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Abstract 

This paper presents Ocean Protocol. Ocean is a decentralized protocol and network of artificial 
intelligence (AI) data/services. It incentivizes for a vast supply of relevant AI data/services. This 
network helps to power AI data/service marketplaces, as well as public commons data. The heart of 
Ocean’s network is a new construction: a Curated Proofs Market. CPMs bridge predicted relevance 
with actual relevance of each AI service, by having curation markets for cryptographic proofs (e.g. 
proof of data availability).  
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1. Introduction 
Modern society runs on data [​Economist2017​]. Modern artificial intelligence (AI) extracts value from 
data. More data means more accurate AI models ​[Banko2001]​ ​[Halevy2009]​, which in turn means 
more benefits to society and business. The greatest beneficiaries are companies that have ​both ​vast 
data and internal AI expertise, like Google and Facebook. In contrast, AI startups have amazing 
algorithms but are starving for data; and typical enterprises are drowning in data but have less AI 
expertise. The power of both data and AI — and therefore society — is in the hands of few. 

Our aim is to equalize the opportunity to access data, so that a much broader range of AI 
practitioners can create value from it, and in turn spread the power of data. We must also respect 
privacy needs, which implies we must include privacy-preserving compute. (On-premise) compute 
also mitigates ​data gravity​ ​when the data itself is too heavy to move, and reduces friction for large 
organizations looking to share their data. 

To reduce this to a practical goal, our aim is to develop a protocol and network — a tokenized 
ecosystem — that incentivizes for making AI data and services available. This network can be used as 
a foundational substrate to power a new ecosystem of data marketplaces, and more broadly, data 
sharing for the public good. 

The main goal is how to ​incentivize towards a large supply of relevant AI data & services​. This is not 
easy, as there are several challenges: 

● How do we (or the network) know what’s relevant? Can we even deterministically judge this, 
or do we need some other means? 

● We want to incentivize not only relevant ​priced ​data but also relevant​ public ​or ​commons 
data. The latter is harder because it is free by its nature.  

● How do we include / incentivize not only data, but also AI ​compute ​services? How do we 
ensure that they can account for privacy? How do we include ​decentralized ​compute service 
providers? How do we ​guarantee ​that the service was actually provided? 

● How might we incentivize referrals at both the actor and data levels, i.e. for actors to bring 
new actors into the system, and share the word about relevant data assets? 

● What are the attack vectors and how do we address them? For example, spamming with 
low-quality data to get many rewards; or “data escapes” where one actor publishes the data 
held by a different rights-holder.  

We have devised a design called ​Ocean Protocol​ that, we believe, meets these objectives.  

The Ocean network is composed of data assets and services. Assets are in the form of data and 
algorithms. Services are processing and persistence which leverage assets. The assets and services 
are the commodities made available for consumption via the network, and are similar to those found 
in any mature data ecosystem.  

Ocean has strong incentives to submit, refer, and make available (provably) quality AI data & 
services, via a new construction that we call a ​Proofed Curation Market​ (CPM). A CPM has two parts: 
predicted popularity ​of a dataset/service, and its ​actual ​popularity:  

1. Cryptographic Proof. ​The ​actual popularity​ is the count of the number of times the 
dataset/service is delivered or made available. To avoid being gamed, it must be made 
available in a provable fashion using a cryptographic proof. For example, this may be proof 
of data availability or a zero-knowledge compute proof.  
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2. Curation Market. ​This is for ​predicted popularity​, a proxy for relevance. The crowd knows 
much better than designers of Ocean whether a given dataset/service is relevant; so we 
harness the crowd via a curation market setting. This market can be thought of giving 
reputation to data/services where the actor must “put their money where their mouth is.” 
They stake to buy “shares” (​drops​) in that dataset/service. The earlier that an actor stakes or 
bets on a given dataset/service, the more drops they get for amount staked, and in turn the 
higher the reward. 

Only stakeholders provably making high-quality data/services available will be able to reap rewards. 
Block rewards for a given dataset/service are distributed based on amount of stake in that 
dataset/service, and its popularity. In other words, CPMs instantiate the goals of ​verification ​and 
virality​. 

To our knowledge, Ocean is the first system that explicitly incentivizes people to share their 
data/services, ​independent ​of whether it is free or priced. Whoever bets on the most popular 
data/service (and makes it available) wins the most rewards. 

Ocean Tokens are the main tokens of the network, the unit for buying/selling services and for block 
rewards. We denote Ocean Tokens as “​Ọ ”. We also need Ocean Tokens to measure stake in ​each 
given dataset/service. For this, we use ​drops​. Drops are derivative tokens of Ocean tokens denoted 
in “​Ḍ ”. For example, 100 drops of stake in dataset X is “100 ​Ḍ X”. Drops relate to Ocean Tokens via 
curation markets’ bonding curves. 

Ocean is a work in progress. Therefore this document should be taken as a ​current ​conception of 
what we are targeting with Ocean, with some description of the how. As we continue to develop the 
technology, we anticipate that there could be changes to the “what” or the “how” of the technology, 
from the building blocks to specific parameters. So please treat these as initial suggestions and 
options rather than final choices. When Ocean’s public network is live, it should be considered as-is, 
and the reader should not infer any guarantee that particular functionality described in this 
whitepaper will be delivered. 

The rest of this paper is organized as follows. Sections 2-4 provide context with use cases, 
stakeholders, and data ecosystem respectively. Sections 5 and 6 describe system structure and 
behavior. Section 7 describes the heart of Ocean’s token design: Proofed Curation Markets and 
associated block rewards. Section 8 elaborates on curation markets; section 9 on identity and other 
core blocks. Section 10 elaborates on proofs of service delivery. Section 11 covers outstanding 
concerns. Section 12 concludes. The appendices discuss FAQs and concerns, design tradeoffs, and 
descriptions of some verifiable computational & data integrity services. 

2. Use Cases 
These use cases and others guide our design. 

2.1. Proprietary Data: Autonomous Vehicles 
A leading use case for proprietary data is autonomous (self-driving) vehicles. 

The RAND Corporation calculated that 500 billion to 1 trillion miles driven are needed to get AI 
models accurate enough for production deployment of self-driving cars ​[Kalra2016]​. Our 
collaborators at Toyota Research Institute (TRI) saw that it would be prohibitively expensive for each 
automaker to generate that much data on its own. Why not pool the data, via a data marketplace? 
With them, we built such a prototype ​[BigchainDB2017]​. 
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Then the challenge is, a single data marketplace may itself be centralized: we arrive at another data 
silo. We need a substrate that enables ​many ​data marketplaces to emerge. This is a key goal of 
Ocean Protocol. Critical new benefits emerge: higher liquidity for each marketplace, and 
organizations are directly incentivized to pool data rather than silo it. 

Self-driving car training data illustrates how not all data is fungible: a mile driven in a blizzard is 
worth more than a mile driven on an empty, sunny desert highway. But one mile in the blizzard is 
fungible with other miles in blizzards. The system must account for both fungible and non-fungible 
data. 

2.2. Regulated Data: Medical Research 
This is a leading use case for data that must follow data protection regulations in support of privacy; 
and therefore it will need privacy-preserving AI compute services.  

DEX Pte. Ltd. (“DEX”) is working with ConnectedLife ​[ConnectedLife2018]​, Medical Researchers at 
the National Neuroscience Institute of Singapore, Specialist Professionals and Hospital Groups in 
Singapore, Germany, and elsewhere towards an objective measurement of the symptoms of 
Parkinson’s Disease. The goal is to build subject specific and generalized models based on patient 
bio-medical and free-living sensor data. However, ethical and national personal data protection laws 
prevent patient data from being copied and shared without considerable transformation of the data 
taking place and thereby removing much of the value and potential impact in-terms of patient data 
driven applications. A data marketplace makes it easier to connect the data suppliers; and it must be 
decentralized to avoid the siloing issue. This provides us with an excellent use case for 
privacy-preserving compute. 

2.3. Global Data Commons 
Our vision is to grow a massive set of data assets, all free for the planet to use. We’ve seen glimpses 
of the power of this. For example, ImageNet is an open dataset with over 10 million tagged 
images​—​much larger than previous open image datasets. It has allowed AI researchers to train 
image classifiers with radically less error than before, for dozens of computer vision applications 
[ImageNet2018]​. There are several other open data efforts; unfortunately each is siloed with little 
incentive to create more current, valuable data/information and share among them. Directly 
incentivizing data sharing can address this. 

3. Stakeholders 
Understanding network stakeholders is a precursor to system design. ​Table 1​ outlines the 
stakeholders participating in the network. There are stakeholders beyond, from developers to 
auditors, but that is outside the scope of this paper.  

Table 1: Key stakeholders in Ocean ecosystem 

Stakeholder What value they can 
provide 

What they might 
get in return 

Data/service provider, data custodian, data 
owner 

Data/service (market’s 
supply) 

Ocean Tokens for 
making available / 
providing service 

Data/service referrers, curators. Includes 
exchanges and other application-layer providers. 

Data/service (via a 
provider etc), curation 

Ocean Tokens for 
curating 
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Data/service verifier. Includes resolution of 
linked proofs on other chains 

Data/service (via a 
provider etc), verification 

Ocean Tokens for 
verification 

Data/service consumer Ocean Tokens Data/service 
(market’s 
demand) 

Keepers Correctly run nodes in 
network 

Ocean Tokens for 
chainkeeping 

 

4. Ocean as a Data Ecosystem 
4.1. Decentralized Data Hub 
We can draw on the experience and technology of existing centralized data ecosystems, which 
power modern enterprise applications, large-scale machine learning, data analysis, and more. These 
ecosystems combine many technologies, such as: mainframe systems, operational data stores, 
enterprise service and data buses, data warehouses and data lakes, ETLs (Extract, Transform, Load 
tools) and ELTs, distributed and in-memory computing, APIs and web services, over-the-counter 
consumption tools and web applications.  

Traditional ​Enterprise Data Hubs (EDHs)​ have the following capabilities: 

1. Source​ – The exposure of available initial data assets. 
2. Ingestion ​– Help onboard data assets into the ecosystem.  
3. Processing ​– Transform, normalize, and consolidate assets, including cleansing, 

normalization, and consolidation. 
4. Persistence ​– Store the assets for use. 
5. Consumption ​– Use the assets. 
6. Discovery​ - Finding the assets. 
7. Governance ​– Implement the ecosystem’s governing rules, including crypto-conditions. 

Each service incorporates one or more of these capabilities. For instance, an ETL service incorporates 
ingestion and processing, while a Spark distribution ​[Spark2018]​ incorporates processing and some 
finite in-memory persistence.  

Ocean will support these capabilities, in a ​decentralized ​fashion. Therefore it is a ​Decentralized Data 
Hub (DDH)​. ​Figure 1​ illustrates. On top of these will be myriad marketplaces for data/services, both 
centralized and decentralized. 

 

Figure 1: Ocean Protocol is a Decentralized Data Hub 
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4.2. Decentralized Data Pipeline 
Orchestration of services in an EDH is handled by data pipelines. A data pipeline consists of control 
and data flows that manage system interactions across services. Ocean will facilitate such 
functionality between decentralized services.  

Figure 2​ shows an example of Ocean fulfilling some of these capabilities in a decentralized data 
pipeline going from left to right.  

The ​source ​is a log stream or log files. These get ​ingested​ into a message queue. Then there is 
processing​, which could be centralized (e.g. EC2 ​[Amazon2018c]​ or Lambda), decentralized (e.g. 
Golem ​[Golem2016]​, iExec ​[iExec2017]​) and possibly with special capabilities like AI (e.g. 
SingularityNET ​[SingularityNET2017]​) or privacy (e.g. Enigma ​[Zyskind2015]​).  

