

Ocean Protocol:

A Decentralized Substrate for AI Data & Services

Technical Whitepaper

Ocean Protocol Foundation 1

with BigchainDB GmbH and DEX Pte. Ltd. 2 3

Version 0.9.3

March 28, 2018

Abstract

This paper presents Ocean Protocol. Ocean is a decentralized protocol and network of artificial
intelligence (AI) data/services. It incentivizes for a vast supply of relevant AI data/services. This
network helps to power AI data/service marketplaces, as well as public commons data. The heart of
Ocean’s network is a new construction: a Curated Proofs Market. CPMs bridge predicted relevance
with actual relevance of each AI service, by having curation markets for cryptographic proofs (e.g.
proof of data availability).

This Technical Whitepaper is intended to accompany the Information Memorandum for the Token Distribution Details published by
Ocean Protocol Foundation Ltd. ("​Information Memorandum​"). Accordingly, this Technical Whitepaper is intended to be read in
conjunction with, and is subject to, the legal disclaimers and notices as set out in the Information Memorandum.

1 oceanprotocol.com
2 bigchaindb.com
3 dex.sg

1

Contents

1. Introduction 5

2. Use Cases 6

2.1. Proprietary Data: Autonomous Vehicles 6

2.2. Regulated Data: Medical Research 7

2.3. Global Data Commons 7

3. Stakeholders 7

4. Ocean as a Data Ecosystem 8

4.1. Decentralized Data Hub 8

4.2. Decentralized Data Pipeline 9

4.3. Interservice Connections 10

5. System Architecture 10

6. System Behavior 12

6.1. Overview 12

6.2. Service Delivery Protocol 13

6.3. Service Agreements 14

6.4. Access Control 15

7. Core Token Design: Proofed Curation Markets 15

7.1. Introduction 15

7.2. Block Rewards to Incentivize Relevant Data/Services & Make It Available 16

7.3. Block Rewards: Practical Implementation 17

7.4. Separation of Roles vs. One “Unified” Keeper 19

8. Curation Markets Details 19

8.1. Introduction 19

8.2. Tokens for Services: Drops 19

8.3. Bonding Curves 19

8.4. Un-Staking 21

8.5. Convergence to Relevant Data/Services 21

9. Core Blocks: Identity, IP, Pricing, Governance 21

9.1. Identity: Token Curated Registry of Users 21

9.2. IP Attribution & Provenance: COALA IP 22

9.3. Vetting IP Rights: TCR 23

2

9.4. 3rd Party Arbitration 23

9.5. Pricing: Basics 23

9.6. Pricing: Reputation and Staking 24

9.7. Governance: Fixing Bugs, Protocol Updates 24

10. Cryptographic Proofs: Service Integrity and Verifiability Framework 24

10.1. Introduction 24

10.2. Actor Model for Services 25

10.3. Service Integrity 27

10.4. Service Integrity: Computational Integrity 28

10.5. Service Integrity: Data Integrity 29

11. Outstanding Concerns 30

12. Conclusion 30

13. References 30

14. Appendix: Extended Functionality 36

14.1. Extended Functionality: Labels 36

14.2. Extended Functionality: Stake Machines 36

15. Appendix: Addressing Key Goals in Token Design 37

16. Appendix: FAQs and Concerns 38

16.1. Data Storage 38

16.2. Data Protection Regulations 38

16.3. Data Escapes 39

16.4. Curation Clones 39

16.5. Elsa & Anna Attack 39

16.6. Drops Supply When Stake is Lost 40

16.7. Sybil Downloads 40

16.8. Registry Scaling 40

16.9. Onboarding Friction 40

16.10. Sybil Referrals 40

16.11. Sybil Membership Applications 41

16.12. Staking Vs. Liquidity 41

16.13. Rich Get Richer 41

16.14. Pump-and-Dump on Drops 41

3

16.15. Block Rewards for On-Premise Data 42

17. Appendix: Decentralization, Consistency, and Scale 42

17.1. Decentralization and Fault Tolerance 43

17.2. Consistency / Finality 43

17.3. Scale and the DCS Triangle 44

18. Appendix: Computational Integrity 44

18.1. Probabilistic Checkable Proofs (PCP) 44

18.2. Zero-Knowledge Proofs 45

18.3. Multi-party Computation 47

19. Appendix: Data Integrity 48

19.1. Data Availability via Proof-of-Space-Time (PoST) 48

19.2. Data Availability via Dedicated PoW Blockchain 48

19.3. Data Availability via Challenge-Response 48

19.4. Data availability via Proof-of-Replication (PoRep) 49

20. Appendix: Block Rewards Schedule 49

4

1. Introduction
Modern society runs on data [​Economist2017​]. Modern artificial intelligence (AI) extracts value from
data. More data means more accurate AI models ​[Banko2001]​ ​[Halevy2009]​, which in turn means
more benefits to society and business. The greatest beneficiaries are companies that have ​both ​vast
data and internal AI expertise, like Google and Facebook. In contrast, AI startups have amazing
algorithms but are starving for data; and typical enterprises are drowning in data but have less AI
expertise. The power of both data and AI — and therefore society — is in the hands of few.

Our aim is to equalize the opportunity to access data, so that a much broader range of AI
practitioners can create value from it, and in turn spread the power of data. We must also respect
privacy needs, which implies we must include privacy-preserving compute. (On-premise) compute
also mitigates ​data gravity​ ​when the data itself is too heavy to move, and reduces friction for large
organizations looking to share their data.

To reduce this to a practical goal, our aim is to develop a protocol and network — a tokenized
ecosystem — that incentivizes for making AI data and services available. This network can be used as
a foundational substrate to power a new ecosystem of data marketplaces, and more broadly, data
sharing for the public good.

The main goal is how to ​incentivize towards a large supply of relevant AI data & services​. This is not
easy, as there are several challenges:

● How do we (or the network) know what’s relevant? Can we even deterministically judge this,
or do we need some other means?

● We want to incentivize not only relevant ​priced ​data but also relevant​ public ​or ​commons
data. The latter is harder because it is free by its nature.

● How do we include / incentivize not only data, but also AI ​compute ​services? How do we
ensure that they can account for privacy? How do we include ​decentralized ​compute service
providers? How do we ​guarantee ​that the service was actually provided?

● How might we incentivize referrals at both the actor and data levels, i.e. for actors to bring
new actors into the system, and share the word about relevant data assets?

● What are the attack vectors and how do we address them? For example, spamming with
low-quality data to get many rewards; or “data escapes” where one actor publishes the data
held by a different rights-holder.

We have devised a design called ​Ocean Protocol​ that, we believe, meets these objectives.

The Ocean network is composed of data assets and services. Assets are in the form of data and
algorithms. Services are processing and persistence which leverage assets. The assets and services
are the commodities made available for consumption via the network, and are similar to those found
in any mature data ecosystem.

Ocean has strong incentives to submit, refer, and make available (provably) quality AI data &
services, via a new construction that we call a ​Proofed Curation Market​ (CPM). A CPM has two parts:
predicted popularity ​of a dataset/service, and its ​actual ​popularity:

1. Cryptographic Proof. ​The ​actual popularity​ is the count of the number of times the
dataset/service is delivered or made available. To avoid being gamed, it must be made
available in a provable fashion using a cryptographic proof. For example, this may be proof
of data availability or a zero-knowledge compute proof.

5

2. Curation Market. ​This is for ​predicted popularity​, a proxy for relevance. The crowd knows
much better than designers of Ocean whether a given dataset/service is relevant; so we
harness the crowd via a curation market setting. This market can be thought of giving
reputation to data/services where the actor must “put their money where their mouth is.”
They stake to buy “shares” (​drops​) in that dataset/service. The earlier that an actor stakes or
bets on a given dataset/service, the more drops they get for amount staked, and in turn the
higher the reward.

Only stakeholders provably making high-quality data/services available will be able to reap rewards.
Block rewards for a given dataset/service are distributed based on amount of stake in that
dataset/service, and its popularity. In other words, CPMs instantiate the goals of ​verification ​and
virality​.

To our knowledge, Ocean is the first system that explicitly incentivizes people to share their
data/services, ​independent ​of whether it is free or priced. Whoever bets on the most popular
data/service (and makes it available) wins the most rewards.

Ocean Tokens are the main tokens of the network, the unit for buying/selling services and for block
rewards. We denote Ocean Tokens as “​Ọ ”. We also need Ocean Tokens to measure stake in ​each
given dataset/service. For this, we use ​drops​. Drops are derivative tokens of Ocean tokens denoted
in “​Ḍ ”. For example, 100 drops of stake in dataset X is “100 ​Ḍ X”. Drops relate to Ocean Tokens via
curation markets’ bonding curves.

