
Ocean Market Balancer Simulations
For Token Engineering Academy

May 21, 2021
Trent McConaghy

@trentmc0 @oceanprotocol
[video]

https://www.youtube.com/watch?v=TDG53PTbqhQ&ab_channel=TokenEngineering

Outline

• Summary: Research Q’s
• Intro

• What’s Ocean?
• EE Simulation & Verification
• TE Simulation & Verification

• Ocean System TE
• Base
• SW Verification w TokenSPICE

• Ocean Market TE
• V3 base
• V4.1 base
• V4.1 SW Verification w TokenSPICE & EVM

• Roadmap - this research & beyond
• Conclusion

Summary: Research Q’s

Summary: Research Q’s

Basis:
• Ocean Market uses Balancer AMMs
• Doing TE to model, verify and optimize Ocean Market is highly useful on its own
• And it’s well-defined subset of broader Balancer ecosystem; we can extend scope

once we’ve got a handle on Ocean Market dynamics

Research Q’s
• Can we capture the dynamics of Ocean Market / data ecosystem for Ocean V3?

(system identification problem). Includes capturing observed issues .
• Ocean has new mechanisms, aiming to address the observed issues. How well do

those mechanisms work?

• Tool: use TokenSPICE with EVM-in-the-loop
https://github.com/oceanprotocol/tokenspice

https://github.com/oceanprotocol/tokenspice

What’s Ocean?

What’s Ocean?

Ocean Datatokens: On-ramp data services into data assets, and off

Electrical Engineering (EE)
Simulation & Verification

Variation = atoms out of place
…Propagating from devices to performance & yield

…

Process
variation ↑

Circuit performance
variation ↑

Device performance
variation ↑

Rare Event Verification for Memory: Problem

B

B

B

B

B

B

B

B

Bitline Precharge

Sense Amplifiers

.

.

.

.

.

.

Consider a 256Mb SRAM:
→ 256M bitcells
→ 64k sense amps
→ 4k bitcells / sense amp

Want overall yield to be 90-99%.

For the SRAM to yield, need:
Bitcell sigma ~= 6σ
Sense Amp sigma ~= 4.5σ

1% improvement in overall yield makes a huge
difference.

Memory is the leading edge of billion dollar
fabs…

B

B

B

B

...

...

...

...

.

.

.

Rare Event Verification of a Memory Bitcell
via SPICE-in-the-loop & AI tricks to reduce # sims
● 6 devices x 10 local process variables / device = 60 variables
● Simulated 1M MC samples. Each dot in curve is a sample.

○ The bend means quadratic response in that region
○ The dropoff / vertical means a flat response in that region (in this case, transistors turning off)

Rare Event Verification of a Memory Sense Amp
via SPICE-in-the-loop & AI tricks to reduce # sims

● 15 devices x 10 local process variables / device = 150 variables
● The three vertical “stripes” mean

○ three modes
○ tight distributions in each mode, almost flat response
○ left mode is “off”, right mode is “extreme”
○ gaps between stripes imply a discontinuity in response

 Worst-Case Verification for VCO of a PLL: Problem

Q: Does circuit meet constraints on all 3375 “PVT
corner” combos?

Result: used 171 evaluations to verify 3375
corners

○ 3375/171 = 19.7x speedup

○ 65.6 h → 3.3 h (1 core) or 20 min (10 cores)

 Worst-Case Verification for VCO of a PLL: Solution
SPICE-in-the-loop + AI/optimization to reduce # sims

TE Simulation & Verification

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

It’s pragmatic to do verification in phases of increasing fidelity:

1. Humans. Subjective discussions, with increasing # people. 1 →2 →key stakeholders
2. Software modeling, with increasing fidelity. Spreadsheet → agent-based sim → high-fid sim
3. Economic (live). Can ratchet value-at-risk over time. People can choose risk/reward tradeoff.

Phased approach.

On TE Verification

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

SW modeling with increasing fidelity

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

Ocean System TE

Ocean System TE: Process
<I did the following process over 8 weeks with a collaborator - Julien Thevenard @ Fabric.vc>

1. Goals:
a. Write out goals (first-cut)

2. Design:
a. Explore various designs to achieve the goals. Loop back to update goals.

3. Verification:
a. (Better formalize what “verification” can mean, and how to do it - see blog post on TE Verification)
b. Approach: Manual analysis & conversation. Loop back to update goals or design.
c. Approach: SW to answer Q’s. Loop back to update goals or design.

i. spreadsheet-based
ii. agent-based sim - TokenSPICE

Ocean System TE: Goals
Find a design to enable...

• Ecosystem sustainable and growing, towards ubiquity
• Funding goes to teams improving L1-L3 etc, over the long term (10+ years)
• $OCEAN grows as usage of Ocean network grows

Including:

• Basic design is simple to understand and communicate
• Can be implemented in a pragmatic fashion, over time
• Get people to do “work”,
• Encourage skin-in-the-game by users

A choice of system-level design will lead to goals of sub-blocks in the system.

Data Ecosystem
(Platform,

Marketplaces etc)

BDB core
devs, app

devs ...

Work to build Data
Ecosystem

Early 2020: BigchainDB is building Ocean data
ecosystem (on behalf of OPF).