The next step is ​persistence​, which could be blob stores or databases, and centralized or 
decentralized. For example, AWS S3 ​[Amazon2018b]​  is a centralized blob store, IPFS/Filecoin 
[IPFS2018]​ ​[Filecoin2017]​ and Ethereum Swarm ​[Trón2018]​ are decentralized blob stores, AWS 
Aurora ​[Amazon2018]​ and MongoDB Atlas Amazon Aurora ​[Amazon2018]​ and MongoDB Atlas 
[MongoDB2018]​ are centralized database services, and BigchainDB ​[BigchainDB2018]​ and OrbitDB 
[OrbitDB2018]​ are decentralized databases.  

Finally, the data asset is consumed by a human looking at a dashboard, or by software in the form of 
Webhooks ​[Webhook2018]​, IFTTT or other callbacks technology. 

 

Figure 2: Ocean decentralized data pipeline 

Figure 3​ illustrates Ocean in a data pipeline incorporating privacy-preserving compute, using proxy 
re-encryption (e.g. with NuCypher ​[NuCypher2018]​) and multi-party compute (MPC)(e.g. with 
Enigma ​[Zyskind2015]​). It also shows the use of redundancy, which is a key feature of most 
distributed systems storage technologies. 
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Figure 3: Ocean decentralized data pipeline with privacy and redundancy 

4.3. Interservice Connections 
To link to the decentralized services, we need ​adapters ​(bridges) for two things: 

● Value / liquidity​ - to pay for the network services, we need to exchange Ocean Tokens to 
this network’s native token. Infura exchange  ​[Infura2018]​, and 2-way pegs like Interledger 
[Thomas2015]​ and Cosmos ​[Kwon2017]​ can help.  

● State / data​ - there is a proof that a request that has been handled. If that proof has been 
verified then it’s satisfied Ocean’s needs. PolkaDot for state ​[Wood2016]​, Truebit for proofs 
[Teusch2017]​, and IPLD ​[IPLD2018]​ for content-addressed data can help. 

Figure 4​ illustrates. 

 
Figure 4: Connecting Ocean with other decentralized service networks 

5. System Architecture 
Figure 5​ shows the overall architecture. At the top are stakeholders: data/service providers 

(including data custodians and owners) and verifiers, data/service consumers (most notably, AI 

experts), data/service marketplaces, and data commons interfaces. 

Providers. ​These actors have AI data or services that they make available in a cryptographically 

provable fashion. Services may include: data itself, storage (centralized or decentralized), compute 
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(centralized or decentralized, privacy-preserving or not), and more. 

Marketplaces. ​Data/service marketplaces are typically how providers and consumers interact with 

Ocean network, for convenience. Each marketplace is expected to facilitate:  

1. Discovery - The ability to identify, promote, and curate assets or services within an 

ecosystem; 

2. Transactability - The ability to reach transactional agreement between ecosystem 

stakeholders, facilitated by Ocean Tokens; and 

3. Verification - The ability to verify that transactions were sufficiently completed.  

To catalyze marketplaces for the community, we are building a reference data marketplace with a 

permissive open source license ​[OceanMkt2018]​. 

While marketplaces will have their own approaches to pricing, but for discoverability, liquidity, and 
clearing, Ocean itself will store the pricing information.  

Data commons interfaces. ​Side-by-side with data marketplaces that serve priced data are interfaces 

for data commons, for ​free ​or commons data. These interfaces might be webpages, software 

libraries, and so forth. 

Keepers. ​The Ocean network itself is composed of a set of Ocean keeper nodes . Keepers collectively 4

maintain the network. Anyone can run an Ocean keeper node; it’s permissionless. Participation is 

open and anonymous. Of course, just as in Bitcoin, higher layers like marketplaces and service 

providers can include their own identity and permissioning requirements. 

 

Figure 5: Ocean architecture 

Each keeper node runs Ocean core software that speaks the Ocean protocol. When we say “core 

4 We prefer “keeper” ​[Zurrer2017]​ over “miner” as mining implies a proof of work; Ocean is not constrained to 
simply proofs of work.  
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software” we mean any correct implementation of the protocol. It has these key parts: 

● Proofs of data/services.​ Tie-in to the storage & processing with provable data availability, 

etc. This is making sure that the keeper actually made a data/service available like they 

claimed they did. It’s accomplished via cryptographic proofs, which we elaborate on later. 

Data blobs themselves may be stored on-premise, on the centralized cloud, or on the 

decentralized cloud. On-premise storage may pair with on-premise processing; in which case 

only the result of the processing is made available to the data/service consumer. 

● Curation markets.​ This is a list of available data/services, with reputation for each in the 

form of a curation market. Curation markets combined with cryptographic proofs gives a 

new construction - Curated Proofs Markets - which bind predicted and actual popularity. 

● Pricing/metadata. ​This is how much the provider asks for access of the data/service (fixed 

price, auction, etc) or whether it is free; in addition to other metadata. IP rights information 

is stored using [​COALAIP2018]​, a blockchain-ready IP protocol. The Ocean network itself 

does little with this information; its goal is to make the information available to higher-level 

marketplaces, enabling discovery across all marketplaces. 

● Identity. ​This is a whitelist of good actors, implemented as a Token Curated Registry of users 

[Goldin2017]​[adChain2017]​. New members join with stake; if they act maliciously (as voted 

by the list) they lose stake and are removed. This whitelist is needed to avoid particular 

attack vectors, as elaborated in the ​section on identity​. 
● Chain maintenance. ​Because the Ocean network is a blockchain, it needs maintenance logic 

like validating transactions, storing Ocean Tokens, storing metadata (with links to 

services/assets),  and more. 

6. System Behavior 

6.1. Overview 

Figure 6​ shows an overview of the system behavior. The stakeholders are grouped as follows. 

● Top: ​Client ​is the data/service consumer 

● Middle: ​Services ​include data/service providers/owners, referrers/curators, and verifiers. 

● Bottom: ​Keepers ​are keepers (miners) of the blockchain network. 

Each arrow has a label that describes a particular action between two stakeholders in the system. Let 
us go through these, left to right. The ​publish ​function is when an actor onboards a new dataset or 
service into the network. Publishing includes providing the dataset/service’s metadata and making it 
globally accessible .  5

After the dataset/service is onboarded, actors can play ​curator ​in order​ ​to ​stake​, thus indicating 
their confidence in the relevance of a dataset/service. Staking also provides a ​signal ​to help clients 
query ​and ​discover ​relevant services, typically inside ​markets​.  

When a client discovers a service they want to consume, they agree upon a ​contract ​by virtue of a 
market function. The ​service ​provider gives ​access ​to the service, providing a ​proof ​it was fulfilled. 

5 ​Albeit potentially with permissioning to reconcile privacy needs. 
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Finally, the service contract is enforced by the ​verifier ​doing the cryptographic ​verification​. Block 
rewards are then distributed appropriately. 

 

Figure 6: Overview of protocol functions 

 

6.2. Service Delivery Protocol 

Let’s drill into the core function: setting up and delivering a service . Here, we use smart contracts as 6

programmable ​service agreements​. ​Figure 7​ depicts the protocol. It proceeds as follows . 7

1. Contract Setup​ - The service agrees and both parties come to a service agreement that is 
programmable and enforceable 

a. The client discovers a service that it wants to consume. 
b. The service provider (or client) sets up a service agreement including conditions 

related to settlement (fees and warranties), as well as resolution (execute and abort 
conditions). 

c. The client agrees with the contract by locking up Ocean Tokens in the escrow 
function of the contract. 

d. (Optionally) A set of verifiers with the capability to verify the service integrity proofs 
are chosen and allocate resources. 

e. The contract is digitally signed and deployed on-chain. 
2. Access Control and Consumption​ - The client requests access to the service and consumes 

the service 
a. The client connects to the service provider and authenticates. 
b. The service provider authorizes the client based on the on-chain contract. 

6 ​For the data side, we treat data availability as a service.  
7 This is one possible order of events. In other cases, consumption may happen after verification, for example 
to avoid accidental consumption of bogus data.  
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c. Upon successful authorization, the client is granted access and consumes the 
service. 

3. Verification and Settlement​ - The service consumption is verified and the contract is settled 
a. A pre-appointed verifier and/or the client challenges the service to provide proofs 

that the requested service is delivered according to integrity specifications. 
b. The service accepts the challenge, computes the proof and stores this on-chain with 

a reference to the contract. 
c. The verifiers validate the proof and optionally send out new challenges to the 

provider. 
d. Once enough proofs are provided, the contract goes into settlement: 

i. Upon correct verification of the proofs, the transfer of funds from client to 
provider is finalized; or, 

ii. Upon provable error or timeout, the funds are rolled back and optionally the 
provider is penalized by slashing stake. 

e. Block rewards are dispensed accordingly. 

 

Figure 7: Service delivery protocol 

6.3. Service Agreements 

A marketplace on Ocean brings together multiple service consumers and providers. All participants 
in the transaction are exposed to certain risks - the provider may not get paid and the consumer may 
not get the expected service. However, if a description of the service is encoded in a programmable 
service agreement on a public trust layer, it can be enforced. Within the service agreement, the 
payment, settlement, and service parameters are specified. Parameters include access tokens, 
timeouts, service-specific proofs, and verifications. ​Figure 8​ helps illustrate this.  

Lock: ​Ocean Protocol employs a two-phase contract, similar to a hold or escrow. First, funds are 
locked up. This means that the funds are pending until a resolution of the contract has been met. 
Second, the service is executed or aborted. If executed, funds are released to the provider. If 
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aborted, funds are returned to the consumer. Additionally, warrantees or stake can be provided 
from the service provider side to further enforce the trust. 

Resolve: ​Keepers determine whether a service agreement is executed or aborted. Keepers use 
verification of service proofs to resolve the contract. If no verified proofs can be provided within a 
specific timeout (measured in blocks), then the abort condition can be triggered and funds refunded, 
optionally with a forfeit of any warrantee or stake of the provider. Of course, some fees are due for 
the keepers and verifiers to run the contract and verify the proofs. 

 
Figure 8: Pseudocode for a service contract 

The contracts are programmable and allow consumers and providers to express complex scenarios. 
However, complex contracts require more execution time on the keeper nodes as well as potentially 
more dedicated verifiers for specific proofs. For example, a service that wants to provide a 
combination of computation and storage would require proofs for both compute and storage with 
their own verification or challenge-response mechanism.  

6.4. Access Control 

The Ocean Service Agreements are a starting point for a consumer to gain access to a service. 
Authorisation of the requestor to access a service occurs by verifying that the requestor has been 
granted a capability such as HTTP access (GET, PUT, ...), a specific range of queries (SQL, noSQL), or 
even secure modes of interaction (MPC, TEE, sHSM, ...). The capabilities are stored in the service 
agreement and these are queried via a call from the service upon verification of the authorization 
request ​[Smolenski2017]​.  

7. Core Token Design: Curated Proofs Market 
7.1. Introduction 
The previous sections provided context to Ocean, and gave high level overview of Ocean’s behavior 
and structure. This section describes the core token design. At its heart is a block rewards function 
(objective function) implemented by a ​Curated Proofs Market.  