Ocean is a work in progress. Therefore this document should be taken as a ​current ​conception of
what we are targeting with Ocean, with some description of the how. As we continue to develop the
technology, we anticipate that there could be changes to the “what” or the “how” of the technology,
from the building blocks to specific parameters. So please treat these as initial suggestions and
options rather than final choices. When Ocean’s public network is live, it should be considered as-is,
and the reader should not infer any guarantee that particular functionality described in this
whitepaper will be delivered.

The rest of this paper is organized as follows. Sections 2-4 provide context with use cases,
stakeholders, and data ecosystem respectively. Sections 5 and 6 describe system structure and
behavior. Section 7 describes the heart of Ocean’s token design: Proofed Curation Markets and
associated block rewards. Section 8 elaborates on curation markets; section 9 on identity and other
core blocks. Section 10 elaborates on proofs of service delivery. Section 11 covers outstanding
concerns. Section 12 concludes. The appendices discuss FAQs and concerns, design tradeoffs, and
descriptions of some verifiable computational & data integrity services.

2. Use Cases
These use cases and others guide our design.

2.1. Proprietary Data: Autonomous Vehicles
A leading use case for proprietary data is autonomous (self-driving) vehicles.

The RAND Corporation calculated that 500 billion to 1 trillion miles driven are needed to get AI
models accurate enough for production deployment of self-driving cars ​[Kalra2016]​. Our
collaborators at Toyota Research Institute (TRI) saw that it would be prohibitively expensive for each
automaker to generate that much data on its own. Why not pool the data, via a data marketplace?
With them, we built such a prototype ​[BigchainDB2017]​.

6

Then the challenge is, a single data marketplace may itself be centralized: we arrive at another data
silo. We need a substrate that enables ​many ​data marketplaces to emerge. This is a key goal of
Ocean Protocol. Critical new benefits emerge: higher liquidity for each marketplace, and
organizations are directly incentivized to pool data rather than silo it.

Self-driving car training data illustrates how not all data is fungible: a mile driven in a blizzard is
worth more than a mile driven on an empty, sunny desert highway. But one mile in the blizzard is
fungible with other miles in blizzards. The system must account for both fungible and non-fungible
data.

2.2. Regulated Data: Medical Research
This is a leading use case for data that must follow data protection regulations in support of privacy;
and therefore it will need privacy-preserving AI compute services.

DEX Pte. Ltd. (“DEX”) is working with ConnectedLife ​[ConnectedLife2018]​, Medical Researchers at
the National Neuroscience Institute of Singapore, Specialist Professionals and Hospital Groups in
Singapore, Germany, and elsewhere towards an objective measurement of the symptoms of
Parkinson’s Disease. The goal is to build subject specific and generalized models based on patient
bio-medical and free-living sensor data. However, ethical and national personal data protection laws
prevent patient data from being copied and shared without considerable transformation of the data
taking place and thereby removing much of the value and potential impact in-terms of patient data
driven applications. A data marketplace makes it easier to connect the data suppliers; and it must be
decentralized to avoid the siloing issue. This provides us with an excellent use case for
privacy-preserving compute.

2.3. Global Data Commons
Our vision is to grow a massive set of data assets, all free for the planet to use. We’ve seen glimpses
of the power of this. For example, ImageNet is an open dataset with over 10 million tagged
images​—​much larger than previous open image datasets. It has allowed AI researchers to train
image classifiers with radically less error than before, for dozens of computer vision applications
[ImageNet2018]​. There are several other open data efforts; unfortunately each is siloed with little
incentive to create more current, valuable data/information and share among them. Directly
incentivizing data sharing can address this.

3. Stakeholders
Understanding network stakeholders is a precursor to system design. ​Table 1​ outlines the
stakeholders participating in the network. There are stakeholders beyond, from developers to
auditors, but that is outside the scope of this paper.

Table 1: Key stakeholders in Ocean ecosystem

Stakeholder What value they can
provide

What they might
get in return

Data/service provider, data custodian, data
owner

Data/service (market’s
supply)

Ocean Tokens for
making available /
providing service

Data/service referrers, curators. Includes
exchanges and other application-layer providers.

Data/service (via a
provider etc), curation

Ocean Tokens for
curating

7

Data/service verifier. Includes resolution of
linked proofs on other chains

Data/service (via a
provider etc), verification

Ocean Tokens for
verification

Data/service consumer Ocean Tokens Data/service
(market’s
demand)

Keepers Correctly run nodes in
network

Ocean Tokens for
chainkeeping

4. Ocean as a Data Ecosystem
4.1. Decentralized Data Hub
We can draw on the experience and technology of existing centralized data ecosystems, which
power modern enterprise applications, large-scale machine learning, data analysis, and more. These
ecosystems combine many technologies, such as: mainframe systems, operational data stores,
enterprise service and data buses, data warehouses and data lakes, ETLs (Extract, Transform, Load
tools) and ELTs, distributed and in-memory computing, APIs and web services, over-the-counter
consumption tools and web applications.

Traditional ​Enterprise Data Hubs (EDHs)​ have the following capabilities:

1. Source​ – The exposure of available initial data assets.
2. Ingestion ​– Help onboard data assets into the ecosystem.
3. Processing ​– Transform, normalize, and consolidate assets, including cleansing,

normalization, and consolidation.
4. Persistence ​– Store the assets for use.
5. Consumption ​– Use the assets.
6. Discovery​ - Finding the assets.
7. Governance ​– Implement the ecosystem’s governing rules, including crypto-conditions.

Each service incorporates one or more of these capabilities. For instance, an ETL service incorporates
ingestion and processing, while a Spark distribution ​[Spark2018]​ incorporates processing and some
finite in-memory persistence.

Ocean will support these capabilities, in a ​decentralized ​fashion. Therefore it is a ​Decentralized Data
Hub (DDH)​. ​Figure 1​ illustrates. On top of these will be myriad marketplaces for data/services, both
centralized and decentralized.

Figure 1: Ocean Protocol is a Decentralized Data Hub

8

4.2. Decentralized Data Pipeline
Orchestration of services in an EDH is handled by data pipelines. A data pipeline consists of control
and data flows that manage system interactions across services. Ocean will facilitate such
functionality between decentralized services.

Figure 2​ shows an example of Ocean fulfilling some of these capabilities in a decentralized data
pipeline going from left to right.

The ​source ​is a log stream or log files. These get ​ingested​ into a message queue. Then there is
processing​, which could be centralized (e.g. EC2 ​[Amazon2018c]​ or Lambda), decentralized (e.g.
Golem ​[Golem2016]​, iExec ​[iExec2017]​) and possibly with special capabilities like AI (e.g.
SingularityNET ​[SingularityNET2017]​) or privacy (e.g. Enigma ​[Zyskind2015]​).

The next step is ​persistence​, which could be blob stores or databases, and centralized or
decentralized. For example, AWS S3 ​[Amazon2018b]​ is a centralized blob store, IPFS/Filecoin
[IPFS2018]​ ​[Filecoin2017]​ and Ethereum Swarm ​[Trón2018]​ are decentralized blob stores, AWS
Aurora ​[Amazon2018]​ and MongoDB Atlas Amazon Aurora ​[Amazon2018]​ and MongoDB Atlas
[MongoDB2018]​ are centralized database services, and BigchainDB ​[BigchainDB2018]​ and OrbitDB
[OrbitDB2018]​ are decentralized databases.

Finally, the data asset is consumed by a human looking at a dashboard, or by software in the form of
Webhooks ​[Webhook2018]​, IFTTT or other callbacks technology.

Figure 2: Ocean decentralized data pipeline

Figure 3​ illustrates Ocean in a data pipeline incorporating privacy-preserving compute, using proxy
re-encryption (e.g. with NuCypher ​[NuCypher2018]​) and multi-party compute (MPC)(e.g. with
Enigma ​[Zyskind2015]​). It also shows the use of redundancy, which is a key feature of most
distributed systems storage technologies.

9

Figure 3: Ocean decentralized data pipeline with privacy and redundancy

4.3. Interservice Connections
To link to the decentralized services, we need ​adapters ​(bridges) for two things:

● Value / liquidity​ - to pay for the network services, we need to exchange Ocean Tokens to
this network’s native token. Infura exchange ​[Infura2018]​, and 2-way pegs like Interledger
[Thomas2015]​ and Cosmos ​[Kwon2017]​ can help.

● State / data​ - there is a proof that a request that has been handled. If that proof has been
verified then it’s satisfied Ocean’s needs. PolkaDot for state ​[Wood2016]​, Truebit for proofs
[Teusch2017]​, and IPLD ​[IPLD2018]​ for content-addressed data can help.