How do we make the data ecosystem sustainable and
growing? Including having funds to keep improving
platform etc.

Curate $:
OceanDAO
w criteria:
(1) growth
(2) mission

Data Ecosystem
(Data marketplaces

etc, powered by
Ocean tools)

Workers: core
devs, app devs

...

Work to grow
Network revenue↑,

$OCEAN↑

Network
revenue

● Get network revenue as % of marketplace
revenue

● To pay for work
● That grows marketplaces revenue
● That grows network revenue

A loop! It’s ≅ the loop of any sustainable business.

But adapted for the Ocean Web3 ecosystem:
Give space for the community to discover more
value.

Curate $:
OceanDAO
w criteria:
(1) growth
(2) mission

Data Ecosystem
(Data marketplaces

etc, powered by
Ocean tools)

Buy & Burn
$OCEAN

Workers: core
devs, app devs

...

Work to grow
Network revenue↑,

$OCEAN↑

5%

Network
revenue

Burn a % of all revenue so
that stakeholders benefit

from revenue growth.

● Q1. How to ensure long-term sustainability? = Ensure long-term funding to core devs etc?
● Q2: Network revenue will not be significant for 4 or 5 years, and maybe a lot longer. How to fund before that?
● A: Disburse 51% of token supply, over decades to fund work by core devs etc. And use OPF treasury.

Curate $:
OceanDAO
w criteria:
(1) growth
(2) mission

Data Ecosystem
(Data marketplaces

etc, powered by
Ocean tools)

Buy & Burn
$OCEAN

Workers: core
devs, app devs

...

Work to grow
Network revenue↑,

$OCEAN↑

$OCEAN
from OPF

and
network
rewards

Disburse
over

decades

Vote on grants.
≅Governance

token

Dynamics for $OCEAN↑
as usage↑, incl.

stake/curate to get % of
sales.

5%

Network
revenue

Curate $:
OceanDAO
w criteria:
(1) growth
(2) mission

Data Ecosystem
(Data marketplaces

etc, powered by
Ocean tools)

Buy & Burn
$OCEAN

Workers: core
devs, app devs

...

Work to grow
Network revenue↑,

$OCEAN↑

$OCEAN
from OPF

and
network
rewards

Disburse
over

decades

Vote on grants.
≅Governance

token

Dynamics for $OCEAN↑
as usage↑, incl.

stake/curate to get % of
sales.

5%

Network
revenue

Ocean System TE: Design Result → Schematic
New Pattern: Web3 Sustainability Loop

Ocean System TE: Design Result → Sub-block goals
The system-level design led to specific goals for sub-blocks.
-Top-down constraint-driven design methodology [ref Henry Chang et al].

Here are the goals for the sub-blocks in Ocean System:
• Datatoken contracts: as tx volume goes up, it drives $OCEAN.
• OceanDAO: curation of projects (governance) encourages skin-in-the-game and long-term

sustainability
• Marketplace: as $ volume goes up, it drives $OCEAN. Get “work” and skin-in-the-game by curators,

referrers, third-party marketplace owners

To implement:
• Datatoken contracts: implement by taking a % fee in consume.
• OceanDAO: see later section.
• Marketplace: see later section.

https://www.springer.com/gp/book/9780792397946

Ocean System TE
SW Verification

Ocean System TE Verification: Overall
1. Humans. Subjective discussions, with increasing # people. 1 →2 →key stakeholders

• Discussions among team (& Julien @ Fabric)

2. Software modeling, with increasing fidelity. Spreadsheet → agent-based sim
• more details later - TokenSPICE.

3. Economic (live). Can ratchet value-at-risk over time. People can choose risk/reward tradeoff.
• Doing this!
• Biggest ratchet of value-at-risk over time: OceanDAO funding. From OPF → from 51% in

ratcheted wya.

Ocean System TE Verification: SW Modeling

● We built TokenSPICE to model Ocean ecosystem
● Agent-based simulation, in python
● Each “agent” is a class. Has a wallet, and does work to earn $
● Model the system by wiring up agents, and tracking metrics (kpis)
● It’s easy to adapt for other projects doing Web3 Sustainability Loop, or

simply fork it and write new agents for any agent-based simulation
● Initial version at: https://github.com/oceanprotocol/tokenspice0.1
● Continually evolving at https://github.com/oceanprotocol/tokenspice

https://github.com/oceanprotocol/tokenspice0.1
https://github.com/oceanprotocol/tokenspice

Block diagram: early model
Includes:
● >1 Publisher agents
● >1 Marketplace agents
● >1 Buyer agents
● Referrer / curator
● Ocean search

I [Trent] had started to build this in the tokenSPICE repo;
see early commits. However it had a lot of complexity, and
my questions were more system-level. So I compressed
all of the above into one block simply called “Data
ecosystem”. See next slide.

Block diagram:
actual

OceanDAO

“Data Ecosystem”: Publishers,
Marketplaces, Buyers, ...

OP
Community

Address
Buy & Burn

Ocean

Core devs, app
devs,

ecosystem/
outreach

51% supply

Work to improve
network parameters

(eg # mktplaces)
which lead to

network revenue↑,
$OCEAN↑

OPF Treasury

BDB Treasury

$

$

$
$

Key variables being modeled
● We can model Ocean revenue and $OCEAN over time. This helps our decision-making.