Recall that Ocean’s main goal is: ​maximize the supply of relevant AI data & services​. This drives the 
beating heart of Ocean - the ​block reward function​. It acts similarly to an ​objective function​ in the 
optimization literature, for example as used in ​[McConaghy2009]​. Optimization can be framed as a 
subset of mechanism design ​[Evans2017]​. This objective function is what Ocean is optimizing 
towards, by incentivizing actors in its ecosystem to contribute to. Bitcoin rewards contribution to 
hash rate with Bitcoin tokens; Ocean rewards contribution to relevant data/services with Ocean 
Tokens. 
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Besides the main goal, we had several ​ancillary questions / goals​ that guided us in token design. 
Early designs did not meet them. As we will see later, the chosen design does. They are as follows: 

● For priced data, is there incentive for supplying more? Referring? Good spam prevention? 
● For free data, is there incentive for supplying more? Referring? Good spam prevention? 
● Does it support compute services, including privacy-preserving compute? Do they have 

incentives for supplying more, and for referring? 
● Does the token give higher marginal value to users of the network versus external investors?  
● Are people incentivized to run keepers?  
● Is it simple?  
● Is onboarding low-friction?  

7.2. Block Rewards to Incentivize Relevant Data/Services & Make It Available 
Block rewards are the key tool to incentivize desired behavior, i.e. to “get people to do stuff” 
[McConaghy2018]​. Ocean emits Ocean Tokens as block rewards.  

We want Ocean to have strong incentives to submit, refer, and make available quality data/services. 
To accomplish this, we introduce a Curated Proofs Market, which combines (a) cryptographic proofs 
that the data/service was made available, with (b) Curation Markets [​Rouviere2017​] for reputation 
of data/services. It does curation on cryptographic proofs. It uses stake as a measure of the belief of 
the future popularity of the data/services, where popularity is measured by number of times that 
service is made available. Block rewards for a dataset/service are a function of how much an actor 
has staked in that dataset/service, the dataset/services’s actual (proofed) popularity, and the actor’s 
serve-versus-use ratio.  

We now elaborate. First we describe an ideal token allocation approach; then we describe a practical 
implementation. 

Here is the ideal allocation approach, i.e. the approach assuming no computational constraints. isRij  

the block rewards for actor ​i​ on dataset/service ​j​, ​before ​being normalized across all actors and 
datasets/services. The actual block rewards received are normalized: .Rij,norm  

og10(S ) og10(D )Rij = l ij * l j * Ri  

Rij,norm =
Rij

∑
 

i
∑
 

j
Rij

* T  

where 

●  ​= actor​ i’​s stake in dataset/service ​j​, measured in ​drops​.Sij   

●  = number of deliveries of dataset/service ​j ​in the block intervalDj  

●  = global ratio for actor ​i ​serving up vs. accessing a dataset; details are belowRi  

●  = total Ocean Tokens given during the block interval according to the overall tokenT  

reward schedule (see Appendix) 

The first term in  is . It reflects the actor’s belief in the popularity of theRij og10(S )l ij  

dataset/service, measured in drops. If the actor that posts the data/service believes that it will be 
popular, then they can stake even more than the minimum posting amount, curation-market style, 
and receive more drops. Additionally, others that believe in the future popularity of the data/service 
can stake whatever they would like, curation-market style, and receive drops. These mechanics 
incentivize participants to submit relevant datasets/services, and gives them an opportunity to make 
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money too. We use log10 on curation market stake (drops) to level the playing field with respect to 
token whales; and so that token whales are incentivized to make a greater number of 
datasets/services available. This has theoretical roots in Kelly Betting: applying the log is the optimal 
strategy for an individual to maximize their utility in betting ​[KellyCriterion2017]​ ​[Simmons2017]​.  

A later section elaborates on curation markets including stake in drops; and another section on how 
we manage identities to prevent stake whales from creating multiple accounts). 

The second term, , reflects the popularity of the dataset/service; that is, how many timesog10(D )l j  

it has been (provably) used in the time interval. We use log10 to incentivize actors to stake and make 
a greater number of datasets/services available.  

The first and second term can be summarized as a binding of ​predicted ​popularity * ​actual 
popularity. This is the core mechanic of a Curated Proofs Market. 

The third term, , is to mitigate one particular attack vector for data (it’s excluded for services).Ri  

“Sybil downloading” where actors download files repeatedly to increase their block rewards (more 
on this later). It uses a tit-for-tat approach like BitTorrent by measuring how much data an actor has 
served up, versus how much is accessed, as follows:  

min(B , B ), 1.0) if  all data assets served; 0.0 otherwise}Ri = { served  downloaded     

where 

● = total number of bits that the actor served (made available) across all data assetsBserved  

they have staked 
●  = total number of bits that the actor accessed, from any data assetsBdownloaded  

If an actor has staked on a data asset and they want to get rewarded, then they must run a keeper 
node that makes that data asset available. If they don’t make it available when asked (or fail on 
other keeper functionality), they will lose their stake in that data asset.  It’s ok if they retrieve it 
last-minute from S3 or another miner; it’s more reward as a CDN (content delivery network) 
[CDN2018]​ as opposed to proof of storage like Filecoin ​[Filecoin2017]​. 

For an early staker in a data/service that has since had more stake, they can subsequently pull out 
their stake at a profit, curation-market style. 

It’s worth emphasizing: when we say “stake” for that dataset/service, we mean the amount it’s 
worth in terms of the derivative token for that dataset/service, called “drops”. A later section 
elaborates. 

7.3. Block Rewards: Practical Implementation 
To implement the block rewards as described above has complexity and high compute cost because, 

for each block rewards cycle, we need to compute the amount of stake for each dataset/service 

made available by each actor, and we’d need a transaction to ​each ​actor to reward their effort. 

We can address these issues by giving keepers the same ​expected ​value of block reward (though 

higher variance), with less computation using a Bitcoin-style strategy (called “probabilistic micro- 

payments” in ​[Salomon2017]​). In Bitcoin, every ten minutes, tokens (Bitcoins) are awarded to a 

single ​keeper (miner) where the probability of reward is proportional to value added (miner hash 
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rate), compared to the rest of the network’s value added (network hash rate = network difficulty). 

Network difficulty is updated every two weeks.  

Ocean is similar. Rather than rewarding at fixed time intervals, every time a keeper makes a 

dataset/service available to a consumer, Ocean randomly chooses whether to give block rewards. 

The amount awarded is based on the value added by the keeper  and total network value added.Rij  

is the network difficulty; it gets updated every two weeks (20160 minutes) , i.e. theRdif f iculty  8

difficulty interval.  is the value added since the last difficulty update.Rrecent   

At network launch, At the beginning of each difficulty interval, ..Rdif f iculty = 0 Rrecent = 0  

Here’s what happens when actor ​i​ makes a dataset/service ​j ​available to a consumer.  

1. Compute value added:  

og10(S ) og10(D )Rij = l ij * l j * Ri  9

2. Update total recent network value added: 

 Rrecent = Rrecent + Rij  

3. Compute the probability of getting a block reward, ​P​. If we wanted one reward on average every 

two weeks, it would be (1). But let’s have rewards every 1 minute on average. 20160 minutes is two 

weeks. So, we add in the factor (20160 minutes)/(1 minute). The result is (2).  

(1) P  =
Rij

Rdif f iculty
 

(2) P  = Rdif f iculty

R 20160/1ij*  

4. Compute whether actor ​i​ gets the reward: 

∼ U[0,1], i.e. draw a random real number between 0.0 and 1.0, using e.g. ​[Randao2018]​[Syta2017] u  

If  then actor ​i ​will get the rewardu ≥ P  

5. If the actor ​i ​is to get the reward, then compute and give it, via a transaction with outputewardr  

to actor i. Since step 3 has a bias to reward more often using the factor (20160/1), here we need to 

divide the amount awarded by that same factor. We arrive at ​F​, the fraction of rewards for this 

action in this difficulty interval. To compute , we scale ​F ​by , where  is theewardr T dif f iculty T dif f iculty  

total Ocean Tokens given during the two week difficulty period according to the overall token reward 

schedule (see Appendix). 

F =
Rij

Rdif f iculty 20160/1*
 

ewardr = F * T dif f iculty  

8 This parameter, like many parameters in Ocean, are subject to change.  
9 We actually wrap each log() expression with a max to avoid negative values. E.g. max(0, log(S​ij​))  
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Once every difficulty interval (two weeks), the difficulty will be updated with ​R​recent​. The change is 

limited to 0.5x to 2.0x of the previous difficulty value. 

ax(0.5 , min(2.0 ), R )Rdif f iculty = m * Rdif f iculty  * Rdif f iculty  recent  

7.4. Separation of Roles vs. One “Unified” Keeper 
In designing the system, we wanted to incentivize the stakeholder roles of data/service provider, 
referrer, validator, and keeper. Some initial designs gave a percentage of block rewards to each role 
based on their respective actions. But this opens up attack vectors, such as keepers taking all the 
rewards for themselves. Our solution was to explicitly couple all the roles into one: if you’ve staked 
(provider or referrer) then the only way to get block rewards is to run a keeper node. 

If we discover alternatives to overcome the security concerns, the final implementation may 

separate these into distinct roles.  

8. Curation Markets Details 

8.1. Introduction 
Recall that Ocean’s objective function (block reward function) is to maximize the supply of relevant 
AI data/services. Ocean uses curation markets ​[Rouviere2017]​ to signal how relevant an AI dataset 
or service might be. Curation markets leverage the wisdom of the crowd: people stake on 
datasets/services they believe in. In other words, they put their money where their mouth is. In 
traditional curation markets, the main action for actors is stake and un-stake as a means of signaling. 
Ocean builds on this by binding those staking actions with actual work of making a service available - 
a Curated Proofs Market. This section elaborates on curation markets. 

Each dataset/service has its own curation market, which in turn has its own token called ​drops, ​and 
a ​bonding curve​ ​that relates drops to Ocean Tokens “​Ọ ”.  

8.2. Tokens for Services: Drops 
Let’s elaborate on drops first. Recall that drops are derivative tokens of Ocean Tokens denoted in 
“​Ḍ ” that measure stake for ​each​ dataset/service. For example, 100 drops of stake in dataset X is 
“100 ​Ḍ X”. Users can get value from drops in two ways: 

1. Block rewards.​ People earn Ocean Tokens if they bet on an AI dataset / service and make it 
available when asked.  

2. Un-staking.​ One can un-stake in order to convert from Ḍ in a service back to Ocean Tokens.  

Drops are a measure of a user’s attention: if a user cares about dataset X, the user will stake on 
dataset X to get drops of X; that is, ḌX. Because there is scarcity of Ocean Tokens, there is scarcity of 
drops, which mirrors a user’s scarcity of attention. In short, ḌX are a proxy for mindshare in X.  

Because each dataset/service has its own token, a user of Ocean will likely hold not just Ocean 
Tokens in their crypto wallet; they may also hold ḌX, ḌY, or in general a variety of drops for the 
datasets and compute services that they’ve staked.  

8.3. Bonding Curves 
A ​bonding curve​ relates a token’s drops “​Ḍ ” to Ocean Tokens “​Ọ ” for a given dataset/service. ​Figure 
9​ shows a bonding curve for dataset X. It relates the ​price in ​Ọ  to buy more drops of X​ (y-axis) as a 
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function of the ​current supply of drops ​(x-axis). As people stake more interest in X, its ḌX supply 
goes up according to the bonding curve.  

Bonding curves can take whatever shape the creator wishes. But to reward early adopters, a bonding 
curve typically makes it more expensive to buy ḌX as more people stake in it; this is the positive 
slope in the curve.  

 
Figure 9: Bonding curve for ​Ḍ X 

 

A new curation market is initialized each time a new dataset or service is made available. With this, 
the actor has already staked ​Ọ  in order to have the dataset or service vetted. A later section 
describes vetting. Once vetted, this stake goes into the curation market, in return for drops as to a 
measure stake. ​Figure 10​ illustrates. We’re at the far left of the bonding curve because 0 ḌX have 
been generated. There, each ḌX costs 0.1  Ọ . If the initial user staked 50 ​Ọ , she would gain 50 ​Ọ / 0.1 
Ọ /ḌX = 500 ḌX. The supply for ḌX increases from 0 to 500. 