Figure 4​ illustrates.

Figure 4: Connecting Ocean with other decentralized service networks

5. System Architecture
Figure 5​ shows the overall architecture. At the top are stakeholders: data/service providers

(including data custodians and owners) and verifiers, data/service consumers (most notably, AI

experts), data/service marketplaces, and data commons interfaces.

Providers. ​These actors have AI data or services that they make available in a cryptographically

provable fashion. Services may include: data itself, storage (centralized or decentralized), compute

10

(centralized or decentralized, privacy-preserving or not), and more.

Marketplaces. ​Data/service marketplaces are typically how providers and consumers interact with

Ocean network, for convenience. Each marketplace is expected to facilitate:

1. Discovery - The ability to identify, promote, and curate assets or services within an

ecosystem;

2. Transactability - The ability to reach transactional agreement between ecosystem

stakeholders, facilitated by Ocean Tokens; and

3. Verification - The ability to verify that transactions were sufficiently completed.

To catalyze marketplaces for the community, we are building a reference data marketplace with a

permissive open source license ​[OceanMkt2018]​.

While marketplaces will have their own approaches to pricing, but for discoverability, liquidity, and
clearing, Ocean itself will store the pricing information.

Data commons interfaces. ​Side-by-side with data marketplaces that serve priced data are interfaces

for data commons, for ​free ​or commons data. These interfaces might be webpages, software

libraries, and so forth.

Keepers. ​The Ocean network itself is composed of a set of Ocean keeper nodes . Keepers collectively 4

maintain the network. Anyone can run an Ocean keeper node; it’s permissionless. Participation is

open and anonymous. Of course, just as in Bitcoin, higher layers like marketplaces and service

providers can include their own identity and permissioning requirements.

Figure 5: Ocean architecture

Each keeper node runs Ocean core software that speaks the Ocean protocol. When we say “core

4 We prefer “keeper” ​[Zurrer2017]​ over “miner” as mining implies a proof of work; Ocean is not constrained to
simply proofs of work.

11

software” we mean any correct implementation of the protocol. It has these key parts:

● Proofs of data/services.​ Tie-in to the storage & processing with provable data availability,

etc. This is making sure that the keeper actually made a data/service available like they

claimed they did. It’s accomplished via cryptographic proofs, which we elaborate on later.

Data blobs themselves may be stored on-premise, on the centralized cloud, or on the

decentralized cloud. On-premise storage may pair with on-premise processing; in which case

only the result of the processing is made available to the data/service consumer.

● Curation markets.​ This is a list of available data/services, with reputation for each in the

form of a curation market. Curation markets combined with cryptographic proofs gives a

new construction - Curated Proofs Markets - which bind predicted and actual popularity.

● Pricing/metadata. ​This is how much the provider asks for access of the data/service (fixed

price, auction, etc) or whether it is free; in addition to other metadata. IP rights information

is stored using [​COALAIP2018]​, a blockchain-ready IP protocol. The Ocean network itself

does little with this information; its goal is to make the information available to higher-level

marketplaces, enabling discovery across all marketplaces.

● Identity. ​This is a whitelist of good actors, implemented as a Token Curated Registry of users

[Goldin2017]​[adChain2017]​. New members join with stake; if they act maliciously (as voted

by the list) they lose stake and are removed. This whitelist is needed to avoid particular

attack vectors, as elaborated in the ​section on identity​.
● Chain maintenance. ​Because the Ocean network is a blockchain, it needs maintenance logic

like validating transactions, storing Ocean Tokens, storing metadata (with links to

services/assets), and more.

6. System Behavior

6.1. Overview

Figure 6​ shows an overview of the system behavior. The stakeholders are grouped as follows.

● Top: ​Client ​is the data/service consumer

● Middle: ​Services ​include data/service providers/owners, referrers/curators, and verifiers.

● Bottom: ​Keepers ​are keepers (miners) of the blockchain network.

Each arrow has a label that describes a particular action between two stakeholders in the system. Let
us go through these, left to right. The ​publish ​function is when an actor onboards a new dataset or
service into the network. Publishing includes providing the dataset/service’s metadata and making it
globally accessible . 5

After the dataset/service is onboarded, actors can play ​curator ​in order​ ​to ​stake​, thus indicating
their confidence in the relevance of a dataset/service. Staking also provides a ​signal ​to help clients
query ​and ​discover ​relevant services, typically inside ​markets​.

When a client discovers a service they want to consume, they agree upon a ​contract ​by virtue of a
market function. The ​service ​provider gives ​access ​to the service, providing a ​proof ​it was fulfilled.

5 ​Albeit potentially with permissioning to reconcile privacy needs.

12

Finally, the service contract is enforced by the ​verifier ​doing the cryptographic ​verification​. Block
rewards are then distributed appropriately.

Figure 6: Overview of protocol functions

6.2. Service Delivery Protocol

Let’s drill into the core function: setting up and delivering a service . Here, we use smart contracts as 6

programmable ​service agreements​. ​Figure 7​ depicts the protocol. It proceeds as follows . 7

1. Contract Setup​ - The service agrees and both parties come to a service agreement that is
programmable and enforceable

a. The client discovers a service that it wants to consume.
b. The service provider (or client) sets up a service agreement including conditions

related to settlement (fees and warranties), as well as resolution (execute and abort
conditions).

c. The client agrees with the contract by locking up Ocean Tokens in the escrow
function of the contract.

d. (Optionally) A set of verifiers with the capability to verify the service integrity proofs
are chosen and allocate resources.

e. The contract is digitally signed and deployed on-chain.
2. Access Control and Consumption​ - The client requests access to the service and consumes

the service
a. The client connects to the service provider and authenticates.
b. The service provider authorizes the client based on the on-chain contract.

6 ​For the data side, we treat data availability as a service.
7 This is one possible order of events. In other cases, consumption may happen after verification, for example
to avoid accidental consumption of bogus data.

13

c. Upon successful authorization, the client is granted access and consumes the
service.

3. Verification and Settlement​ - The service consumption is verified and the contract is settled
a. A pre-appointed verifier and/or the client challenges the service to provide proofs

that the requested service is delivered according to integrity specifications.
b. The service accepts the challenge, computes the proof and stores this on-chain with

a reference to the contract.
c. The verifiers validate the proof and optionally send out new challenges to the

provider.
d. Once enough proofs are provided, the contract goes into settlement:

i. Upon correct verification of the proofs, the transfer of funds from client to
provider is finalized; or,

ii. Upon provable error or timeout, the funds are rolled back and optionally the
provider is penalized by slashing stake.

e. Block rewards are dispensed accordingly.

Figure 7: Service delivery protocol

6.3. Service Agreements

A marketplace on Ocean brings together multiple service consumers and providers. All participants
in the transaction are exposed to certain risks - the provider may not get paid and the consumer may
not get the expected service. However, if a description of the service is encoded in a programmable
service agreement on a public trust layer, it can be enforced. Within the service agreement, the
payment, settlement, and service parameters are specified. Parameters include access tokens,
timeouts, service-specific proofs, and verifications. ​Figure 8​ helps illustrate this.

Lock: ​Ocean Protocol employs a two-phase contract, similar to a hold or escrow. First, funds are
locked up. This means that the funds are pending until a resolution of the contract has been met.
Second, the service is executed or aborted. If executed, funds are released to the provider. If

14

aborted, funds are returned to the consumer. Additionally, warrantees or stake can be provided
from the service provider side to further enforce the trust.

Resolve: ​Keepers determine whether a service agreement is executed or aborted. Keepers use
verification of service proofs to resolve the contract. If no verified proofs can be provided within a
specific timeout (measured in blocks), then the abort condition can be triggered and funds refunded,
optionally with a forfeit of any warrantee or stake of the provider. Of course, some fees are due for
the keepers and verifiers to run the contract and verify the proofs.

Figure 8: Pseudocode for a service contract

The contracts are programmable and allow consumers and providers to express complex scenarios.
However, complex contracts require more execution time on the keeper nodes as well as potentially
more dedicated verifiers for specific proofs. For example, a service that wants to provide a
combination of computation and storage would require proofs for both compute and storage with
their own verification or challenge-response mechanism.

6.4. Access Control

The Ocean Service Agreements are a starting point for a consumer to gain access to a service.
Authorisation of the requestor to access a service occurs by verifying that the requestor has been
granted a capability such as HTTP access (GET, PUT, ...), a specific range of queries (SQL, noSQL), or
even secure modes of interaction (MPC, TEE, sHSM, ...). The capabilities are stored in the service
agreement and these are queried via a call from the service upon verification of the authorization
request ​[Smolenski2017]​.