○ We can model marketplaces’ revenue. Depends on initial parameters, and $ growth rates.
○ From that, we can model Ocean network revenue. Depends on % mkts revenue to Ocean network.
○ From that, we can model fundamental valuation of Ocean network (e.g. P/S). Can compare this to

speculation-based component too.
○ We can also model # tokens, including effects of minting and burning
○ From valuation of Ocean network, and # tokens, we can model $OCEAN

Marketplaces
Revenue

Ocean Network
Revenue

Fundamental
Valuation

Total
Valuation

Speculation
Valuation

Tokens

$OCEAN
t=0:

mkts,
$/mkt/yr

% of mkts
revenue to

Ocean Network

$ from
51%

Mkts Revenue
Growth Rate

Ratio of ($ to R&D) /
($ network sales)

$ to R&D
(=work to improve
network params)

init $ from
BDB, OPF

% to R&D
vs burn

init # tokens

F(): Time → OCEAN
dispensed

F(): Ratio
→ Growth # burned

minted

Curate $ w/
criteria:

(1) growth
(2) mission

Web3 Project
Ecosystem

Buy & Burn
$TOKEN

Workers: core
devs, app

devs ...

Work to grow
Network revenue↑,

$TOKEN↑
$TOKEN

generation

Disburse over
years, decades,

or centuries

Vote on $ allocation.
≅Governance token

Dynamics that
make $TOKEN↑

as usage↑

x%

Network
revenue

Block diagram: simplified version for public

Modeling marketplaces growth rate
F(): Ratio → Growth

Growth should have these characteristics:
● As a function of ratio of ($ into Ocean R&D) / ($ Ocean revenue)
● Just like companies!

○ Big slow-growth companies may put 5% of sales into R&D. Ratio =
0.05

○ Small fast-growth companies (i.e. startups) may put 100% or even
300% of sales into R&D. Easy because sales are small.

○ Larger but still fast-growing companies may put 30-50% of sales
into R&D (ratio=0.3-0.5), for 20-40% growth. E.g. Facebook,
Amazon, Apple.

○ Negative growth if little or no $ into R&D, whether large or small
● Diminishing returns as more R&D $ injected

How we model, to capture the target characteristics:
● Model growth as an exponential. This captures diminishing returns.
● Overall marketplaces growth:

● Has two components: # mkts, $ rev / market
● Overall growth is a function of both
● Growth = (1 + growth in # mkts) * (1 + growth in $ rev/mkt) - 1

● Set parameters for eah component as follows:
○ annual growth rate if 0 sales = -11.8%, so that growth rate ^2 is

-25%
○ max annual growth rate = 41.5% such that overall rate is 100%
○ growth range = (max annual growth - growth if 0 sales)
○ tau = 0.6. This means: if ratio is 0.6, we’ll get 50% of growth range.

If ratio is 2*0.6, we’ll get 75% of growth range. Etc. Like half life,
but not for time.

Modeling 51% supply schedule
F(): Time → OCEAN dispensed
Concerns to address:
1. Not have sharp dropoff of $ funding after e.g. 10 years
2. Avoid too much OCEAN entering the market too early, before there’s enough

liquidity
3. 51% supply is intended for OceanDAO, esp. for R&D. But early OceanDAO will

likely take years to stabilize, to be able to handle lots of OCEAN or $. That is:
OceanDAO needs to “bake slowly”, so $ into it needs to reflect that

How to handle:
● For (1), to avoid sharp dropoff: baseline schedule is *not* uniform for 10 years then

stop. Instead, make it an exponential, such that there’s funds in 10 years, 20 years,
even 50 years.

○ Set the half-life for supply to be 4 years (like Bitcoin). That is, in this baseline,
50% of the (51%) tokens would be dispensed after 4 years, 75% after 8
years, etc. Supply stops after 34 halvenings (about 125 years).

● For (2)(3), modify the baseline schedule with a “ratcheting up” in the first few years:
○ Ratcheting schedule (see plot on right):

■ For first 0.5 years: multiply baseline exponential function by 10%
■ For next 0.5 years: 25%
■ For next 1.5 years: 50%
■ Then 100%

○ This schedule ensures R&D funding is approx $100K/mo for the first decade.
After that, funding rises exponentially as $OCEAN rises exponentially.

○ Ratcheting can be done programatically (“unstoppable”) or manually (until the
final 100%, at which time hardcoded). Manually may be more pragmatic, so
we can handle unforeseen issues, and tune the % for a steadier R&D $
supply.