 

Figure 10: increasing supply to 500 ​Ḍ X 
 

From here on, anyone can stake further in X. Let’s say a user wants to purchase 500 ḌX by staking 
more ​Ọ  tokens. This would make the supply go from 500 ḌX to 1000 ḌX. In that range, the price is 
(0.1 + 0.2 ​Ọ /ḌX)/2 = 0.15  Ọ /ḌX. The user would get 500 ḌX for a total cost of 500 ḌX * 0.15 ḌX/ Ọ  = 
75 ​Ọ . ​Figure 11​ illustrates. 
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Figure 11: increasing supply to 1000 ​Ḍ X 

8.4. Un-Staking 
A user can sell some of their Ḍ in a service at any time, in return for  Ọ . This is the exact backwards 
action compared to staking. The supply of Ḍ goes down correspondingly.  

The ability to un-stake for ​Ọ  leads to the possibility for pump-and-dump behavior. In a later section, 
we discuss this further, and how to mitigate it.  

8.5. Convergence to Relevant Data/Services 
One can ask: how does the token design lead to a large supply of relevant data/services? 

Overall, each actor has “holdings” in terms of stake (belief) of the relative value of different 
datasets/services. If an actor is early to understand the value of a dataset/service, they will get high 
relative rewards. This implicitly incentivizes referrals: I will refer you to datasets/services that I have 
staked in, because then I get more block reward. 

Actors get rewarded the most if they stake large amounts on popular datasets/services - the first and 
second terms in the block rewards function, respectively. Put another way, they must predict that a 
dataset/service will be popular, then see its actual measured popularity (as a proxy for relevance). 
Just one alone is not enough. Over time, this causes convergence towards relevant 
datasets/services. 

9. Core Blocks: Identity, IP, Pricing, Governance 

9.1. Identity: Token Curated Registry of Users 

There may be a need for some form of identity for several reasons. First, we want to incentivize good 
actors to be in the system, and bad actors to leave. We want stake whales to have diminishing 
returns in stake on a dataset/service; to accomplish this the block rewards function applies log10() to 
stake in a dataset/service; in turn, this is only possible if we have a reasonable handle on identity so 
that a stake whale doesn’t replicate themselves several times. On the flip side, we do not want the 
core of Ocean network to be tied to any jurisdiction’s laws or processes; therefore identity defined 
by something like KYC (Know-Your-Customer) like in banking would be too heavy. We need an 
approach that strikes a balance. 

Our solution is to maintain a ​whitelist of good actors ​using economic incentives. Each actor needs to 
be incentivized to have good (or at least not bad) behavior. This starts with requiring skin in the 
game, e.g.  via staking. “Good” means accredited as non-fraudulent by Ocean Token holders. 
“Actors” means all stakeholders except data/service consumers. This therefore includes not just 
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keepers, but also providers, referrers, verifiers, and consumers of data/services. We don’t include 
consumers because there’s no need to whitelist them for most cases, and we want to minimize 
onboarding friction wherever we can.  Marketplaces and other higher-level services can add further 
whitelisting (including KYC) for stricter data requirements, such as making medical data available to 
research scientists.  

We realize these goals using a ​Token Curated Registry​ ​(TCR) ​[Goldin2017]​ of actors. In TCRs, existing 
actors are economically incentivized to only add good actors and to keep out bad actors. If an actor 
in the registry is found to be acting bad, the contention mechanism could be invoked and the 
misbehaving actor’s stake is lost.  

A prospective new actor can enter this TCR whitelist one of two ways: 

1. Staking themselves​, like in ​[Goldin2017]​. This is useful for actors who are new to the system, 
and don’t know others, so are motivated to undergo a vetting process that we elaborate 
below.  

2. Risk-staking by others. ​That is, others vouch for them. This is inspired by the OpenBazaar 
“trust is risk” proposal [​Zindros2017​]. This is useful for actors who do know others in the 
system who are willing to vouch for them, and can therefore start participating in the system 
immediately.  

Let’s elaborate. 

Staking themselves. ​A new actor can stake a proposal to join. There is a vetting period in which 
challengers can come forward with stake. If there are no challengers, the new actor is in. If there is a 
challenger and the majority vote “ok”, then the challenger loses tokens and the new actor is in. If the 
majority votes “not ok”, the new actor loses their staked tokens. The actor must wait for this process 
to complete, to participate in the system.  

Risk-staking others (referrals). ​An existing actor can risk-stake on a new actor to help get the new 
actor into the system. The “risk” part means the new actor can take the existing actor’s stake 
anytime for themselves, but they aren’t expected to, because they stand more to gain by 
participating in the ecosystem. The existing actor is awarded ​R​rs​ times the new actor’s block rewards 
in betting on high quality datasets/services. ​R​rs​ is a parameter to be set, at a value about 0.1. This 
reward amount is not taken from the new actor’s block rewards, it is extra rewards (a positive sum 
game).  

The existing actor must always stake more than the total block reward that the new actor receives. If 
the new actor acts badly (e.g. loses their stake for not making dataset/service available), then the 
existing actor loses their stake in the new actor.  

If the existing actor un-stakes in the new actor such that their total stake goes below the registry 
threshold, then they are removed from the registry. So, awards and punishments are based on the 
new actor acting well and badly, respectively. Risk-staking leads to an emergent web-of-trust. Ocean 
incentivizes for this to continue indefinitely, by continuing the stream of referral block rewards. 

9.2. IP Attribution & Provenance: COALA IP 
Ocean will use the COALA IP ​[COALAIP2018]​ protocol for specifying IP rights on data. COALA IP is a 
schema for the shape of JSON-style transactions going onto the blockchain. All COALA IP transactions 
are signed. Data is content-addressable, using IPLD ​[IPLD2018]​. COALA IP builds on the lineage of 
semantic web ​[W3C2018]​. At the marketplace level, metadata specified in COALA IP and fills out a 
templated legal contract that is then hashed to the blockchain, Ricardian-contract style ​[Grigg2004]​. 
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We started building ascribe ​[McConaghy2015]​ in 2013 as a service for IP on the blockchain, focusing 
on digital art. Users could claim copyright, specify a limited number of editions, and transfer rights of 
an edition to other users. We found that our initial IP protocol was not flexible enough. So, we 
co-developed COALA IP protocol with collaborators from Protocol Labs, COALA, Ujo Music, and 
more. 

COALA IP is general enough to handle music, movies, 3D designs and more, as well as for data itself. 
It allows for fractional ownership, licensing different rights to different parties in different 
jurisdictions, time limits (e.g. “you can use this data for the next week”), derivative rights (e.g. 
cleaning up a dataset), and more. 

COALA IP models transfer of rights from one holder to others. Because COALA IP transactions are 
signed ​and go to an ​immutable ​blockchain, and the supply of data and compute itself is 
cryptographically proven, Ocean ends up holding an immutable record of data and compute history, 
i.e. provenance. Such ​data and compute provenance​ has wide applicability to practical AI and data 
management problems. COALA IP also naturally supports remix provenance, e.g. going from a messy 
dataset to a cleaned one, then a normalized one. 

9.3. Vetting IP Rights: TCR 
A data provider should only post data if they are the rights holder, they have a license to post the 
data, or the data is public domain. Of course this is difficult to perform automatically and accurately. 
Consequently, Ocean discourages abuse via a Token Curated Registry (TCR), as follows.  

When the provider posts the data, they must stake a minimum count of tokens for a minimum time 
period. Anyone can challenge the publisher’s claim during that period, with stake. There is then a 
vote, where “yes” means “data is not junk and rights are ok”. 

● If the majority votes “yes”, the challenger loses the staked tokens. The data becomes 
available in the network. 

● If the majority votes “no”, then the poster loses their staked tokens (on this data asset) and 
gets removed from the actors registry. Removal from the actors registry is a serious 
consequence, but we believe it’s a critical step in order to maintain an ecosystem of good 
(non-infringing) actors. In this case, the challenger gets some of the provider’s staked tokens 
as this incentivizes them to post challenges in the first place. 

During this challenge time period, the data itself may get served up, but all block rewards are held in 
escrow by the network until the appropriate rights holder is identified. In doing this, we keep the 
friction to publishing data low, but ensure that the appropriate rights holders get the rewards. This 
mechanism is similar to that of SoundExchange in the music industry ​[SoundExchange2018]​. 

9.4. 3rd Party Arbitration 
In Ocean, people make claims about having particular IP rights. Of course, people can lie. Ocean’s 
main tool to address this is via staking, as described. Another ​possible ​tool is to use plug-in 3rd-party 
arbitration, such as Mattereum ​[Mattereum2018]​, which could draw on the full force of the law. 
However, using that would bind the network to particular jurisdictions and laws. This is not 
desirable, as it would compromise the ​borderless ​nature of Ocean. Therefore our current approach 
is to make it easy to have plug-ins like Mattereum at higher levels (e.g. marketplaces), but for the 
core of the Ocean network to rely on staking. 
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9.5. Pricing: Basics 
Marketplaces will have their own approaches to pricing, but for discoverability, liquidity, and 
clearing, Ocean itself will store the pricing information. We envision the following. 

Free Data. ​We want to encourage a growing data commons for the world, where anyone can 
download commons data for free. 

Priced Fungible Data/Services. ​Some data is exchangeable with decent liquidity, for example 
Electrocardiogram (ECG) data for 100 people in Singapore is the same as 100 people in Germany. 
Exchanges ​are a low-friction way to handle fungible data and services, as they let the market 
determine the price in an automated way.  

Priced Non-Fungible Data/Services. ​Some data or services are not easily exchangeable. Then, pricing 
here may include fixed price, auction, and royalties. Each has pros and cons. Fixed price is simple. 
Auction pricing finds price at the cost of more complexity of implementation and user experience. 
Royalties could prove to be very useful when it’s possible to compute the final value provided, so 
that royalties can propagate backwards. Ideally we compute relative impact by each dataset, e.g. like 
in ​[McConaghy2008]​, then pay proportionally.  

For any pricing that is more complex than “fixed price”, Ocean network will most likely need to have 
smart contracts holding the service contract. Ocean will provide schemas for the more common 
pricing approaches.  

The Ocean Token is used as a currency for buying and selling. Data/services are priced in currency of 
the vendor’s choice (e.g. USD, EUR, ETH) then converted just-in-time to a token price, according to 
crypto exchange rates. Conversion would happen ideally via a decentralized exchange, though in the 
near term centralized exchanges may be needed due to software maturity. Golem ​[Golem2016]​ and 
other emerging tokenized ecosystems work similarly, using e.g. the exchange capabilities of Infura 
infrastructure ​[Infura2018]​. 

9.6. Pricing: Reputation and Staking 
As mentioned earlier, we use a curation market to incentivize data supply or referral. We don’t 
require ​this for priced data, as traditional supply/demand data is a sufficient signal to set pricing, and 
price is a proxy for data reputation. However, a curation market plus block rewards catalyzes more 
data to be added more quickly. Furthermore, by having a further reputation signal, it helps users 
discover quality data assets and choose among them, just as Amazon’s star-based reputation system 
is a signal beyond simple pricing. 

However, we do need to discourage bad acting. The starting point is the data/services registry. But 
going one step further, we use staking. In order to sell a dataset/service for amount ​x​, the vendor 
must stake amount ​x​. To sell it twice, they must stake 2x. The stake will get locked up, and cannot be 
re-used during that period.  