7. Core Token Design: Curated Proofs Market
7.1. Introduction
The previous sections provided context to Ocean, and gave high level overview of Ocean’s behavior
and structure. This section describes the core token design. At its heart is a block rewards function
(objective function) implemented by a ​Curated Proofs Market.

Recall that Ocean’s main goal is: ​maximize the supply of relevant AI data & services​. This drives the
beating heart of Ocean - the ​block reward function​. It acts similarly to an ​objective function​ in the
optimization literature, for example as used in ​[McConaghy2009]​. Optimization can be framed as a
subset of mechanism design ​[Evans2017]​. This objective function is what Ocean is optimizing
towards, by incentivizing actors in its ecosystem to contribute to. Bitcoin rewards contribution to
hash rate with Bitcoin tokens; Ocean rewards contribution to relevant data/services with Ocean
Tokens.

15

Besides the main goal, we had several ​ancillary questions / goals​ that guided us in token design.
Early designs did not meet them. As we will see later, the chosen design does. They are as follows:

● For priced data, is there incentive for supplying more? Referring? Good spam prevention?
● For free data, is there incentive for supplying more? Referring? Good spam prevention?
● Does it support compute services, including privacy-preserving compute? Do they have

incentives for supplying more, and for referring?
● Does the token give higher marginal value to users of the network versus external investors?
● Are people incentivized to run keepers?
● Is it simple?
● Is onboarding low-friction?

7.2. Block Rewards to Incentivize Relevant Data/Services & Make It Available
Block rewards are the key tool to incentivize desired behavior, i.e. to “get people to do stuff”
[McConaghy2018]​. Ocean emits Ocean Tokens as block rewards.

We want Ocean to have strong incentives to submit, refer, and make available quality data/services.
To accomplish this, we introduce a Curated Proofs Market, which combines (a) cryptographic proofs
that the data/service was made available, with (b) Curation Markets [​Rouviere2017​] for reputation
of data/services. It does curation on cryptographic proofs. It uses stake as a measure of the belief of
the future popularity of the data/services, where popularity is measured by number of times that
service is made available. Block rewards for a dataset/service are a function of how much an actor
has staked in that dataset/service, the dataset/services’s actual (proofed) popularity, and the actor’s
serve-versus-use ratio.

We now elaborate. First we describe an ideal token allocation approach; then we describe a practical
implementation.

Here is the ideal allocation approach, i.e. the approach assuming no computational constraints. isRij

the block rewards for actor ​i​ on dataset/service ​j​, ​before ​being normalized across all actors and
datasets/services. The actual block rewards received are normalized: .Rij,norm

og10(S) og10(D)Rij = l ij * l j * Ri

Rij,norm =
Rij

∑

i
∑

j
Rij

* T

where

● ​= actor​ i’​s stake in dataset/service ​j​, measured in ​drops​.Sij

● = number of deliveries of dataset/service ​j ​in the block intervalDj

● = global ratio for actor ​i ​serving up vs. accessing a dataset; details are belowRi

● = total Ocean Tokens given during the block interval according to the overall tokenT

reward schedule (see Appendix)

The first term in is . It reflects the actor’s belief in the popularity of theRij og10(S)l ij

dataset/service, measured in drops. If the actor that posts the data/service believes that it will be
popular, then they can stake even more than the minimum posting amount, curation-market style,
and receive more drops. Additionally, others that believe in the future popularity of the data/service
can stake whatever they would like, curation-market style, and receive drops. These mechanics
incentivize participants to submit relevant datasets/services, and gives them an opportunity to make

16

money too. We use log10 on curation market stake (drops) to level the playing field with respect to
token whales; and so that token whales are incentivized to make a greater number of
datasets/services available. This has theoretical roots in Kelly Betting: applying the log is the optimal
strategy for an individual to maximize their utility in betting ​[KellyCriterion2017]​ ​[Simmons2017]​.

A later section elaborates on curation markets including stake in drops; and another section on how
we manage identities to prevent stake whales from creating multiple accounts).

The second term, , reflects the popularity of the dataset/service; that is, how many timesog10(D)l j

it has been (provably) used in the time interval. We use log10 to incentivize actors to stake and make
a greater number of datasets/services available.

The first and second term can be summarized as a binding of ​predicted ​popularity * ​actual
popularity. This is the core mechanic of a Curated Proofs Market.

The third term, , is to mitigate one particular attack vector for data (it’s excluded for services).Ri

“Sybil downloading” where actors download files repeatedly to increase their block rewards (more
on this later). It uses a tit-for-tat approach like BitTorrent by measuring how much data an actor has
served up, versus how much is accessed, as follows:

min(B , B), 1.0) if all data assets served; 0.0 otherwise}Ri = { served downloaded

where

● = total number of bits that the actor served (made available) across all data assetsBserved

they have staked
● = total number of bits that the actor accessed, from any data assetsBdownloaded

If an actor has staked on a data asset and they want to get rewarded, then they must run a keeper
node that makes that data asset available. If they don’t make it available when asked (or fail on
other keeper functionality), they will lose their stake in that data asset. It’s ok if they retrieve it
last-minute from S3 or another miner; it’s more reward as a CDN (content delivery network)
[CDN2018]​ as opposed to proof of storage like Filecoin ​[Filecoin2017]​.

For an early staker in a data/service that has since had more stake, they can subsequently pull out
their stake at a profit, curation-market style.

It’s worth emphasizing: when we say “stake” for that dataset/service, we mean the amount it’s
worth in terms of the derivative token for that dataset/service, called “drops”. A later section
elaborates.

7.3. Block Rewards: Practical Implementation
To implement the block rewards as described above has complexity and high compute cost because,

for each block rewards cycle, we need to compute the amount of stake for each dataset/service

made available by each actor, and we’d need a transaction to ​each ​actor to reward their effort.

We can address these issues by giving keepers the same ​expected ​value of block reward (though

higher variance), with less computation using a Bitcoin-style strategy (called “probabilistic micro-

payments” in ​[Salomon2017]​). In Bitcoin, every ten minutes, tokens (Bitcoins) are awarded to a

single ​keeper (miner) where the probability of reward is proportional to value added (miner hash

17

rate), compared to the rest of the network’s value added (network hash rate = network difficulty).

Network difficulty is updated every two weeks.

Ocean is similar. Rather than rewarding at fixed time intervals, every time a keeper makes a

dataset/service available to a consumer, Ocean randomly chooses whether to give block rewards.

The amount awarded is based on the value added by the keeper and total network value added.Rij

is the network difficulty; it gets updated every two weeks (20160 minutes) , i.e. theRdif f iculty 8

difficulty interval. is the value added since the last difficulty update.Rrecent

At network launch, At the beginning of each difficulty interval, ..Rdif f iculty = 0 Rrecent = 0

Here’s what happens when actor ​i​ makes a dataset/service ​j ​available to a consumer.

1. Compute value added:

og10(S) og10(D)Rij = l ij * l j * Ri 9

2. Update total recent network value added:

 Rrecent = Rrecent + Rij

3. Compute the probability of getting a block reward, ​P​. If we wanted one reward on average every

two weeks, it would be (1). But let’s have rewards every 1 minute on average. 20160 minutes is two

weeks. So, we add in the factor (20160 minutes)/(1 minute). The result is (2).

(1) P =
Rij

Rdif f iculty

(2) P = Rdif f iculty

R 20160/1ij*

4. Compute whether actor ​i​ gets the reward:

∼ U[0,1], i.e. draw a random real number between 0.0 and 1.0, using e.g. ​[Randao2018]​[Syta2017] u

If then actor ​i ​will get the rewardu ≥ P

5. If the actor ​i ​is to get the reward, then compute and give it, via a transaction with outputewardr

to actor i. Since step 3 has a bias to reward more often using the factor (20160/1), here we need to

divide the amount awarded by that same factor. We arrive at ​F​, the fraction of rewards for this

action in this difficulty interval. To compute , we scale ​F ​by , where is theewardr T dif f iculty T dif f iculty

total Ocean Tokens given during the two week difficulty period according to the overall token reward

schedule (see Appendix).

F =
Rij

Rdif f iculty 20160/1*

ewardr = F * T dif f iculty

8 This parameter, like many parameters in Ocean, are subject to change.
9 We actually wrap each log() expression with a max to avoid negative values. E.g. max(0, log(S​ij​))

18

Once every difficulty interval (two weeks), the difficulty will be updated with ​R​recent​. The change is

limited to 0.5x to 2.0x of the previous difficulty value.

ax(0.5 , min(2.0), R)Rdif f iculty = m * Rdif f iculty * Rdif f iculty recent

7.4. Separation of Roles vs. One “Unified” Keeper
In designing the system, we wanted to incentivize the stakeholder roles of data/service provider,
referrer, validator, and keeper. Some initial designs gave a percentage of block rewards to each role
based on their respective actions. But this opens up attack vectors, such as keepers taking all the
rewards for themselves. Our solution was to explicitly couple all the roles into one: if you’ve staked
(provider or referrer) then the only way to get block rewards is to run a keeper node.