TokenSPICE results
• We have many experiments on TokenSPICE, with many results.
• We put each round of results into GSlides.
• Let’s see an example.

https://github.com/oceanprotocol/tokenspice

Parameter Settings

● Simulation time 20 years
● Growth rate info:

○ growth_rate_if_0_sales = -11.8% (for total = -25%)
○ max_growth_rate = 41.5% (for total = 100%)
○ tau = 0.6 (ie ratio needs to be 0.6 just for half the total range. MUCH higher than before)
○ $ R&D = grantTakersMonthlyRevenueNow(); $ sales = oceanMonthlyRevenueNow()

● Ocean toll from marketplaces revenue: ___
● Speculation valuation at t=0: ___
● Growth rate of speculation valuation: ___ / year
● Fundamentals valuation approach: P/S = 30x
● % of revenue to burn directly: 5%
● Ramped exponential minting: like right side of 20200505: H=4.0, T0=0.5, T1=1.0, T2=1.4, T3=3.0,

M1=0.10, M2=0.25, M3=0.50. Stop after 34 halvings (about 125 years)
● DAO is funded by:

○ minting
○ OPF: uniformly per month over 36 months
○ BDB: “”, 17 months

Monthly R&D Spend

R&D/Sales Ratio, Marketplaces Growth Rate

Token count

Monthly # OCEAN minted & burned

DAO Income

Questions,
With Answers from Modeling Experiments

Q: Benefit of Worker-51% schedule?

Q: Best Schedule for 51% distribution?
● Q: What is the best schedule for 51% distribution?
● Results:

○ Run 1: distribute uniformly over 10 years. Image below left.
■ Observed: funding dropoff is too sharp.

○ Run 2: Bitcoin-style exponential. Image below middle
■ Observed: it solves dropoff, but in early years too aggressive: much $ & downwards $OCEAN pressure.

○ Run 3: ratcheted exponential. Image below right
■ Observed: it solves dropoff, not aggressive in early years and allows “bake slowly” with manual intervention.

● Conclusion: Ratcheted exponential is best; use it.

Ocean Market V3 TE

Ocean Market V3 TE: Process
• Goals
• Design
• Implementation
• Verification

Ocean Market V3 TE: Goals
3PM = Third Party Marketplace (e.g. dexFreight)

Main:
• Drives value of $OCEAN: as mkt $ vol goes up, $OCEAN goes up
• Incentivizes people to “do work”, aka add value such as more datasets or curation
• Drives virality, i.e. incentivizes people to refer others to Ocean
• Basic design is simple to understand and to communicate. (2nd-order complexities are ok, if needed)
• Each 3PM can also get all the characteristics here. E.g. virality
• 3PMs drive data liquidity to Ocean Market: ie aiding discovery by OPM

Secondary (generally straightforward to solve, once main are solved):
• Design accounts for Ocean Market, and for each 3PM
• Incentivizes people to learn about Ocean implicitly, via a more specific extrinsic incentive
• Actually does something useful. I.e. does not bolt on something useless
• Reasonable to implement & maintain
• For the live deployment, de-risk by ratchet up skin-in-game over time
• Accounts for our actual numbers: actual token supply, liquidity now, liquidity in future
• Avoid front running and flash staking. Eg. see a buy tx, flash stake, earn $$. A solution: need to stake for >24 h to

earn.

Ocean Market V3 TE: Design exploration

Many designs were explored against the criteria.

Ocean Market V3 TE: Chosen design

Boson

Shared Market backend: buy / sell data assets

Ocean Market
frontend:

Buy / sell data
assets

Buyer

standalone
mkt

frontend for
dF

decentralized unified
metadata store

Referrers &
Curators

dF

Ocean
community

Seller eth
address

dF OCEAN
stake > $xK?

N

Y

L1/L2/L3
fees

N

$OCEAN
staked

25%

$

Unified payments,
referrals, etc

• As $ volume goes up, it drives $OCEAN.
• Gets “work” and skin-in-the-game by curators, referrers, third-party marketplace owners

• If you’re doing referrals and you drive volume↑, for more rewards you need stake↑
• Same for curation

Ocean Platform (L1, L2)
● Create data assets
● Consume data assets

buyer

$90

Ocean Market V3 TE:
Detailed version of chosen design • X% to OceanDAO

• 100-X% to buy & burn
OCEAN

Many possibilities, incl.
seller incentives to
referrers

dF

Ocean
community

Seller eth
address

Concern: liability to whoever runs the unified metadata store; OPF can’t. Solution: decentralized metadata store. Options: (1) Eth mainnet + TheGraph, (2) IPFS + pinning, maybe Filecoin (3) arweave + some
search, (4) [maybe] publish on the Web, and then the Ocean Market crawler *only* crawls the websites of Publishers. All must follow schema.org schema.

Concern: for many 3PMs, give up too much control, so they won’t use this. Answers: we can still capture revenue at L1, maybe L2 REST API, and maybe other L3 stuff like Oceansearch. And, we should make the
Ocean Market frontend compelling enough for most people to stick around. E.g. more convenience, UX, liquidity. Just like Shopify did.

Top right: Curation is nice, referral is even more important. Because referral drives more traffic to the platform. So pay referral more. If you refer only, you earn a nice referral fee
If you refer & curate, you earn a bigger one. If you just curate, you earn a smaller one.

• Daily referrer reward = max($1, min(∑i P% * daily_sales, 5% * amt_staked))
• Give referrers a little bit even if they haven’t staked anything
• Only get big reward if big sales and big amt_staked.

• Reward for just curation: FIXME

dF OCEAN
stake > $50K

L1/L2 $0.72 tx fees
(Details in “Revenue

Sources” section)

$8

N

Y

$OCEAN
staked25%

...
Boson

standalone
mkt

frontend
for dF

$100

Referrer-
curator $1.00

referral

Curator
$0.25
rev share

$1.25
referral

Referrer

Shared backend

decentralized unified
metadata store

Unified payments
(incl. handle referrals,

staking, etc).