9.7. Governance: Fixing Bugs, Protocol Updates 
This section addresses how the codebase gets updated. We need to handle simple non-controversial 
bug fixes to larger, possibly controversial protocol updates; with shades of gray in between. 
Governance options range from fully on-chain to hard forks; with shades of gray in between here 
too. We are sympathetic to the full range of options.  

We see pragmatic solutions emerging such as ZeppelinOS ​[Zeppelin_os2018]​, Aragon ​[Aragon2018] 
and Colony [​Colony2017​]. For example, ZeppelinOS provides a systematic means for tokenholders to 
agree on updates to smart contract code. We expect these to mature further as we develop towards 
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the Ocean production net. At the time of this writing, we expect that Ocean will employ one or a 
combination of these tools and processes. 

10. Cryptographic Proofs: Service Integrity and Verifiability 
Framework 
10.1. Introduction 
Ocean Protocol is an open network that uses public trust rather than institutional trust to ensure and 
verify service integrity. In a permissionless setting, there is no reliance on trusted third parties to 
verify that a requested resource has been correctly delivered. Rather, participants can encode 
service contracts in a machine readable format that can be executed and verified by the network. 
Keepers ensure that resources specified in the service contract have been provided according to the 
service contract conditions before releasing funds. 

For network keepers to perform their function, they need the ability to verify that datasets are 
correctly stored, verify that datasets have not been tampered with, and prove that computations are 
correctly executed. As a rule, network keepers need transparency to perform these functions. But 
giving network keepers visibility into the data and computation algorithms may conflict with privacy. 
One could replicate the computation. But this is prohibitively expensive for big data services and 
does not guarantee that the errors are uncorrelated. More advanced setups require trusted 
execution environments or cryptographic protocols.  

Since the Ocean Protocol network embodies a variety of services within a broad range of needs, 
including transparency, privacy and complexity, a versatile framework is proposed to enforce trust.  

We’ll first describe a model for each service and keeper node in the system and then proceed to lay 
out the verifiability options for each class of nodes.  

10.2. Actor Model for Services 
We start with the actor model ​[Hewitt1973]​ which describes the behavior of a system when there is 
no consensus upfront. This model has actors, behaviors and messages. Intelligent agents in the 
system are reactive and communicate through messages. If an agent doesn’t understand a message, 
the message is discarded. If the message corresponds to a contract or protocol operation that the 
agent understands, then it can respond by making internal decisions, changing state, sending more 
messages or creating more actors. ​Figure 12​ illustrates. 

 

 
Figure 12: Actor responses on messages 

The actor model follows Amdahl’s Law ​[Rodgers1985]​, which states that the scale of a system is 
limited by the amount of shared state. Shared state requires consensus. A pure actor model has no 
shared state between the agents. In Ocean, the shared state is kept by a network of keepers that 
coordinate with each other under Byzantine agreement. 
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The behavior of actors can be modeled using automata or dynamical system theory. In a broad 
context, actors can be described as Turing machines with finite memory. This allows us to describe 
off-chain data services as well as on-chain smart contracts and transactions. As implementation 
patterns become more complex, such as in deep learning deployments or the vast amounts of data 
in data warehouses, so do the corresponding behaviours in the ecosystem.  

If we want to port this model to our public, trustless Ocean network, there are many ways to 
enhance trust between actors, including modern cryptography, replication and consensus, provers 
and verifiers, claims, reputation, stake, curation, attention, governance, secure hardware and so on. 

One can abstract the behavior of off-chain and on-chain services as a combination of procedures 
(computation) and state (storage). Depending on the service type, clients send a request through an 
API call to a typical web service or send or multicast transactions to a sufficient number of nodes of a 
decentralized network. ​Figure 13​ illustrates. 

 

Figure 13: Left: a web2.0 service with various privacy measures. Right: decentralized services as 
replicated nodes with a consensus protocol. On the bottom, multiple options for service integrity 

verification are given. 

 
Replicated state machines that implement a blockchain protocol require determinism for consistent 
state transitions, but this can’t be guaranteed with off-chain oracles. Both the amount of replication 
(by consensus power) and transparency (in structure, code, state, history, random seeds, etc.) of a 
protocol impact the verifiability of the outputs produced by an agent in the system. Instead, 
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depending on the type of service and the level of transparency, the integrity of a service can be 
verified by the client or external verification services.  

Options to verify integrity include signed receipts, replicated execution, trusted execution or 
prover-verifier setups. For the latter, a prover  can efficiently convince the verifier  of aP V  

mathematical assertion. In most cases, the prover is the service provider and the verifier is the 
service consumer. This allows a verifier to check if a computation has been executed correctly 
without having to re-execute the computation itself. Similarly, one can prove that data has been 
stored correctly without having to store the data itself. Ocean will provide an open-ended 
framework to encompass a multitude of service proofs. Additionally, 3rd-party verifiers can be 
assigned to verify a specific service at a certain cost. 

We now discuss service integrity further. First we’ll define service integrity as a superset of data and 
computational integrity. Next we’ll give some background on specific verification implementations 
that facilitate the service verification framework. 

10.3. Service Integrity 
Eliminating trusted third parties raises the need for more privacy and service integrity. 
Corresponding to the decomposition of a service in procedure and state, service integrity is based on 
two components: computation and data integrity. We use the following definitions. 

● The ​time  denotes a monotone sequence of timestamps representing events, epochs,T  

blockheights and so on. The set of ​inputs ​are denoted by  and the ​outputs ​by .I O   

● We model the space of latent variables (​state​ space) by . These variables capture (in-)finiteS  

memory, stack depth and the ​rank ​N equals the minimal number of states required to 
implement the algorithm or storage. The rank N of a system is a measure of the complexity 
of a system. It follows that a deep neural net has a higher rank than a simple look up in a 
key-value store. 

● We also define a ​state transition function​ :  that acts on the input, C : S × T × I → S × O  

changes the state and signals an output ​[Teusch2017]​. can be a smart contract, moreC  

generic Turing machines or behavior of an actor, for example. ​Figure 14​ illustrates. On-chain 
smart contracts have a deterministic transition function while off-chain oracles are more 
black-box and probabilistic. 

 
Figure 14: Possible system representations for actors in the system 

 
● Service integrity ​implies that a reported response  of a service is correct with respect to ao  

request  where service is defined by the tuple . This allows an independent verifieri C, S)(   

 to assert whether the following statement is for an unobserved service provider:V ruet  
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 ​:= “  is the response of service  on input  after  steps”τ (C,S,i,o,T ) o C, S)(  i T  

As service provisioning is typically a combination of computation and state (data), we decompose 
the integrity definition. As mentioned above, computational integrity requires a variety of 
techniques and approaches to satisfy specific compute delegation requirements, depending on the 
task type and the level of transparency and privacy required. Data integrity is correlated to data 
availability, data consistency and the extent of data propagation in the network. For big data 
systems, verifications need to be performed exponentially faster than the data size or the complexity 
of the actual computation:  

ank proof (log(max(rank C, rank S)))r ~ O    

Figure 15​ shows types of service integrity, grouped according to data vs. computation and 
sub-groups. 

 

Figure 15: types of service integrity 

Verifiers will audit proofs using one of the schemes in the figure; subsequent sections have details on 
these proofs. The level of replication of the service verification can be set by the parties that go into 
a service agreement. It’s possible that only the consumer verifies the service proofs delivered by the 
provider. Alternatively, verification services can be provisioned randomly or predetermined to 
further enhance the security and integrity of the provided service. Of course, more replication leads 
to more computational cost and needs to be accounted for in the service agreement. 

10.4. Service Integrity: Computational Integrity 

In on-premise computation, the data consumer needs a provably correct model execution on the 
purchased data. Hence, a service needs to provide sufficient proof to convince a verifier that the 
code actually ran on the dataset .C S  
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Computational integrity​ implies that a reported response  of a computation  is correct witho C  

respect to a request  and dataset  such that , ensuring that a prover correctly reportsi S (S)o = C P  

the output rather than a more favorable output to the prover. 

At a high level, the computational integrity is represented by two parties where there are verifiers 
and provers. Let us illustrate in ​Figure 16​. A verifier  is simply able to send a task or a function V C  

and input  to a prover .  will execute the computation on behalf of  then return the outputi P P V  

 along with a short proof. Computational integrity is defined by correctness, soundness and zeroo  

knowledge, where correctness means that  can convince  concerning a true statement andP V  

soundness means that  cannot convince  of any false statement.P V  

 
Figure 16: Computational integrity framework 

 

Each proof system usually relies on assumptions. Assumptions mean that the prover may have a 
huge computation power which guarantees that the protocol will execute any task or the prover 
cannot solve certain problems. Also the verifier might have access to all inputs (like public 
blockchains) or not (such as confidential transactions). Moreover, assumptions can include 
replication of computation (for example proof of work), executing tasks on a trusted hardware like 
(Trusted execution environment or “TEE” protocol), using multi-party computation (MPC) where no 
single entity has the whole secret or the toxic waste, attestation, or auditing. There are multiple 
factors for selecting the suitable protocol or proof system including the functionality of the protocol, 
the implementation complexity, the public verifiability, applicability of zero-knowledge, the number 
of required messages to be transferred between prover and verifier, etc.  

The appendix elaborates on some popular computational integrity approaches. 
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10.5. Service Integrity: Data Integrity 

Data availability proofs are key cryptographic primitives in Ocean Protocol. We need to be able to 
prove that an actor made the correct file available, versus an incorrect one. Put another way, how do 
we tell if the data asset just made available is the same as the one that was initially uploaded?  

For clients (verifiers) to reliably retrieve a data object, a storage service (prover) is required to 
provide a concise proof that data was made available and can be recovered in its entirety. Early work 
introduces a cryptographic building block known as a proof of retrievability (POR). A POR enables a 
user (verifier) to determine that an archive (prover) “possesses” a file or data object . These proofsS  

rely on efficient hash functions while ensuring that the memory and computational requirements for 
the verifier are independent of the (potentially large) size of the file . In other words:S  

● Data integrity ​requires that no bounded prover  can convince clients  to accept alteredP V  

or falsified data after a recovery or GET operation ​[Filecoin2017]​.=S′ / S  

● Data availability​: if most clients with access permissions to the datum  can see , then S S S  

is available. 

For Ocean Protocol both data integrity and availability are important design constraints. Popular 
datasets should become more available by referral while respecting ownership attribution. 

The appendix elaborates on some data integrity & availability approaches. 

11. Outstanding Concerns 
We believe this system design is a reasonable first cut. However, we still have concerns. The biggest 
include: 

● Complexity. ​While the core is basically cryptographic proofs with curation markets, there are 
many building blocks around it: the actors registry, staking IP claims, etc. These each add 
complexity. 

● Decentralization substrate: scale, ecosystem. ​We currently do not see any decentralization 
substrate that has both ​scalability ​and a mature developer ​ecosystem​. However, there are 
several options, and these will likely evolve as we move towards deployment.  

● Data availability proofs - maturity issues.​ Filecoin’s Proof-of-Space-Time is not available yet. 
Teusch’s data availability proof is expensive. Our challenge-response proof needs vetting.  

● Compute proof issues.​ We assume that it won’t be straightforward when linking to compute 
proofs and especially to related decentralized compute networks. Another issue will be 
linking full data-compute flows. All of these will take time and effort.  

● Concerns described elsewhere. ​The appendix describes more specific concerns. We believe 
we have reasonable answers to each concern. However, these answers may not be perfect 
or have unforeseen issues.  

In addressing these concerns and others that appear, it may turn out that the final designs will be 
quite different than the ones in this document. As engineers, we are perfectly comfortable with this.  