If we discover alternatives to overcome the security concerns, the final implementation may

separate these into distinct roles.

8. Curation Markets Details

8.1. Introduction
Recall that Ocean’s objective function (block reward function) is to maximize the supply of relevant
AI data/services. Ocean uses curation markets ​[Rouviere2017]​ to signal how relevant an AI dataset
or service might be. Curation markets leverage the wisdom of the crowd: people stake on
datasets/services they believe in. In other words, they put their money where their mouth is. In
traditional curation markets, the main action for actors is stake and un-stake as a means of signaling.
Ocean builds on this by binding those staking actions with actual work of making a service available -
a Curated Proofs Market. This section elaborates on curation markets.

Each dataset/service has its own curation market, which in turn has its own token called ​drops, ​and
a ​bonding curve​ ​that relates drops to Ocean Tokens “​Ọ ”.

8.2. Tokens for Services: Drops
Let’s elaborate on drops first. Recall that drops are derivative tokens of Ocean Tokens denoted in
“​Ḍ ” that measure stake for ​each​ dataset/service. For example, 100 drops of stake in dataset X is
“100 ​Ḍ X”. Users can get value from drops in two ways:

1. Block rewards.​ People earn Ocean Tokens if they bet on an AI dataset / service and make it
available when asked.

2. Un-staking.​ One can un-stake in order to convert from Ḍ in a service back to Ocean Tokens.

Drops are a measure of a user’s attention: if a user cares about dataset X, the user will stake on
dataset X to get drops of X; that is, ḌX. Because there is scarcity of Ocean Tokens, there is scarcity of
drops, which mirrors a user’s scarcity of attention. In short, ḌX are a proxy for mindshare in X.

Because each dataset/service has its own token, a user of Ocean will likely hold not just Ocean
Tokens in their crypto wallet; they may also hold ḌX, ḌY, or in general a variety of drops for the
datasets and compute services that they’ve staked.

8.3. Bonding Curves
A ​bonding curve​ relates a token’s drops “​Ḍ ” to Ocean Tokens “​Ọ ” for a given dataset/service. ​Figure
9​ shows a bonding curve for dataset X. It relates the ​price in ​Ọ to buy more drops of X​ (y-axis) as a

19

function of the ​current supply of drops ​(x-axis). As people stake more interest in X, its ḌX supply
goes up according to the bonding curve.

Bonding curves can take whatever shape the creator wishes. But to reward early adopters, a bonding
curve typically makes it more expensive to buy ḌX as more people stake in it; this is the positive
slope in the curve.

Figure 9: Bonding curve for ​Ḍ X

A new curation market is initialized each time a new dataset or service is made available. With this,
the actor has already staked ​Ọ in order to have the dataset or service vetted. A later section
describes vetting. Once vetted, this stake goes into the curation market, in return for drops as to a
measure stake. ​Figure 10​ illustrates. We’re at the far left of the bonding curve because 0 ḌX have
been generated. There, each ḌX costs 0.1 Ọ . If the initial user staked 50 ​Ọ , she would gain 50 ​Ọ / 0.1
Ọ /ḌX = 500 ḌX. The supply for ḌX increases from 0 to 500.

Figure 10: increasing supply to 500 ​Ḍ X

From here on, anyone can stake further in X. Let’s say a user wants to purchase 500 ḌX by staking
more ​Ọ tokens. This would make the supply go from 500 ḌX to 1000 ḌX. In that range, the price is
(0.1 + 0.2 ​Ọ /ḌX)/2 = 0.15 Ọ /ḌX. The user would get 500 ḌX for a total cost of 500 ḌX * 0.15 ḌX/ Ọ =
75 ​Ọ . ​Figure 11​ illustrates.

20

Figure 11: increasing supply to 1000 ​Ḍ X

8.4. Un-Staking
A user can sell some of their Ḍ in a service at any time, in return for Ọ . This is the exact backwards
action compared to staking. The supply of Ḍ goes down correspondingly.

The ability to un-stake for ​Ọ leads to the possibility for pump-and-dump behavior. In a later section,
we discuss this further, and how to mitigate it.

8.5. Convergence to Relevant Data/Services
One can ask: how does the token design lead to a large supply of relevant data/services?

Overall, each actor has “holdings” in terms of stake (belief) of the relative value of different
datasets/services. If an actor is early to understand the value of a dataset/service, they will get high
relative rewards. This implicitly incentivizes referrals: I will refer you to datasets/services that I have
staked in, because then I get more block reward.

Actors get rewarded the most if they stake large amounts on popular datasets/services - the first and
second terms in the block rewards function, respectively. Put another way, they must predict that a
dataset/service will be popular, then see its actual measured popularity (as a proxy for relevance).
Just one alone is not enough. Over time, this causes convergence towards relevant
datasets/services.

9. Core Blocks: Identity, IP, Pricing, Governance

9.1. Identity: Token Curated Registry of Users

There may be a need for some form of identity for several reasons. First, we want to incentivize good
actors to be in the system, and bad actors to leave. We want stake whales to have diminishing
returns in stake on a dataset/service; to accomplish this the block rewards function applies log10() to
stake in a dataset/service; in turn, this is only possible if we have a reasonable handle on identity so
that a stake whale doesn’t replicate themselves several times. On the flip side, we do not want the
core of Ocean network to be tied to any jurisdiction’s laws or processes; therefore identity defined
by something like KYC (Know-Your-Customer) like in banking would be too heavy. We need an
approach that strikes a balance.

Our solution is to maintain a ​whitelist of good actors ​using economic incentives. Each actor needs to
be incentivized to have good (or at least not bad) behavior. This starts with requiring skin in the
game, e.g. via staking. “Good” means accredited as non-fraudulent by Ocean Token holders.
“Actors” means all stakeholders except data/service consumers. This therefore includes not just

21

keepers, but also providers, referrers, verifiers, and consumers of data/services. We don’t include
consumers because there’s no need to whitelist them for most cases, and we want to minimize
onboarding friction wherever we can. Marketplaces and other higher-level services can add further
whitelisting (including KYC) for stricter data requirements, such as making medical data available to
research scientists.

We realize these goals using a ​Token Curated Registry​ ​(TCR) ​[Goldin2017]​ of actors. In TCRs, existing
actors are economically incentivized to only add good actors and to keep out bad actors. If an actor
in the registry is found to be acting bad, the contention mechanism could be invoked and the
misbehaving actor’s stake is lost.

A prospective new actor can enter this TCR whitelist one of two ways:

1. Staking themselves​, like in ​[Goldin2017]​. This is useful for actors who are new to the system,
and don’t know others, so are motivated to undergo a vetting process that we elaborate
below.

2. Risk-staking by others. ​That is, others vouch for them. This is inspired by the OpenBazaar
“trust is risk” proposal [​Zindros2017​]. This is useful for actors who do know others in the
system who are willing to vouch for them, and can therefore start participating in the system
immediately.

Let’s elaborate.

Staking themselves. ​A new actor can stake a proposal to join. There is a vetting period in which
challengers can come forward with stake. If there are no challengers, the new actor is in. If there is a
challenger and the majority vote “ok”, then the challenger loses tokens and the new actor is in. If the
majority votes “not ok”, the new actor loses their staked tokens. The actor must wait for this process
to complete, to participate in the system.

Risk-staking others (referrals). ​An existing actor can risk-stake on a new actor to help get the new
actor into the system. The “risk” part means the new actor can take the existing actor’s stake
anytime for themselves, but they aren’t expected to, because they stand more to gain by
participating in the ecosystem. The existing actor is awarded ​R​rs​ times the new actor’s block rewards
in betting on high quality datasets/services. ​R​rs​ is a parameter to be set, at a value about 0.1. This
reward amount is not taken from the new actor’s block rewards, it is extra rewards (a positive sum
game).

The existing actor must always stake more than the total block reward that the new actor receives. If
the new actor acts badly (e.g. loses their stake for not making dataset/service available), then the
existing actor loses their stake in the new actor.

If the existing actor un-stakes in the new actor such that their total stake goes below the registry
threshold, then they are removed from the registry. So, awards and punishments are based on the
new actor acting well and badly, respectively. Risk-staking leads to an emergent web-of-trust. Ocean
incentivizes for this to continue indefinitely, by continuing the stream of referral block rewards.