Ocean Market frontend

Channel for dF, Boson, Molecule,..

discover data, across all data in
metadata store (all 3PMs, and

independent)

publish your own data for sale
without any 3PM (“independent”)

25% of commission fees go to
buying and staking OCEAN, until
$50K of OCEAN staked.

deploy your own marketplace by
point-and-click (“no-code”)

Ocean Market V3 TE: Implementation
A realization: using AMMs implements the “Chosen TE design”, and meets “TE Goals”.

Design details:
• Datatoken-OCEAN AMMs. LPing = staking = curating. LPs get a % of swap volume.
• Store metadata on-chain
• Deploy to Ethereum mainnet
• Datatoken consume() sends a % to marketplace runner, and to Ocean community

How the Market design implements the “Chosen TE design”:

• As $ volume goes up, it drives $OCEAN.
• [YES - as $ volume up, more OCEAN is staked, driving $OCEAN]
• [YES - as $ volume up, the $ from % fees goes up, some of that goes to burning, driving $OCEAN]

• Gets “work” and skin-in-the-game by curators, referrers, third-party marketplace owners
• [YES - LP rewards] If you’re doing referrals and you drive volume↑, for more rewards you need stake↑
• [YES - LP rewards] Same for curation

How it meets “TE Goals”:

• [YES] Drives value of $OCEAN: as mkt $ vol goes up, $OCEAN goes up
• [YES] Incentivizes people to “do work”, aka add value such as more datasets or curation
• [YES] Drives virality, i.e. incentivizes people to refer others to Ocean
• [YES] Basic design is simple to understand and to communicate.
• [YES] Each 3PM can also get all the characteristics here. E.g. virality
• [YES] 3PMs drive data liquidity to Ocean Market: ie aiding discovery by OPM

Ocean Market V3 TE: Verification
1. Humans. Subjective discussions, with increasing # people. 1 →2 →key stakeholders

• Discussions among team, and Julien @ Fabric)
• Discussions with Fernando @ Balancer

2. Software modeling, with increasing fidelity. Spreadsheet → agent-based sim
• Built Py & JS drivers for Balancer, and make extensive unit tests
• Did not do high-fidelity simulations of token dynamics. Why: (a) AMMs are already live (b) given the

first point it wasn’t worth the time commitment.

3. Economic (live). Can ratchet value-at-risk over time. People can choose risk/reward tradeoff.
• Launched Ocean Market with lots of writings & caveats (e.g. “beta”). “Test in prod” ;)
• People did choose risk/reward tradeoff. Some made $, some lost, some simply tested.
• Observed community response to Ocean Market, and token dynamics.
• Made adjustments accordingly. Being live was key to rapid improvements in what mattered.
• Most notable TE adjustment: 10/90 OCEAN/DT → 50/50 → 70/30. It helped a lot.
• Further TE improvements identified around “Better IDOs” and more. For Ocean V4.1.

Ocean V3 (with Ocean Market) went live in the fall

http://market.oceanprotocol.com

http://market.oceanprotocol.com

Ocean Market V4.1 TE

Ocean Market V4.1 TE: Process
• Goals
• Design
• Implementation
• Verification

• Highlight: TokenSPICE with EVM-in-the-loop on all of the Ocean smart contracts,
including datatokens & factory, Balancer AMMs & factory, etc. So that I can model
Ocean Market dynamics with high fidelity.

Ocean Market V4.1 TE: Goals

Simple
-easy to understand. Mental model plays well with existing
-smart contract SW simple: to implement, understand, maintain
-GUI SW simple: to implement, understand, maintain

Avoids large price swings when people just want to stake OCEAN

Solves price spikes at beginning

Solves price spikes in market equilibrium

No risk of exit scam after IDO

Good incentive for publisher to publish initially

Address risk of datatoken price decoupling from what people will pay for it to consume it
//
Incentivize for actual consumption

Ocean Market V4.1 TE: Status Quo V3 Design
Criterion Ocean V3

Simple
-easy to understand. Mental model plays well with existing
-smart contract SW simple: to implement, understand, maintain
-GUI SW simple: to implement, understand, maintain

✔

Avoids large price swings when people just want to stake OCEAN ✖

Solves price spikes at beginning ✖

Solves price spikes in market equilibrium ✖

No risk of exit scam after IDO ✖✖

Good incentive for publisher to publish initially ✔✔

Address risk of datatoken price decoupling from what people will pay
for it to consume it //
Incentivize for actual consumption

✖

Mental Model: Life Cycle of a Data Asset

1. Publish DT contract. No tokens minted yet. Token cap set.
2. IDO // Burn-In Phase. Initial tokens are distributed to a primary market, according to

some rules.
3. Equilibrium Phase. Token’s on the open market without rails. >0 secondary markets.
Sometimes 2 & 3 can blend together.

Ocean Market V3 Design, in context of Life Cycle

1. Publish DT contract.
2. IDO // Burn-In Phase.

• Publisher creates a pool
• Publisher mints 10-100 DTs into pool, alongside 70% OCEAN tokens s.t. price is ok
• That’s it!