12. Conclusion 
This paper presented Ocean Protocol: a protocol and network for AI data and services. Ocean 
incentivizes relevant ​priced​ data, relevant​ public or commons ​data, as well as privacy-preserving AI 
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compute services. Ocean’s core mechanic is Curated Proof Markets, which combine cryptographic 
proofs with curation markets; binding actual and predicted popularity of data/services.  
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14. Appendix: Extended Functionality 
This section describes Ocean functionality that will not be in the initial core, but when deployed will 
help make Ocean a much richer ecosystem for ontologies of knowledge and reputation.  

14.1. Extended Functionality: Labels 
If we want to organize data/services, we could “bucket” it into groups, or even organize it as a 
hierarchy. But what if the dataset/service belongs to multiple groups? Labels overcome this. While 
they are simple, they are highly useful. The power of labels and ontological mappings have long been 
recognized for their value in both AI and data domains.  

Ocean’s will have a curation market for ​labels​. Think of each label as having a registry of 
datasets/services that fit that label; but then add incentive to curate the labels more strongly (via 
curation market). 

This enables users to flexibly choose labels for a variety of use cases, in an entirely market-based 
approach: 

● Labels for ​security and privacy​ needs. For example: “to follow GDPR, this data cannot leave 
German soil”. 

● Labels for ​AI usage​. E.g. “this AI training data has binary outputs”. 
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● Labels for ​data shape.​ E.g. “this is streaming data”. 
● Labels for​ hierarchies of data​. E.g. “this is farm data & streaming data” 

This, in turn, enhances Ocean’s scalability across many data assets, moving from a single global pool 
to a collection of local pools organized by the crowd. This is best exemplified by hierarchies of data, 
such as subreddits of subreddits for data. We can use labels similarly for services. Ultimately, an 
ontology of knowledge ​[W3C2018]​ about AI data and services emerges.  

14.2. Extended Functionality: Stake Machines 
Initially we will have a single Token Curated Registry (TCR) for “good” actors. But as Ocean grows, we 
want to make it possible for actors to get promoted to new responsibilities such as being able to 
curate a datasets with a particular label, or having greater governance responsibilities.  

We can implement this with ​stake machines​ ​[DeJonghe2017]​. Stake machines marry TCRs with 
Finite State Machines (FSMs). In a traditional Finite State Machine (FSM) ​[FSM2018]​, the machine 
can be in one of many discrete states (represented as nodes), and can transition from one state to 
another via a state transition function (represented as directed edges). A stake machine is an FSM 
where the state transition function is ​staking-based​ using TCR mechanics.  

In Ocean, the state relates to the actor’s reputation. So, for an actor to transition from the initial 
“good actors” TCR to a next-stage TCR, that actor stakes to join the next-stage TCR and the actors 
already in the next-stage TCR have the opportunity to challenge the actor.  

Traditional TCRs have binary state (in or out); stake machines can have >2 discrete states; and 
curation markets have continuous states.  

15. Appendix: Addressing Key Goals in Token Design 
The main goal of Ocean network is to deliver a large supply of relevant data/services: “commons” 
data, priced data, and AI compute services. As previously discussed, we developed a set of questions 
as key criteria to compare candidate designs against. ​Table 2​ describes the question / criteria (left 
column) and how the token design addresses those criteria (right column). 

Table 2: How Ocean Token design addresses key goals 

Key Question  

For priced data, is there 
incentive for supplying 
more?  

Block rewards are a function of stake in a dataset/service. Actors 
are incentivized to stake on ​relevant​ data/services as soon as 
possible because of curation market pricing. The most obvious way 
to get the best price then is to supply it. 
 

For priced data, is there 
incentive for referring? 

Curation markets incentivize data referrals, because they signal 
which is high quality data. If I’ve bet on a dataset, I’m incentivized 
to tell others about it, as they’ll download it or stake on it, both of 
which reward me. 

For priced data, is there 
good spam prevention? 

No one (or at least few) will download low-quality data, i.e. spam. 
Therefore no one is incentivized to stake on it in a curation 
market. Therefore, while it can exist in the system (and not hurt 
anyone) there is no incentive to stake on it. 
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For free data, is there 
incentive for supplying 
more? Referring? Good 
spam prevention? 

Same as priced data. 

Does it support compute 
services, including 
privacy-preserving 
compute? Do they have 
incentives for supplying 
more, and for referring? 

Ocean’s core construction is a Proofed Curation Market, binding 
cryptographic proofs with Curation Markets. For data, the main 
proof is for data availability. But this can be replaced with other 
proofs for compute, including privacy-preserving compute. In 
doing so, all the benefits of data supply and curation extend to 
compute services supply and curation. 

Does the token give higher 
marginal value to users of 
the network versus 
external investors? 

Yes. Token owners can use the tokens to stake in the system, and 
get block rewards based on the amount staked (and other factors). 
This means that by participating in the system, they’re getting 
their tokens to “work” for them. 

Are people incentivized to 
run keepers?  

Yes. One only gets block rewards for data they’ve staked if they 
also make it available when requested; making data available is a 
key role of keepers. 

Is it simple?  The system is conceptually simple: its simple block reward 
function is implemented as a binding of cryptographic proofs 
*curation market, to form a Proofed Curation Market. It adds 
ancillary affordances as needed, though those are changeable as 
new ideas emerge.  

Is onboarding 
low-friction?  

On-boarding for the actors registry, and for each dataset might 
have been high because in each case there is a token-curated 
registry that asks for staking and a vetting period. However, in 
each case we have explicitly added low-friction alternative paths, 
such as risk-staking. 

. 

16. Appendix: FAQs and Concerns 
This section addresses frequently asked questions and concerns about Ocean. 

16.1. Data Storage 
Q: ​Where does data get stored?  

A: ​Ocean itself does not store the data. Instead, it links to data that is stored, and provides 
mechanisms for access control. The most sensitive data (e.g. medical data) should be behind 
firewalls, on-premise. Via its services framework, Ocean can bring the compute to the data, using 
on-premise compute. Other data may be on a centralized cloud (e.g. S3 ​[Amazon2018b]​) or 
decentralized cloud (e.g. Filecoin ​[Filecoin2017]​). In both cases it should be encrypted.  

This means that the Ocean blockchain does not store data itself. This also means that we can remove 
the data, if it’s not on a decentralized and immutable substrate. 
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16.2. Data Protection Regulations 
Q:​ What about data protection regulations, such as General Data Protection Regulations (GDPR) 
which come into effect in Europe in May 2018? 

A: ​Higher-level marketplaces will provide the necessary resources around data protection laws, 
including GDPR. As part of the overall Ocean project, DEX is creating open-source software to 
support this, and the related compliance and legals. It will be used as a reference marketplace that 
other marketplaces can use as a starting point. 

Ocean’s labels registry will create a bridge from the network technology level with the higher level 
legals: people can curate labels on data assets such as “must meet GDPR”. 

16.3. Data Escapes 
Concern: ​You’re trying to sell data. But, someone else downloads it and then posts it for cheaper, or 

even for free. In fact the system incentivizes “free” block rewards, because there will be more 

downloads for something that’s free, versus paid. 

A:​ The only way to post is to be in the registry of “good” actors, which can only be there by staking 

themselves or by others risk-staking for them. If some actor is found to be using data that is not 

theirs, then the contention mechanism is invoked, and the actor’s stake (or their voucher’s stake) is 

lost. So, any gains an actor might have had for “escaping the data” evaporate because the actors 

collectively have an incentive to be good actors, and they have a mechanism to take away the stake 

of bad actors. If a data rightsholder is especially worried, they can also set permissions such that the 

data never leaves the premises; rather, compute must be done locally. They do this at the cost of 

virality due to the data’s openness, of course. 

16.4. Curation Clones 

Concern: ​You’ve published a new unique dataset into the commons, and have kicked off a curation 

market. It’s popular, so you earn many block rewards and many others stake on it too, raising the 

price of staking. Someone else sees the dataset’s popularity, so they​ re-publish​ the dataset and 

started a brand new curation market, where they get significant stake in the market because they 

were the early adopter. Then, others repeat this. In a short time, we have 50 curation markets for 

the same dataset, hindering discoverability not to mention being unfair to the first publisher. 

A:​ The main solution is the same as for the Data Escapes problem: in the registry of good actors, the 

contention mechanism would be invoked and the misbehaving actor’s stake is lost. We can also 

leverage local compute. 

A complementary tactic is in the design of the bonding curve: make the price to stake in the curation 

market ​flat ​to start with, rather than rising immediately. In this way the first 10 or 50 actors no 

longer have an incentive to start their own curation market; rather they are incentivized to grow the 

popularity of that collectively-owned curation market.  

16.5. Elsa & Anna Attack 

Concern: ​An actor stakes and publishes IP that they clearly don’t own, such as the Disney movie 

“Frozen” featuring Elsa & Anna. As any parent of young girls would recognize, the asset quickly 

becomes extremely popular. In other words, Elsa & Anna have bombarded the network. Because the 
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actor has staked on the asset and served it up when requested, they would have quickly earned a 

tremendous amount of block reward tokens. Finally, the actor leaves the network, taking their 

earnings with them (and none to the rights holder). 

A: ​What’s the solution? Actually, the system would prevent the scenario above, as described in the 

section on vetting IP​. In short: when an actor publishes IP, they must first get that IP vetted; and 

during that vetting process all block rewards are held in escrow by the network until the appropriate 

rights holder is identified.  

16.6. Drops Supply When Stake is Lost 

Q:​ When a misbehaving actor loses stake (drops in a dataset or service), where does that stake go?  

A: ​We have a few options. We could burn the drops; redistribute them to other stakeholders in the 
market; or give the stake to the winning challenger. We choose the last option, because it maintains 
the same supply of drops which means simpler incentive dynamics; and it comes “out of the box” 
with TCR designs. 

16.7. Sybil Downloads 
Concern: ​An actor puts a high stake in one data asset, then downloads it many times themselves to 

get more mining rewards. This could be from their own single account, or from many accounts they 

create, or in a ring of the actor and their buddies. This is bad for a second reason: it’s a giant waste of 

bandwidth. This issue is analogous to the “click fraud” problem in online ads. 

A: ​We don’t make rewards a function based only on the number of files accessed. Instead, we make 

it a function of the number of bits accessed versus registered and the price paid for the data.  

16.8. Registry Scaling 
Concern: ​Typical token curated-registries don’t scale, with respect to the number of participants. 

That is, actors in tokenized registries have diminishing returns for letting more people in. Once they 

get to say 1000 people, it’s really not worth the risk to let anyone else in, the system is rich enough. 

This is especially the case when there are rewards beyond just membership in the registry. 

A: ​Have a have an additional mechanism to on-board: ​risk-staking​ (vouching) which has a direct 

incentive to refer others, because the vouching party can get some of their block rewards. Therefore, 

it keeps going and going. The new participants stay linked in a web-of-trust risk-staking framework. 

16.9. Onboarding Friction 
Concern: ​Typical tokenized registries need the user to stake in order to join; and must go through a 
vetting period of e.g. 28 days. That means they must go and purchase the network’s tokens and then 
wait before even participating. 

A: ​We address this via the risk-staking mechanism, where existing actors are incentivized to onboard 
new actors because they get block rewards for doing so (assuming the new actor stakes on 
high-quality data or services). 

16.10. Sybil Referrals 
Concern: ​A malicious actor has many tokens. They risk-stake these tokens to refer in thousands of 

people at once, and overtake the system by voting for a protocol update in their favor.  
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A: ​The risk for this attack is reduced with a large number of users in the system, because it will be 

too expensive to risk-stake so many people. The only concern is when there is a smaller number 

system users. However, because protocol governance is handed off gradually over time, by the time 

it’s handed off to be exposed to this risk, there will either be a large number of users (then we’re ok) 

or there won’t be yet and additional constraints could be introduced (e.g. only one referral per actor 

per day). We can take actions to seed the network with a large number of relevant users, e.g. via 

airdrops. 