9.2. IP Attribution & Provenance: COALA IP
Ocean will use the COALA IP ​[COALAIP2018]​ protocol for specifying IP rights on data. COALA IP is a
schema for the shape of JSON-style transactions going onto the blockchain. All COALA IP transactions
are signed. Data is content-addressable, using IPLD ​[IPLD2018]​. COALA IP builds on the lineage of
semantic web ​[W3C2018]​. At the marketplace level, metadata specified in COALA IP and fills out a
templated legal contract that is then hashed to the blockchain, Ricardian-contract style ​[Grigg2004]​.

22

We started building ascribe ​[McConaghy2015]​ in 2013 as a service for IP on the blockchain, focusing
on digital art. Users could claim copyright, specify a limited number of editions, and transfer rights of
an edition to other users. We found that our initial IP protocol was not flexible enough. So, we
co-developed COALA IP protocol with collaborators from Protocol Labs, COALA, Ujo Music, and
more.

COALA IP is general enough to handle music, movies, 3D designs and more, as well as for data itself.
It allows for fractional ownership, licensing different rights to different parties in different
jurisdictions, time limits (e.g. “you can use this data for the next week”), derivative rights (e.g.
cleaning up a dataset), and more.

COALA IP models transfer of rights from one holder to others. Because COALA IP transactions are
signed ​and go to an ​immutable ​blockchain, and the supply of data and compute itself is
cryptographically proven, Ocean ends up holding an immutable record of data and compute history,
i.e. provenance. Such ​data and compute provenance​ has wide applicability to practical AI and data
management problems. COALA IP also naturally supports remix provenance, e.g. going from a messy
dataset to a cleaned one, then a normalized one.

9.3. Vetting IP Rights: TCR
A data provider should only post data if they are the rights holder, they have a license to post the
data, or the data is public domain. Of course this is difficult to perform automatically and accurately.
Consequently, Ocean discourages abuse via a Token Curated Registry (TCR), as follows.

When the provider posts the data, they must stake a minimum count of tokens for a minimum time
period. Anyone can challenge the publisher’s claim during that period, with stake. There is then a
vote, where “yes” means “data is not junk and rights are ok”.

● If the majority votes “yes”, the challenger loses the staked tokens. The data becomes
available in the network.

● If the majority votes “no”, then the poster loses their staked tokens (on this data asset) and
gets removed from the actors registry. Removal from the actors registry is a serious
consequence, but we believe it’s a critical step in order to maintain an ecosystem of good
(non-infringing) actors. In this case, the challenger gets some of the provider’s staked tokens
as this incentivizes them to post challenges in the first place.

During this challenge time period, the data itself may get served up, but all block rewards are held in
escrow by the network until the appropriate rights holder is identified. In doing this, we keep the
friction to publishing data low, but ensure that the appropriate rights holders get the rewards. This
mechanism is similar to that of SoundExchange in the music industry ​[SoundExchange2018]​.

9.4. 3rd Party Arbitration
In Ocean, people make claims about having particular IP rights. Of course, people can lie. Ocean’s
main tool to address this is via staking, as described. Another ​possible ​tool is to use plug-in 3rd-party
arbitration, such as Mattereum ​[Mattereum2018]​, which could draw on the full force of the law.
However, using that would bind the network to particular jurisdictions and laws. This is not
desirable, as it would compromise the ​borderless ​nature of Ocean. Therefore our current approach
is to make it easy to have plug-ins like Mattereum at higher levels (e.g. marketplaces), but for the
core of the Ocean network to rely on staking.

23

9.5. Pricing: Basics
Marketplaces will have their own approaches to pricing, but for discoverability, liquidity, and
clearing, Ocean itself will store the pricing information. We envision the following.

Free Data. ​We want to encourage a growing data commons for the world, where anyone can
download commons data for free.

Priced Fungible Data/Services. ​Some data is exchangeable with decent liquidity, for example
Electrocardiogram (ECG) data for 100 people in Singapore is the same as 100 people in Germany.
Exchanges ​are a low-friction way to handle fungible data and services, as they let the market
determine the price in an automated way.

Priced Non-Fungible Data/Services. ​Some data or services are not easily exchangeable. Then, pricing
here may include fixed price, auction, and royalties. Each has pros and cons. Fixed price is simple.
Auction pricing finds price at the cost of more complexity of implementation and user experience.
Royalties could prove to be very useful when it’s possible to compute the final value provided, so
that royalties can propagate backwards. Ideally we compute relative impact by each dataset, e.g. like
in ​[McConaghy2008]​, then pay proportionally.

For any pricing that is more complex than “fixed price”, Ocean network will most likely need to have
smart contracts holding the service contract. Ocean will provide schemas for the more common
pricing approaches.

The Ocean Token is used as a currency for buying and selling. Data/services are priced in currency of
the vendor’s choice (e.g. USD, EUR, ETH) then converted just-in-time to a token price, according to
crypto exchange rates. Conversion would happen ideally via a decentralized exchange, though in the
near term centralized exchanges may be needed due to software maturity. Golem ​[Golem2016]​ and
other emerging tokenized ecosystems work similarly, using e.g. the exchange capabilities of Infura
infrastructure ​[Infura2018]​.

9.6. Pricing: Reputation and Staking
As mentioned earlier, we use a curation market to incentivize data supply or referral. We don’t
require ​this for priced data, as traditional supply/demand data is a sufficient signal to set pricing, and
price is a proxy for data reputation. However, a curation market plus block rewards catalyzes more
data to be added more quickly. Furthermore, by having a further reputation signal, it helps users
discover quality data assets and choose among them, just as Amazon’s star-based reputation system
is a signal beyond simple pricing.

However, we do need to discourage bad acting. The starting point is the data/services registry. But
going one step further, we use staking. In order to sell a dataset/service for amount ​x​, the vendor
must stake amount ​x​. To sell it twice, they must stake 2x. The stake will get locked up, and cannot be
re-used during that period.

9.7. Governance: Fixing Bugs, Protocol Updates
This section addresses how the codebase gets updated. We need to handle simple non-controversial
bug fixes to larger, possibly controversial protocol updates; with shades of gray in between.
Governance options range from fully on-chain to hard forks; with shades of gray in between here
too. We are sympathetic to the full range of options.

We see pragmatic solutions emerging such as ZeppelinOS ​[Zeppelin_os2018]​, Aragon ​[Aragon2018]
and Colony [​Colony2017​]. For example, ZeppelinOS provides a systematic means for tokenholders to
agree on updates to smart contract code. We expect these to mature further as we develop towards

24

the Ocean production net. At the time of this writing, we expect that Ocean will employ one or a
combination of these tools and processes.

10. Cryptographic Proofs: Service Integrity and Verifiability
Framework
10.1. Introduction
Ocean Protocol is an open network that uses public trust rather than institutional trust to ensure and
verify service integrity. In a permissionless setting, there is no reliance on trusted third parties to
verify that a requested resource has been correctly delivered. Rather, participants can encode
service contracts in a machine readable format that can be executed and verified by the network.
Keepers ensure that resources specified in the service contract have been provided according to the
service contract conditions before releasing funds.

For network keepers to perform their function, they need the ability to verify that datasets are
correctly stored, verify that datasets have not been tampered with, and prove that computations are
correctly executed. As a rule, network keepers need transparency to perform these functions. But
giving network keepers visibility into the data and computation algorithms may conflict with privacy.
One could replicate the computation. But this is prohibitively expensive for big data services and
does not guarantee that the errors are uncorrelated. More advanced setups require trusted
execution environments or cryptographic protocols.

Since the Ocean Protocol network embodies a variety of services within a broad range of needs,
including transparency, privacy and complexity, a versatile framework is proposed to enforce trust.

We’ll first describe a model for each service and keeper node in the system and then proceed to lay
out the verifiability options for each class of nodes.

10.2. Actor Model for Services
We start with the actor model ​[Hewitt1973]​ which describes the behavior of a system when there is
no consensus upfront. This model has actors, behaviors and messages. Intelligent agents in the
system are reactive and communicate through messages. If an agent doesn’t understand a message,
the message is discarded. If the message corresponds to a contract or protocol operation that the
agent understands, then it can respond by making internal decisions, changing state, sending more
messages or creating more actors. ​Figure 12​ illustrates.

Figure 12: Actor responses on messages

The actor model follows Amdahl’s Law ​[Rodgers1985]​, which states that the scale of a system is
limited by the amount of shared state. Shared state requires consensus. A pure actor model has no
shared state between the agents. In Ocean, the shared state is kept by a network of keepers that
coordinate with each other under Byzantine agreement.