3. Equilibrium Phase.
• The initial pool tends to be the largest market
• There can be secondary markets. E.g. some publishers have put DT pools on Uniswap.
• Publisher is able to mint more DTs to inject into any market. They may have a *lot* of

DTs.

Ocean Market V3 Design - Issues in Context of Life Cycle
(there are other framings too)
Here's what's happening (bold = problems):

1. Publisher publishes a dataset. To not have to put in too much OCEAN stake for their initial price,
they pick the minimum # DTs to publish

2. Stakers come along and stake. Price skyrockets. Low supply, high demand -> high price.
3. Price is highly volatile, because so few DTs
4. There's no GUI affordance for publisher to add more DT. If there was one, publishers may dump

DTs.

We've seen this problem before. It's the question of how do you release a crypto token to the market, to
get the token into many hands that want it, to get a decent price, to get decent liquidity, etc.

This is the realm of fund raising of any token project, with tools like vesting, ICOs, IEOs and more. This
is what we call an "IDO".

Ocean Market V4.1 TE: Design Iterations 1/2 (w/ Manual
Verification)
Criterion Ocean

V3
1SS LB 1SS +

LB
1SS + LB +
Dutch:Pub

1SS + LB +
Dutch:Pub

+ rICO

1SS +
Dutch:Pub

1SS +
Dutch:Pool

1SS +
Dutch:Pool

+ Vested
Premine

Simple
-easy to understand. Mental model plays well
with existing
-smart contract SW simple: to implement,
understand, maintain
-GUI SW simple: to implement, understand,
maintain

✔ ✔ ✔ ✔ ≈✔ ✖ ✔ ✔ ✔

Avoids large price swings when people just want
to stake OCEAN

✖ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔

Solves price spikes at beginning ✖ ✖ ✖ ✖ ✔ ✔ ✔ ✔ ✔

Solves price spikes in market equilibrium ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

No risk of exit scam after IDO ✖✖ ✔ ✖ ✖ ✖ ✔ ✖ ✔ ✔

Good incentive for publisher to publish initially ✔✔ ✖ ✖ ✖ ✔ ✔ ✔ ✖ ✔

Address risk of datatoken price decoupling from
what people will pay for it to consume it //
Incentivize for actual consumption

✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖

Criterion Ocean V3 1SS + Dutch:Pool +
Vested Premine

1SS + Dutch:Pool
+ Vested Premine

+
Soft cap on ratio

Simple
-easy to understand. Mental model plays well with existing
-smart contract SW simple: to implement, understand, maintain
-GUI SW simple: to implement, understand, maintain

✔ ✔ ≈✔

Avoids large price swings when people just want to stake OCEAN ✖ ✔ ✔

Solves price spikes at beginning ✖ ✔ ✔

Solves price spikes in market equilibrium ✖ ✔ ✔

No risk of exit scam after IDO ✖✖ ✔ ✔

Good incentive for publisher to publish initially ✔✔ ✔ ✔

Address risk of datatoken price decoupling from what people will pay
for it to consume it //
Incentivize for actual consumption

✖ ✖ ✔

Ocean Market V4.1 TE: Design Iterations 2/2 (w/ Manual
Verification)

Ocean Market V4.1 TE
SW Verification

Outline

• Ocean System TE
• Interlude: On TE Verification
• Ocean System TE - SW Verification w TokenSPICE
• OceanDAO TE
• Ocean Market V3 TE
• Ocean Market V4.1 TE
• Ocean Market V4.1 TE - SW Verification w TokenSPICE & EVM
• Conclusion

Ocean Market V4.1 TE: Verification
Goal: TokenSPICE with EVM-in-the-loop

Motivations:
• Model Ocean Market V3 with high fidelity, avoiding error-prone translations
• Model Ocean Market V4.1 with high fidelity, trying out many variants quickly
• (Eventually) Set ourselves up to do what-if scenarios on live running contracts
• (Bonus) hardening of Ocean Market V4.1 smart contracts

Review: SW Simulators

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf

• TokenSPICE
• cadCAD

• Google Sheets
• Excel

• TokenSPICE 2
• cadCAD future?
• Gauntlet? (proprietary)

https://blog.oceanprotocol.com/on-verifying-token-based-systems-c33eca757ecf
https://github.com/oceanprotocol/tokenspice2

Block diagram: Ocean Market V3
For each DTx pool. Each dodecagon is an agent. Line thickness is observed volume.

$O
$DT1, $O

Stakerspeculator 1

Init: $O
Wants: more $O
Value-Creating Actions:

● stake (earns tx
fees, gets $DT1
exposure)

pool1
Init: unlimited $BPT1
Wants: $DT1 and $O (for
liquidity)
Value-Creating Actions:

● sell $BPT for $O
● charge tx fees

Publisher 1

Init: $O, unlimited $DT1,
unlimited data1

Wants: more $O
Value-Creating Actions:

● publish DT1 pool &
stake

● give data1 access

$BPT1

$BPT1

$O

$BPT1

Dataconsumer 1
Init: $O
Wants: more $O
Value-Creating Actions:

