these directly

Runtime Bytecode

Opcodes

Assembly

60606040525b600080fd00a165627a7a7230582012c9bd00152falc

PUSH1 Ox60 PUSH1 O0x40 MSTORE PUSH1 O0x18 PUSH1 Ox0O SSTORE

.code

PUSH 60 contract MyContract {\
PUSH 40 contract MyContract {\
MSTORE contract MyContract {\
PUSH 18 (19 + 2) * 2

PUSH © uint i = (10 + 2) * 2

SSTORE uint i = (10 + 2) * 2

CALLVALUE contract MyContract {\
ISZERO contract MyContract {\
PUSH [tag] 1 contract MyContract {\
JUMPI contract MyContract {\
PUSH © contract MyContract {\
DUP1 contract MyContract {\n uin
DC\A/CDT PPSGN BSOS S ¥V T aP N T Ry \

OocCean

Evolve WASM Bytecode

e WebAssembly (WASM) is the future of smart contract VMs. Smart
contracts in C, C++, Rust, ..

e WASM is already supported by major browsers

C input source

int factorial(int n) {

}

if (n == ©)
return 1;
else

return n * factorial(n-1);

Linear assembly bytecode
(intermediate representation)

get local ©

i6d.eqz

if (result i64)
i6éd.const 1

else
get _local ©
get _local ©
i6éd4.const 1
i64.sub
call o
ieéd.mul

end

Wasm binary encoding
(hexadecimal bytes)

20
506
o4
42
05
20
20
42
7D
10
7E
oB

00

7E
o1

(5]%)
(5]2)
o1

(2]2)

OCean

Evolve Networks of Attackers & Defenders

e To Improve security
e Ref. Una-May O’Reilly research @ MIT

Co-evolutionary Adversaries Component

Attack controller

Strategy Adaptation
&

Co-evolution of
Network Defenders
&
Extreme DDOS attackers [

Defense controller

Mission Progress

Mission Component

P2P Network with
distributed node
management
and network awareness

Attack cost

i

Figure 1: RIVALS system overview.

Developing proactive defenses for computer networks with
coevolutionary genetic algorithms

Conference Paper - July 2017 with 12 Reads

DOI: 10.1145/3067695.3089234
Conference: Conference: the Genetic and Evolutionary Computation Conference
Companion

. Cite this publication

Anthony Erb Lugo Dennis Garcia

Erik Hemberg Una-May O'Reilly
1115.66 - Massachusetts Institute of Technology 1119.56 - Massachusetts Institute of Technology

—— — —— -

Roadmap - this work

Via https://qgithub.com/oceanprotocol/tokenspice

1. System identification: high-fidelity model of Ocean V3 (w/ Balancer V1); fit the
model to observed on-chain dynamics
2. \Verification: high-fidelity model of Ocean V4.1 (w/ Balancer V2) base design, and

the efficacy of each proposed mechanism.
3. Design space exploration: tuning of Ocean V4.1 (w/ Balancer V2 design. Manual or

optimization-based.

https://github.com/oceanprotocol/tokenspice

Roadmap - beyond this work

Via https://qgithub.com/oceanprotocol/tokenspice

1.

System identification: high-fidelity model of whole Balancer V1 ecosystem; fit the
model to observed on-chain dynamics (up to when V2 released). Bring in
uncontrollable variables (probabilistic & worst-case).

System identification: high-fidelity model of whole Balancer V1 & V2 ecosystem; fit
the model to observed on-chain dynamics

Design space exploration: tuning of Balancer V2 Strategies to minimize IL and
other objectives & constraints. Account for uncontrollable variables (probabilistic &
worst-case).

Open-ended design space exploration: evolve solidity or EVM bytecode, go nuts.
Al DAOs that own themselves. Fastest path = use http://trent.st/mojito, hook in
TokenSPICE, add Solidity building blocks. This will be fun:). But one step at a time. ..

OCean

https://github.com/oceanprotocol/tokenspice
http://trent.st/mojito/

—— — —— -

Outline

Summary: Research Q’s

Intro

 What's Ocean?

 EE Simulation & Verification

 TE Simulation & Verification
Ocean System TE

 Base

 SW Verification w TokenSPICE
Ocean Market TE

« V3 base

V4.1 base

V4.1 SW Verification w TokenSPICE & EVM
Roadmap - this research & beyond
Conclusion