25

The behavior of actors can be modeled using automata or dynamical system theory. In a broad
context, actors can be described as Turing machines with finite memory. This allows us to describe
off-chain data services as well as on-chain smart contracts and transactions. As implementation
patterns become more complex, such as in deep learning deployments or the vast amounts of data
in data warehouses, so do the corresponding behaviours in the ecosystem.

If we want to port this model to our public, trustless Ocean network, there are many ways to
enhance trust between actors, including modern cryptography, replication and consensus, provers
and verifiers, claims, reputation, stake, curation, attention, governance, secure hardware and so on.

One can abstract the behavior of off-chain and on-chain services as a combination of procedures
(computation) and state (storage). Depending on the service type, clients send a request through an
API call to a typical web service or send or multicast transactions to a sufficient number of nodes of a
decentralized network. ​Figure 13​ illustrates.

Figure 13: Left: a web2.0 service with various privacy measures. Right: decentralized services as
replicated nodes with a consensus protocol. On the bottom, multiple options for service integrity

verification are given.

Replicated state machines that implement a blockchain protocol require determinism for consistent
state transitions, but this can’t be guaranteed with off-chain oracles. Both the amount of replication
(by consensus power) and transparency (in structure, code, state, history, random seeds, etc.) of a
protocol impact the verifiability of the outputs produced by an agent in the system. Instead,

26

depending on the type of service and the level of transparency, the integrity of a service can be
verified by the client or external verification services.

Options to verify integrity include signed receipts, replicated execution, trusted execution or
prover-verifier setups. For the latter, a prover can efficiently convince the verifier of aP V

mathematical assertion. In most cases, the prover is the service provider and the verifier is the
service consumer. This allows a verifier to check if a computation has been executed correctly
without having to re-execute the computation itself. Similarly, one can prove that data has been
stored correctly without having to store the data itself. Ocean will provide an open-ended
framework to encompass a multitude of service proofs. Additionally, 3rd-party verifiers can be
assigned to verify a specific service at a certain cost.

We now discuss service integrity further. First we’ll define service integrity as a superset of data and
computational integrity. Next we’ll give some background on specific verification implementations
that facilitate the service verification framework.

10.3. Service Integrity
Eliminating trusted third parties raises the need for more privacy and service integrity.
Corresponding to the decomposition of a service in procedure and state, service integrity is based on
two components: computation and data integrity. We use the following definitions.

● The ​time denotes a monotone sequence of timestamps representing events, epochs,T

blockheights and so on. The set of ​inputs ​are denoted by and the ​outputs ​by .I O

● We model the space of latent variables (​state​ space) by . These variables capture (in-)finiteS

memory, stack depth and the ​rank ​N equals the minimal number of states required to
implement the algorithm or storage. The rank N of a system is a measure of the complexity
of a system. It follows that a deep neural net has a higher rank than a simple look up in a
key-value store.

● We also define a ​state transition function​ : that acts on the input, C : S × T × I → S × O

changes the state and signals an output ​[Teusch2017]​. can be a smart contract, moreC

generic Turing machines or behavior of an actor, for example. ​Figure 14​ illustrates. On-chain
smart contracts have a deterministic transition function while off-chain oracles are more
black-box and probabilistic.

Figure 14: Possible system representations for actors in the system

● Service integrity ​implies that a reported response of a service is correct with respect to ao

request where service is defined by the tuple . This allows an independent verifieri C, S)(

 to assert whether the following statement is for an unobserved service provider:V ruet

27

 ​:= “ is the response of service on input after steps”τ (C,S,i,o,T) o C, S)(i T

As service provisioning is typically a combination of computation and state (data), we decompose
the integrity definition. As mentioned above, computational integrity requires a variety of
techniques and approaches to satisfy specific compute delegation requirements, depending on the
task type and the level of transparency and privacy required. Data integrity is correlated to data
availability, data consistency and the extent of data propagation in the network. For big data
systems, verifications need to be performed exponentially faster than the data size or the complexity
of the actual computation:

ank proof (log(max(rank C, rank S)))r ~ O

Figure 15​ shows types of service integrity, grouped according to data vs. computation and
sub-groups.

Figure 15: types of service integrity

Verifiers will audit proofs using one of the schemes in the figure; subsequent sections have details on
these proofs. The level of replication of the service verification can be set by the parties that go into
a service agreement. It’s possible that only the consumer verifies the service proofs delivered by the
provider. Alternatively, verification services can be provisioned randomly or predetermined to
further enhance the security and integrity of the provided service. Of course, more replication leads
to more computational cost and needs to be accounted for in the service agreement.

10.4. Service Integrity: Computational Integrity

In on-premise computation, the data consumer needs a provably correct model execution on the
purchased data. Hence, a service needs to provide sufficient proof to convince a verifier that the
code actually ran on the dataset .C S

28

Computational integrity​ implies that a reported response of a computation is correct witho C

respect to a request and dataset such that , ensuring that a prover correctly reportsi S (S)o = C P

the output rather than a more favorable output to the prover.

At a high level, the computational integrity is represented by two parties where there are verifiers
and provers. Let us illustrate in ​Figure 16​. A verifier is simply able to send a task or a function V C

and input to a prover . will execute the computation on behalf of then return the outputi P P V

 along with a short proof. Computational integrity is defined by correctness, soundness and zeroo

knowledge, where correctness means that can convince concerning a true statement andP V

soundness means that cannot convince of any false statement.P V

Figure 16: Computational integrity framework

Each proof system usually relies on assumptions. Assumptions mean that the prover may have a
huge computation power which guarantees that the protocol will execute any task or the prover
cannot solve certain problems. Also the verifier might have access to all inputs (like public
blockchains) or not (such as confidential transactions). Moreover, assumptions can include
replication of computation (for example proof of work), executing tasks on a trusted hardware like
(Trusted execution environment or “TEE” protocol), using multi-party computation (MPC) where no
single entity has the whole secret or the toxic waste, attestation, or auditing. There are multiple
factors for selecting the suitable protocol or proof system including the functionality of the protocol,
the implementation complexity, the public verifiability, applicability of zero-knowledge, the number
of required messages to be transferred between prover and verifier, etc.

The appendix elaborates on some popular computational integrity approaches.

29

10.5. Service Integrity: Data Integrity

Data availability proofs are key cryptographic primitives in Ocean Protocol. We need to be able to
prove that an actor made the correct file available, versus an incorrect one. Put another way, how do
we tell if the data asset just made available is the same as the one that was initially uploaded?

For clients (verifiers) to reliably retrieve a data object, a storage service (prover) is required to
provide a concise proof that data was made available and can be recovered in its entirety. Early work
introduces a cryptographic building block known as a proof of retrievability (POR). A POR enables a
user (verifier) to determine that an archive (prover) “possesses” a file or data object . These proofsS

rely on efficient hash functions while ensuring that the memory and computational requirements for
the verifier are independent of the (potentially large) size of the file . In other words:S

● Data integrity ​requires that no bounded prover can convince clients to accept alteredP V

or falsified data after a recovery or GET operation ​[Filecoin2017]​.=S′ / S

● Data availability​: if most clients with access permissions to the datum can see , then S S S

is available.

For Ocean Protocol both data integrity and availability are important design constraints. Popular
datasets should become more available by referral while respecting ownership attribution.

The appendix elaborates on some data integrity & availability approaches.

11. Outstanding Concerns
We believe this system design is a reasonable first cut. However, we still have concerns. The biggest
include:

● Complexity. ​While the core is basically cryptographic proofs with curation markets, there are
many building blocks around it: the actors registry, staking IP claims, etc. These each add
complexity.

● Decentralization substrate: scale, ecosystem. ​We currently do not see any decentralization
substrate that has both ​scalability ​and a mature developer ​ecosystem​. However, there are
several options, and these will likely evolve as we move towards deployment.

● Data availability proofs - maturity issues.​ Filecoin’s Proof-of-Space-Time is not available yet.
Teusch’s data availability proof is expensive. Our challenge-response proof needs vetting.

● Compute proof issues.​ We assume that it won’t be straightforward when linking to compute
proofs and especially to related decentralized compute networks. Another issue will be
linking full data-compute flows. All of these will take time and effort.

● Concerns described elsewhere. ​The appendix describes more specific concerns. We believe
we have reasonable answers to each concern. However, these answers may not be perfect
or have unforeseen issues.

In addressing these concerns and others that appear, it may turn out that the final designs will be
quite different than the ones in this document. As engineers, we are perfectly comfortable with this.

12. Conclusion
This paper presented Ocean Protocol: a protocol and network for AI data and services. Ocean
incentivizes relevant ​priced​ data, relevant​ public or commons ​data, as well as privacy-preserving AI

30

compute services. Ocean’s core mechanic is Curated Proof Markets, which combine cryptographic
proofs with curation markets; binding actual and predicted popularity of data/services.