● use data1 to create $O

$O
$DT1

$DT1

data1
access

Publish DT1
pool & stake

Stake on
pool1

Sell
BPT1

Buy $DT1

Access
$data1

$BPT1
$O

Sell BPT1

https://en.wikipedia.org/wiki/Dodecagon

Block diagram: Ocean Market V4.1
with 1SS + Dutch:Pool + Vested Premine + soft cap on vol:consume ratio
For each DTx pool. Each dodecagon is an agent. Line thickness is expected volume. $O

$O

Staker 1
Init: $O

Wants: more $O
Value-Creating Actions:

● stake (earns tx
fees, gets $DT1
exposure)

pool1
with 1SS + Dutch:Pool

Init: unlimited $BPT1,
$DT1

Wants: $DT1 and $O (for
liquidity)
Value-Creating Actions:

● sell $DT1 for $O in
Dutch auction

● sell $BPT for $O
● charge tx fees

Publisher 1

Init: $O, unlimited $DT1,
unlimited data1

Wants: more $O
Value-Creating Actions:

● publish DT1 pool &
stake

● give data1 access

$BPT1

$BPT1

$O
$DT1 (vesting), $BPT1

Dataconsumer 1
Init: $O
Wants: more $O
Value-Creating Actions:

● use data1 to create $O

$O
$DT1

$DT1

data1
access

Sell
BPT1

Buy $DT1

Access
$data1

$O

Speculator 1
Init: $O

Wants: $DT1 and more $O
Value-Creating Actions:

● buy $DT1 for $O in
Dutch auction

● trade $DT1 / $O in
equilibrium

$DT1$DT1

$O

Buy DT1

Sell DT1

Publish DT1
pool & stake

$BPT1
$O

Sell BPT1

$DT1
$OSell DT1

Stake on
pool1

https://en.wikipedia.org/wiki/Dodecagon

TokenSPICE with EVM
Done so far:

• Wrote Ocean Market V4.1 smart contracts
• Drew schematics for V3 & V4.1
• Adapted TokenSPICE code

• Run EVM end-to-end via ganache
• Lets third-parties deploy to ganache, then uses at their ABIs
• ABIs are wrapped as classes, which are inside agents.
• Already include: Ocean datatokens, Ocean datatoken factory, Ocean friendly fork of

Balancer AMM, Balancer AMM factory, etc. Have Unit tests for all.
• Started writing Python-level agent behaviors

Still to do:
• Finish writing Python-level agent behaviors
• Replicate Ocean Market V3 dynamics: run simulations and tune as needed
• Observe Ocean Market V4.1 dynamics: point at Ocean V4.1 contracts and run!
• Iterate on sim and on design until satisfied
• THIS IS A LOT!

TokenSPICE with EVM
Top-level agent architecture

● All agents inherit BaseAgent
● Controllable agents use EVM.
● Uncontrollable agents use pure Python. But each has EOA.

○ Therefore the core dynamics are still on-chain

 Controllables
Controllable agents (structure):

● What agents: just Pool (incl. Strategies and Pool Controllers).
● The agent's state is stored on blockchain. Deployment is not in the scope of TokenSPICE right now. TokenSPICE just sees ABIs.
● PoolAgent.py wraps BPool.sol. Agent's wallet grabs values from BPool.sol

○ current design (.sol) is at oceanprotocol/contracts
○ new design (.sol) is at branch 'feature/1mm-prototype_alex'
○ how can PoolAgent see it? draw on btoken.py etc.

Controllable variables:

● Global design vars. E.g. schedule for token distribution.
● Design vars within controllable agents

TokenSPICE with EVM
Uncontrollables

Uncontrollable Agents:

● Uncontrollable agents use pure Python. But each has an Externally Owned Address (EOA) to interact w EVM. Implemented inside
Wallet.

● What agents:
○ Status quo design: Publisher, Dataconsumer, Stakerspeculator
○ New design 1: Publisher, Dataconsumer, Staker, Speculator

Uncontrollable Variables (Env & rnd structure & params)

● Global rndvars & envvars.
● Rndvars and envvars within controllable agents
● Rndvars and envvars within uncontrollable agents
● Ranges for envvars, and parameters for rndvar pdfs, are in constants.py, etc.

 Metrics
● These are what's output by SimEngine.py into the CSV, then plotted
● In the future, we could get fancier by leveraging TheGraph.

TokenSPICE with EVM
• Each Agent has an AgentWallet.
• Now, AgentWallet is the main bridge between higher-level Python and EVM.
• Each AgentWallet holds a Web3Wallet.
• The Web3Wallet holds a private key and creates TXs.

Using TokenSPICE 1/4 [added 20210616]
https://github.com/oceanprotocol/tokenspice

https://github.com/oceanprotocol/tokenspice

Using TokenSPICE 2/4
https://github.com/oceanprotocol/tokenspice

https://github.com/oceanprotocol/tokenspice

Using TokenSPICE 3/4
https://github.com/oceanprotocol/tokenspice

https://github.com/oceanprotocol/tokenspice

Using TokenSPICE 4/4: Kanban
https://github.com/oceanprotocol/tokenspice

https://github.com/oceanprotocol/tokenspice

Benefits of EVM agent simulation [added 20210616]

TokenSPICE 2 and other EVM agent-based simulators have these benefits:
• Faster and less error prone, because the model = the Solidity code. Don’t have to port any existing Solidity code into