16.11. Sybil Membership Applications 
Concern: ​If there are lots of applications at once, existing holders get swamped. They don't have the 

bandwidth to properly review the applications. 

A:​ The applicants need to stake tokens to apply. Token holders are incentivized to increase the 

number of actors in the system, since it will grow the value of the token; therefore they might go to 

great lengths to support growth. However, that might still have a breaking point. In this case, the 

community might decide, off-chain, to throttle all applications and publicly state “we can only take ​x 

applications per month, we will vote no to the rest”. 

16.12. Staking Vs. Liquidity 
Concern: ​To make a sale, a vendor must stake 1x the sale amount for a fixed time period. This affects 

the overall velocity of tokens flowing through the system. 

A: ​Our response has three parts. 

“Work” mechanics.​ At first glance, Ocean may look like a proof-of-stake system. However, to get 

block rewards, keepers actually have to do work in some cryptographically provable way, such as 

making data or services available. This costs money / resources. Therefore people making lot of data 

available and using expensive bandwidth will need to periodically sell tokens to finance their 

operations. This ensures steady velocity of tokens. As an aside, this means that Ocean combines 

proof-of-stake mechanics with proof-of-work.  

Security / simplicity. ​We are reluctant to compromise on the “1x” mechanic because it compromises 

security. A stake of <1x makes it easier for a bad actor to make money from acting badly. We could 

use insurance or another mechanic, but 1x staking is simple. 

Emergent loans. ​If the 1x hinders data vendors, an external loans market could emerge. People 

could borrow money to be able to stake it; the interest rate could be based on the lender's 

calculations of risk. 

16.13. Rich Get Richer 
Concern:​ A long-standing concern with Proof-of-Stake (PoS) systems is that stakeholders get 

wealthier simply by having more tokens. As a result, many PoS systems have changed to where stake 

is needed simply to participate in the network; and perhaps higher staking gives a more active role 

like being a keeper node in Cosmos ​[Kwon2017]​. 

A: ​“Rich get richer” is less of a concern for Ocean because of curation markets. Recall that stake in a 

data curation market is not “just” the amount you initially staked, but also how many tokens you 

would receive if you withdrew. Therefore, early adopters to a popular data or service asset will get 
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rewarded. For Ocean, it's not rich get richer, it's “curate data well” = “get richer”. A secondary 

equalizing factor is using log10 on stake. 

16.14. Pump-and-Dump on Drops 

Concern: ​Recall that each AI dataset/service has its own token - its ​drops​ Ḍ, which are staked and 

un-staked in the context of its corresponding curation market. In this scenario, 

“pumping-and-dumping” is a concern. For instance, if someone stakes early in a curation market to 

get Ḍ, then promotes that dataset/service to others (pumps), and finally sells their Ḍ at a big profit 

and leaves everyone else hanging (dumps).  

 

A:​ Overall, this may not be a significant concern because “active” Ḍ holders are actually earning 

Ocean Tokens ​Ọ  by making that service available when asked; they are getting ​positive marginal 

benefits​ for staking Ḍ. If assuming an efficient market, over time we’d end up with only active Ḍ 

holders. That said, we might still see this type of behaviour from bad actors. Possible mitigations 

include: 

● Have one bonding curve for buying Ḍ and a  second ​one for selling Ḍ, where the sell price is 
lower than buy price. 

● When selling, use a Dutch auction: the sell price is the ​previous ​buy price, not the current 
price.  

● Have minimum staking periods. For example, the requirement to hold any Ḍ for at least a 
week.  

In general, we simply want to add friction on the sell side in a way that good actors won’t mind, and 

bad actors will leave. Overall, it’s clear that if pumping-and-dumping becomes a real issue, we have 

tools to address it. 

16.15. Block Rewards for On-Premise Data 
Concern:​ If a data asset is on-premise, then only the actor storing that data asset can “keep” it and 

earn block rewards for making it available. Others who might believe that it’s valuable may stake on 

it in a curation market (and sell that stake at a gain later); but they cannot make it available and 

therefore cannot get block rewards for it. This also means there is no automatic CDN functionality, 

so retrieving that data will become a bottleneck if it becomes popular.  

A:​ The answer is twofold: privacy and markets.  

Privacy.​ If the reason to store the data on-premise is privacy, then it should stay that way! Privacy 

trumps access convenience and CDN scaling.  

Markets. ​If the actor storing that data asset sees that it becomes popular, they are incentivized to 

spread its usage more. The way to do that is to remove themselves as a bottleneck, by letting other 

actors store the data and make it available in CDN scaling fashion.  

There’s a variant of this concern when we bring in on-premise compute. With on-premise compute, 

anyone ​can play a keeper for data that is on-premise, where they play middleman between the party 

that’s hosting the data on-premise and the buyer of the data. However the keeper won’t be able to 

make the data available if the data host doesn’t make it available. In this case, the discussion of the 
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previous section still holds: the host won’t either make it available because of privacy, or they will 

make it available because of market forces. 

17. Appendix: Decentralization, Consistency, and Scale 

This section provides context on the constraints in design of the Ocean blockchain. 

17.1. Decentralization and Fault Tolerance 
There are three levels of fault tolerance in increasing levels: crash faults, Byzantine faults, and Sybil 
attacks. Ocean must handle them all. Let’s elaborate. 

Crash tolerance​ is when a network can tolerate crash faults, such as hard drives failing. This is 
acceptable in environments when one is trusting a single administrator of the system.  

Byzantine fault tolerance (BFT).​ In a blockchain setting, each full node is effectively another 
sysadmin. We need to be tolerant to several of these sysadmins acting maliciously against the 
system; this is modeled as assuming they will attempt arbitrary behavior on the system. A BFT 
system handles such faults; typically malicious nodes out of a population of f  ≥ 3fn + 1
[Lamport1982]​. In traditional BFT settings, the participants are all identified by their public keys. 
Each participant gets one vote whether a transaction or block of transactions enters the system. 
Each sysadmin has their list of allowed public keys, aka the “keyring”. One needs ​permission ​to get 
on this list using some mechanism not built into the network, such as knowing the right person.  

Sybil tolerance.​ Ocean needs to be ​permissionless​, i.e. where anyone can run a node in the network 
without getting approval from some list. One cannot do this by simply making the keyring public and 
editable, because a malicious actor could come and replicate themselves many times, thereby 
swamping the votes and overtaking the system. This is a “Sybil attack”; what we call “attack of the 
clones”. One solution is to change from “one actor one vote” to some other resource like “one 
electron one vote”, as in Bitcoin’s a Proof-of-Work setup ​[Nakamoto2008]​, assuming equal hashing 
efficiency. Or, traditional Proof of Stake setups give “one token, one vote”. These Sybil-tolerant 
mechanisms can be framed as ​power protocols​ which capture ​relative ​power for each actor 
[Filecoin2017]​. Depending on the consensus protocol, a system can tolerate up to  malicious1%5  

power. ​Figure 17​ illustrates. 

 
Figure 17: Modeling faults - Byzantine and Power protocols. Actors (defined by public keys) have 

equal votes in a Byzantine setting but not Power protocol setting. 

17.2. Consistency / Finality 
A practical definition for ​consistency ​in a blockchain setting is: ​it’s consistent if it prevents double 
spends​. That is, it won’t let me successfully send the same tokens to two different addresses at once. 
If I attempt this, the transaction will not go through. 
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We can frame whether a transaction has gone through in a deterministic “sure” way, or a more 
probabilistic way - some protocols yield ​finality ​while others have ​statistical convergence​ under 
polynomial attacker assumptions. In this context, a blockchain is actually a directed acyclic graph 
(DAG), but for finality the algorithm must decide which fork of the directed acyclic graph is the main 
chain. This could be with the longest chain rule as in Bitcoin ​[Nakamoto2008]​, a weighted approach 
like modified GHOST protocol in Ethereum ​[ModifiedGHOST2018]​, or otherwise.  

 

Figure 18: Finality in context of a blockchain - which fork is the main chain? 

17.3. Scale and the DCS Triangle 
It’s well understood that Bitcoin and most other public blockchains have scaling issues. For example, 
the core Bitcoin network has <10 transactions per second. Systems so far have improved scaling by 
giving up consistency (e.g. ​[IPFS2018]​) or loosening up decentralization (e.g. ​[BigchainDB2018]​).  

Overall, there is a tradeoff among ​d​ecentralization, ​c​onsistency, and ​s​cale - the ​DCS Triangle 
[McConaghy2016]​. However, we see this more as an engineering challenge than a fundamental 
constraint, and are hopeful about efforts to improve scaling while retaining sufficient consistency 
(preventing double spends) and decentralization (Sybil tolerance).  

Scaling efforts include: 

● Improving the consensus protocol​. Examples: Ouroboros ​[Kiayias2017]​, Dfinity ​[Hanke2018]​, 
Red Belly ​[Crain2017]​, OmniLedger ​[Kokoris2018] 

● Sharding ​so that each node only has a fraction of the compute or data workload. Example: 
[EthSharding2018] 

● Independent networks / chains​ with “​glue​” connectors. Examples: Interledger 
[Thomas2015]​, Cosmos ​[Kwon2017]​, PolkaDot ​[Wood2016]​, Plasma ​[Poon2017]​, TrueBit 
[Teusch2017]​) 

● “Layer 2” payment channels.​ Examples: Lightning ​[Poon2016]​, Raiden ​[Raiden2018] 

18. Appendix: Computational Integrity 
This section describes some popular approaches to computational integrity, as part of Ocean’s 
overall services integrity framework. 

18.1. Probabilistic Checkable Proofs (PCP) 

PCP implies that a verifier can send any computation task  and input  to a prover and the proverC i  

outputs . The proof runs in a randomized way through a set of interactions such that if  is correcto o  

the verifier will set to True else the verifier will reject all interactions but with bounded error. This 
error means that there is a small or negligible probability that the verifier could mistakenly view the 
wrong answer. What distinguishes the PCP protocols is the availability of compilers, as well as the 
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concrete efficiency of verifiers, but these systems are limited to small executions, and are extremely 
expensive. It might be useful only for special purpose applications. 

In PCP frameworks, the computations are represented by Boolean circuits (AND, OR, and NOT gates). 
Because of the property of turing completeness in boolean circuits, it is easy to describe any 
deterministic computation/verification using boolean circuits. Thus the verifier will submit the circuit 

and inputs  to a prover. The prover executes the circuit  and produces a  “claim” or, i , ... , ii 1   
2    

N C
︿

 

output  including the transcript which contains the assignment for each wire in the circuit aftero  

computation. The verifier can do the correctness check of the circuit output by executing any of the 
gates using the transcript and inputs. The prover, however, shouldn’t send all transcripts to the 
verifier to satisfy the property of zero-knowledge. Therefore, the verifier queries particular locations 
in the prover’s transcript. PCP can be classified into three approaches. 

 
1. Heuristic interactive based approach ​uses higher random order of messages between 

verifier and prover where verifier sends a lot of queries to prover then gets the returned 
results. Therefore the verifier checks if there is any contradiction among queries results. 
Examples for interactive proofs such as CMT [​Cormode2012​], Allspice [​Vu2013​], and Thaler 
[​Thaler2013​]. 