Python, just wrap it. Don’t have to write lower-fidelity equations..
• Enables rapid iterations of writing Solidity code -> simulating -> changing Solidity code -> simulating. At both the

parameter level and the structural level.
• Can quickly integrate Balancer V2 code. Then extend to model other AMMs. And other DeFi code. Etc etc.
• Plays well with other pure Python agents. Each agent can wrap Solidity, or be pure Python.
• Super high fidelity simulations, since it uses the actual code itself. Enables modeling of uncontrollable variables, both

random (probabilistic) ones and worst-case ones.
• Can build higher-level CAD tools, that have TokenSPICE 2 in the loop:

• 3-sigma verification - verification of random variables, including Monte Carlo analysis
• Worst-case analysis - verification across worst-case conditions
• Corner extraction - finding representative “corners” -- a small handful of points in uncontrollable variable space to

simulate against for rapid design-space exploration
• Local optimization - wiggle controllable params to optimize for objectives & constraints
• Global optimization - “”, with affordances to not get stuck
• Synthesis - “” but wiggle code structure itself in addition to parameters
• Variation-aware synthesis - all of the above at once. This isn’t easy! But it’s possible. Example: use MOJITO

(http://trent.st/mojito/), but use TokenSPICE 2 (not SPICE) and Solidity building blocks (not circuit ones)
• Mental model is general enough to extend to Vyper, LLL, and direct EVM bytecode. Can extend to non-EVM blockchain,

and multi-chain scenarios. Can extend to work with hierarchical building blocks.
• Can also do real-time analysis / optimization / etc against live chains: grab the latest chain’s snapshot into ganache,

run a local analysis / optimization etc for a few seconds or minutes, then do transaction(s) on the live chain. This can lead
to trading systems, failure monitoring, more.

http://trent.st/mojito/

Research Qs

Summary: Research Q’s

Basis:
• Ocean Market uses Balancer AMMs
• Doing TE to model, verify and optimize Ocean Market is highly useful on its own
• And it’s well-defined subset of broader Balancer ecosystem; we can extend scope

once we’ve got a handle on Ocean Market dynamics

Research Q’s
• Can we capture the dynamics of Ocean Market / data ecosystem for Ocean V3?

(system identification problem). Includes capturing observed issues .
• Ocean V4.1 has new mechanisms, aiming to address the observed issues. How

well do those mechnaisms work?
• One-sided staking bot?
• Straight-up AMM vs Dutch auction vs LBP?

• Tool: use TokenSPICE with EVM Agent Simulation
https://github.com/oceanprotocol/tokenspice

https://github.com/oceanprotocol/tokenspice

Evolution * TokenSPICE

Evolve Antennae (and Send into Space!)

Evolve Whitebox Functions of Circuits

[McConaghy 2005]

Evolve Analog Circuits

Extend TokenSPICE: Evolve Solidity

• Evolve Solidity smart contracts for
whatever use case you want.

• Fitness function: Eth testnet running
many agents

• Design space: a grammar with many
Solidity code blocks

Extend TokenSPICE: Evolve EVM Bytecode

• Ethereum Virtual Machine has about 100 operators

• GP could evolve these directly

Evolve WASM Bytecode
• WebAssembly (WASM) is the future of smart contract VMs. Smart

contracts in C, C++, Rust, ..

• WASM is already supported by major browsers

Evolve Networks of Attackers & Defenders

• To improve security

• Ref. Una-May O’Reilly research @MIT

Roadmap

Roadmap - this work
Via https://github.com/oceanprotocol/tokenspice

1. System identification: high-fidelity model of Ocean V3 (w/ Balancer V1); fit the
model to observed on-chain dynamics

2. Verification: high-fidelity model of Ocean V4.1 (w/ Balancer V2) base design, and
the efficacy of each proposed mechanism.

3. Design space exploration: tuning of Ocean V4.1 (w/ Balancer V2 design. Manual or
optimization-based.

https://github.com/oceanprotocol/tokenspice

Roadmap - beyond this work
Via https://github.com/oceanprotocol/tokenspice

1. System identification: high-fidelity model of whole Balancer V1 ecosystem; fit the
model to observed on-chain dynamics (up to when V2 released). Bring in
uncontrollable variables (probabilistic & worst-case).

2. System identification: high-fidelity model of whole Balancer V1 & V2 ecosystem; fit
the model to observed on-chain dynamics

3. Design space exploration: tuning of Balancer V2 Strategies to minimize IL and
other objectives & constraints. Account for uncontrollable variables (probabilistic &
worst-case).

4. Open-ended design space exploration: evolve solidity or EVM bytecode, go nuts.
AI DAOs that own themselves. Fastest path = use http://trent.st/mojito, hook in
TokenSPICE, add Solidity building blocks. This will be fun:). But one step at a time.

https://github.com/oceanprotocol/tokenspice
http://trent.st/mojito/

Conclusion

Outline

• Summary: Research Q’s
• Intro

• What’s Ocean?
• EE Simulation & Verification
• TE Simulation & Verification

• Ocean System TE
• Base
• SW Verification w TokenSPICE

• Ocean Market TE
• V3 base
• V4.1 base
• V4.1 SW Verification w TokenSPICE & EVM

• Roadmap - this research & beyond
• Conclusion