2. Commitment based approach ​has two rounds. In the the first round, the verifier enforces 
the prover to commit particular transcript or proof. In the second round, the verifier queries 
different locations in the commited proof. Examples are Pepper [​Setty2012​], Ginger 
[​Setty2012b​], and Zaatar [​Setty2013​].,  

3. Encrypted queries approach​ is a more theoretical approach where  the verifier encrypts the 
queries beforehand, asks locations, retrieves prover’s results and checks them using PCP. In 
the last few years there has been development and implementation activities such as 
Pinocchio [​Parno2013​]. 

18.2. Zero-Knowledge Proofs 

Zero-knowledge based protocols preserve the privacy of inputs as well as providing transparency to              
multiple parties in the system. For instance, if a prover sends a transaction to a blockchain network,                 
it might be better if the prover doesn’t reveal any information about a particular transaction to the                 
verifier, and also to keep the verification time small. Overall, the goal of zero-knowledge proofs is to                 
provide the integrity, privacy, and succinctness (the proof can be verified in time t). These properties                
can be achieved using polynomials, pairing-based proof systems, and homomorphic encryption. 

A zk-SNARK ​[Bitansky2012] ​is a variant of a zero-knowledge proof that enables a prover to succinctly                
convince any verifier of the validity of a given statement and achieve computational zero-knowledge              
without requiring interaction between the prover and any verifier. zk-SNARK stands for            
“Zero-Knowledge Succinct Non-Interactive Argument of Knowledge”. It uses homomorphic         
encryption or hiding that concretely hide the actual data even after performing addition, or              
multiplication operations using the modulo and discrete logarithms. For instance, if “x, y” are two               
numbers, we can perform the addition and multiplication on modulo as follows: 

A = x ​mod m​    (1) 
B = y ​mod m​    (2) 

 
A + B = (x + y) ​mod m 

45 



 

A .  B = (x + y) ​mod m  
 
The ​discrete logarithm term means that we need to apply the modulo operation on the logarithm i.e                 
X = log2 8 ​(mod 13)​. The word discrete refers to a discrete group {1,..,p-1} where p is a modulus and                     
only an integer number. The primitive roots or generators for a modulus can generate all elements in                 
the discrete group as shown below. If there is a loop where the remainder is repeated after a cycle,                   
this group is called a cyclic group for a particular generator. For example, 3 and 5 are called                  
generators ​for the group {1,...,7}, and is a cyclic group because it repeats itself every 7 steps, as                  
shown below in the following table: 

mod 7 remainder  bx =   
 
Table 3: Generators 

b b^1 mod 7 b^2 mod 7 b^3 mod 7 b^4 mod 7 b^5 mod 7 b^6 mod 7 b^7 mod 7 

1 1 1 1 1 1 1 1 

2 2 4 1 2 4 1 2 

3 3 2 6 4 5 1 3 

4 4 2 1 4 2 1 4 

5 5 4 6 2 3 1 5 

6 6 1 6 1 1 1 6 

 

If the modulus is at least greater than 300 digits, calculating the discrete logarithm will be considered                 
as computationally expensive/hard to find the valid exponent. The cyclic group is the basis of               
discrete logarithm crypto systems where refers to cyclic group for modulus p. The * means that     Z* 

p            

the cyclic group starts from 1 to p-1. Moreover, zk-SNARK relies on Polynomials to define the                
computations. Polynomials are sum of multiple terms with different exponents. For example, Lines             
are polynomials with degree (the largest exponent) 1. For two polynomials, they can intersect in less                
than or equal to ​N points, where ​N is the degree of polynomial. Polynomials have a property known                  
as Schwartz-Zippel Lemma ​[Schwartz2018] in which “[f]or multiple polynomials of degree ​N ​they can              
agree on at most N ​points”. This means that If the prover (Alice) is able to compute a puzzle in terms                     
of a polynomial language, the verifier (Bob) will be convinced by evaluating a small, randomly chosen                
point in this polynomial.  
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Figure 19: Using polynomials, homomorphic encryptions and pairing  

 
As shown in ​Figure 19​, the protocol preserves the blindness of computations, where the prover has                
no clue about the inputs and the verifier doesn’t learn anything about the computation itself. But                
what could happen if Alice doesn’t follow the protocol and she sends some cheated results. What                
assumptions can guarantee that she will send the right polynomial evaluation. The key point is to use                 
pairing-based cryptography which assumes that Bob sends encoded, randomly chosen elements           
((​a​1​,​b​1​), (​a​2​,​b​2​), …, ​a​d​,​b​d​) using pair. For each coefficients tuple (​a​i​,​b​i​), the pairing between two     α            

elements should be computationally expensive in order to hide the prover’s secret (polynomial). The              
role of Alice is to send her results encoded with the same pair with small negligible error over            α        

Bob’s choices.  

The question now is how to convert a typical computation into a polynomial’s world? The answer is                 
using Quadratic Arithmetic Program (QAP) [​Gennaro2013​]. To keep the zero-knowledge maintained,           
the prover masks the polynomials using random shift in which the verifier accepts the statement               
without revealing any information about the computation/polynomial. Zcash ​[Sasson2014] uses          
zk-SNARK as a proof system for private transactions. The pairing, key generation, and polynomials              
setup is called the trusted setup because you have to trust the party who is generating those keys                  
and hidden parameters, as well as destroying them after computation.  

18.3. Multi-party Computation 

Secure multiparty computation (MPC) addresses the problem of jointly computing a function among             
a set of mutually distrusted parties. It has a long history in the cryptographic literature, with its                 
origins being found in literature in the mid 1980s. The basic scenario is that a group of parties wish                   
to compute a given function on their private inputs, while still keeping their inputs private from each                 
other. The goal is that the output of the protocol is just the value of the function, and nothing else is                     
revealed. In particular, all that the parties can learn from one another is what they can learn from                  
the output and their own input.  
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Informally speaking, the most basic properties that a multi-party computation protocol aims to             
ensure are: 

● Input privacy ​- The information derived from the execution of the protocol should not allow               
any inference of the private data held by the parties, except for what is revealed by the                 
prescribed output of the function; and,  

● Correctness - Adversarially colluding parties willing to share information or deviate from the             
instructions during the protocol execution should not be able to force honest parties to              
output an incorrect result. 

Secure multiparty computation can be leveraged to obtain a new paradigm of security: encryption of               
data while in use. For example, consider the case in which Alice holds an encryption key and Bob                  
holds an encrypted database, and the parties wish to run an SQL query on the database without ever                  
decrypting it. This exact problem can be cast as a two-input function, and thus can be securely                 
computed. In fact, in this case input privacy means that the result of the SQL query is revealed and                   
nothing else! Thus, SQL queries are computed while the database is encrypted, thereby keeping the               
database secure, even while it is being used. 

19. Appendix: Data Integrity 
This section describes some popular approaches to data integrity, as part of Ocean’s overall services 
integrity framework. 

19.1. Data Availability via Proof-of-Space-Time (PoST) 

Filecoin ​[Filecoin2017]​ introduced the notion of PoST. We can use that directly in Ocean. However, 
that solution is overkill for our needs, as we do not need to prove that the data was stored uniquely 
over time. We just need to prove that the correct data was made available at this point in time. We 
do not care where it came from; unlike Filecoin, it’s ok if it was served up from S3 copy at the last 
minute. That said, PoST is coming, and data on the Filecoin network is then a good fit for Ocean.  

We can expect similar proofs coming from other decentralized storage networks, such as Ethereum 
Swarm ​[Trón2018]​. 

19.2. Data Availability via Dedicated PoW Blockchain 

Teusch recently introduced a new approach for data availability ​[Teusch2017b]​. It uses a dedicated 
PoW blockchain where each keeper must actually promise to serve up each dataset. This means that 
each keeper is asked to perform a tremendous amount of work. However, it’s a starting point; more 
efficient approaches are coming . 10

19.3. Data Availability via Challenge-Response 

This is another possible approach that has potential to be more efficient. However, we add a 
disclaimer that this is a work-in-progress and will need much deeper vetting. 

In this approach, the receiver can contend by querying more senders and penalizing the initial 
sender if the initial sender is not in the majority. The party found to be wrong loses stake. 

Here is the protocol: 

10 Personal communication with J. Teusch, Jan. 2018 
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1. The receiver issues a “contention request” and posts stake.  

2. The network (keeper nodes) randomly chooses two more providers of the data; each of 
which must make the data available.  

3. The network computes a random seed S, and sends S to both initial provider, the two new 
providers, and to the receiver.  

4. Each provider uses S to select a subset of the data, and compute the hash of that subset, and 
returns the result to the network.  

5. From that the network determines whether the receiver was lying (or wrong), initial sender 
was lying, or other. Whoever is lying (or wrong) loses stake.  

a. Receiver was lying (or wrong) if the initial sender hash lines up with at least one 
other sender.  

b. Otherwise, initial sender was lying (or wrong) if hash of other two senders lines up, 
and does not line up with initial sender.  

c. Otherwise, one of the new providers was lying (or wrong); in this case the network 
randomly selects two more providers of the data, and re-initiates the process.  

6. If there is still no resolution after 6 repeats, the contention stops and no one loses stake. 
This might happen, for example, if there are a small number of providers of that data asset. 

This protocol is a bit like TrueBit’s challenge-response mechanism. However, it has fewer constraints 
because it does not need to find the instruction that went awry; therefore it has less complexity.  

19.4. Data availability via Proof-of-Replication (PoRep) 

Proof of Replication [​PoRep2018​] provides strong proof of retrievability and strong defense against 
data generation attack (A prover uses random seed to generate junk data rather than storing the 
actual data). The proof has two phases, the setup phase, and challenge phase. The setup phase 
returns a unique identifier for replica with an optional commitment. This phase includes slow 
encoding and fast decoding (verification) that is based on ​verifiable delay functions​. The Challenge 
phase includes  prove step and verification step. The prove step that takes challenge C and generates 
proof of storage R and the verification step takes the challenge, data identifier and commitment 
then outputs accept or reject.  

What distinguishes this proof is that even if an adversary passes the verification step this implies that 
there is some entity that the adversary communicates with where he can extract the original data 
which implies the proof of retrievability.  Moreover, PoRep preserves the proof of storage using 
prover state where two replicas can be stored in terms of snapshots. A verifier takes the prover 
state, splits it into two parts and from each of which the prover can get the original data. This is 
relying on the cryptography perspectives where each of data replica is XORed with the hash of the 
other replica then the whole data are encrypted and stored in one state. Also, the proof uses a 
strong encoding approach called Depth Robust graph which provides data availability in case of data 
deletion. 
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20. Appendix: Block Rewards Schedule 
The overall supply of Ocean Tokens (​Ọ ) is fixed. 55% of Ocean Tokens are pre-mined, to build Ocean 
software (e.g. with developer bounties), incentivize the community, and more. The remaining 45% 
are for block rewards.  

The block rewards schedule is: 

(H , t) 1 (0.5 )F  =  −  t/H  

where 

●  ​is the fraction of all block reward tokens that have been released after​  ​years(H , t)F  t  

● is the half-life, in years. Half-life is the time taken for 50% of remaining supply to beH  

released. 

We use a half-life of ten years, i.e. =10. This is longer than most comparable systems, because itH  

can take several years for internal enterprise processes to prepare their data assets for sharing; we 
want to give them breathing space. 

Figure 20​ and ​Table 4​ illustrate the percentage of mining tokens released over time. 

 

Figure 20: % mining tokens released over the next 50 years 

 

Table 4: % mining tokens released over the next 150 years 

# Years 0 1 2 5 10 25 50 100 150 

% Released 0.0% 6.7% 12.9% 29.3% 50.0% 82.32% 96.88% 99.90% 99.9969% 

% Left 100.0% 93.3% 87.1% 70.7% 50.0% 17.68% 3.13% 0.10% 0.0031% 
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