13. References
[adChain2017] adChain team, “Introducing the adChain Registry!”, May 31, 2017,
https://medium.com/@AdChain/introducing-the-adchain-registry-cc5b8b831a7e

[Amazon2018] “Amazon Aurora: MySQL and PostgreSQL Compatible Relational Database Built for
the Cloud”, Amazon.com, last accessed Feb. 13, 2018, ​https://aws.amazon.com/rds/aurora/

[Amazon2018b] “Amazon S3: Object Storage Built to Store and Retrieve Any Amount of Data from
Anywhere”, Amazon.com, last accessed Feb. 13, 2018, ​https://aws.amazon.com/s3/

[Amazon2018c] “Amazon EC2: Secure and Resizable Compute Capacity in the cloud. Launch
Applications when Needed without Upfront Commitments”, Amazon.com, last accessed Feb. 19,
2018, ​https://aws.amazon.com/ec2

[Aragon2018] “Aragon: unstoppable organizations”, homepage, last accessed Feb. 19, 2018,
https://aragon.one/

[Banko2001] M. Banko and E. Brill, “Scaling to Very Very Large Corpora for Natural Language
Disambiguation”, Proc. Annual Meeting on Association for Computational Linguistics, July, 2001,
http://www.aclweb.org/anthology/P01-1005

[BigchainDB2018] BigchainDB homepage, last accessed Feb. 13, 2018 ​https://www.bigchaindb.com/

[BigchainDB2017] BigchainDB team, “BigchainDB and TRI Announce Decentralized Data Exchange for
Sharing Autonomous Vehicle Data”, May, 2017,
https://blog.bigchaindb.com/bigchaindb-and-tri-announce-decentralized-data-exchange-for-sharing-
autonomous-vehicle-data-61982d2b90de

[Bitansky2012] Nir Bitansky et al., “From Extractable Collision Resistance to Succinct Non-interactive
arguments of Knowledge, and Back Again", Proc. Innovations in Theoretical Computer Science
Conference, ACM, 2012, ​https://dl.acm.org/citation.cfm?id=2090263

[Cachin2017] Christian Cachin and Marko Vukolić, “Blockchain Consensus Protocols in the Wild”,
2017, ​https://arxiv.org/abs/1707.01873

[COALAIP2018] “A blockchain-ready, Community-driven Protocol for Intellectual Property Licensing”,
COALA IP homepage, last accessed Feb. 13, 2018, ​https://www.coalaip.org/

[Colony2017] Alex Rea et al., “COLONY Technical Whitepaper”, Sept 20, 2017,
http://swarm-gateways.net/bzz:/whitepaper.joincolony.eth/

[ConnectedLife2018] ConnectedLife homepage, last accessed Feb. 13, 2018, ​https://connectedlife.io

[CDN2018] “Content delivery network”, Wikipedia, last accessed Feb. 13, 2018 ,
https://en.wikipedia.org/wiki/Content_delivery_network

[Cormode2012] Graham Cormode, Michael Mitzenmacher, and Justin Thaler, “Practical Verified
Computation with Streaming Interactive Proofs”, Proc. Innovations in Theoretical Computer Science
Conference, ACM, 2012, ​https://dl.acm.org/citation.cfm?id=2090245

31

https://medium.com/@AdChain/introducing-the-adchain-registry-cc5b8b831a7e
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/s3/
https://aws.amazon.com/ec2
https://aragon.one/
http://www.aclweb.org/anthology/P01-1005
https://www.bigchaindb.com/
https://blog.bigchaindb.com/bigchaindb-and-tri-announce-decentralized-data-exchange-for-sharing-autonomous-vehicle-data-61982d2b90de
https://blog.bigchaindb.com/bigchaindb-and-tri-announce-decentralized-data-exchange-for-sharing-autonomous-vehicle-data-61982d2b90de
https://dl.acm.org/citation.cfm?id=2090263
https://arxiv.org/abs/1707.01873
https://www.coalaip.org/
http://swarm-gateways.net/bzz:/whitepaper.joincolony.eth/
https://connectedlife.io/
https://en.wikipedia.org/wiki/Content_delivery_network
https://dl.acm.org/citation.cfm?id=2090245

[Crain2017] Tyler Crain et al., “(Leader/Randomization/Signature)-Free Byzantine Consensus for
Consortium Blockchains”, May 2017, ​https://arxiv.org/abs/1702.03068​ (“Red Belly” blockchain)

[Crevier1993] Daniel Crevier. ​AI: The Tumultuous History of the Search for Artificial Intelligence​. Basic
Books, 1993: 148–150.

[DeJonghe2017] Dimitri De Jonghe, “Curated Governance with Stake Machines”, Dec. 4, 2017,
https://medium.com/@DimitriDeJonghe/curated-governance-with-stake-machines-8ae290a709b4

[Economist2017] “The World’s Most Valuable Resource is No Longer Oil, But Data”, ​The Economist​,
May 6, 2017,
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antit
rust-rules-worlds-most-valuable-resource

[EthSharding2018] “Sharding FAQ: On Sharding Blockchains”, last accessed Feb. 13, 2018,
https://github.com/ethereum/wiki/wiki/Sharding-FAQ

[Evans2017] Alex Evans, “A Crash Course in Mechanism Design for Cryptoeconomic Applications”,
Oct 17, 2017,
https://medium.com/blockchannel/a-crash-course-in-mechanism-design-for-cryptoeconomic-applic
ations-a9f06ab6a976

[Filecoin2017] Protocol Labs, “Filecoin: A Decentralized Storage Network”, August 14, 2017,
https://filecoin.io/filecoin.pdf

[FSM2018] “Finite State Machines”, Wikipedia, last accessed Feb. 20, 2018,
https://en.wikipedia.org/wiki/Finite-state_machine

[Gennaro2013] Rosario Gennaro et al., "Quadratic Span Programs and Succinct NIZKs without PCPs",
Proc. Annual Intl. Conf. on the Theory and Applications of Cryptographic Techniques, pp. 626-645.
Springer, Berlin, Heidelberg, 2013, ​https://eprint.iacr.org/2012/215.pdf

[Goldin2017] Mike Goldin, “Token-Curated Registries 1.0”, medium.com, Sep. 14, 2017,
https://medium.com/@ilovebagels/token-curated-registries-1-0-61a232f8dac7

[Golem2016] Golem Team, “The Golem Project: Crowdfunding Whitepaper”, Oct. 2016,
http://golemproject.net/doc/DraftGolemProjectWhitepaper.pdf

[Grigg2004] Ian Grigg, “The Ricardian Contract”, Proc. IEEE Intl. Workshop on Electronic Contracting,
2004, ​http://ieeexplore.ieee.org/document/1319505/

[Halevy2009] Alon Halevy, Peter Norvig, and Fernando Pereira, “The Unreasonable Effectiveness of
Data”, IEEE Intelligent Systems 24(2), March-April 2009,
https://research.google.com/pubs/archive/35179.pdf

[Hanke2018] Timo Hanke, Mahnush Movahedi and Dominic Williams, “DFINITY Technology Overview
Series: Consensus System”, Jan. 2018,
https://dfinity.org/pdf-viewer/pdfs/viewer?file=../library/dfinity-consensus.pdf

[Hewitt1973] Carl Hewitt, Peter Bishop, and Richard Steiger, “A Universal Modular Actor Formalism
for Artificial Intelligence", Proc. Intl. Joint Conf. on Artificial Intelligence, 1973

[iExec2017] iExec team, “The iEx.ec project: Blueprint For a Blockchain-based Fully Distributed Cloud
Infrastructure”, March, 2017, ​https://iex.ec/app/uploads/2017/04/iExec-WPv2.0-English.pdf

32

https://arxiv.org/abs/1702.03068
https://medium.com/@DimitriDeJonghe/curated-governance-with-stake-machines-8ae290a709b4
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://medium.com/blockchannel/a-crash-course-in-mechanism-design-for-cryptoeconomic-applications-a9f06ab6a976
https://medium.com/blockchannel/a-crash-course-in-mechanism-design-for-cryptoeconomic-applications-a9f06ab6a976
https://filecoin.io/filecoin.pdf
https://en.wikipedia.org/wiki/Finite-state_machine
https://eprint.iacr.org/2012/215.pdf
https://medium.com/@ilovebagels/token-curated-registries-1-0-61a232f8dac7
http://golemproject.net/doc/DraftGolemProjectWhitepaper.pdf
http://ieeexplore.ieee.org/document/1319505/
https://research.google.com/pubs/archive/35179.pdf
https://dfinity.org/pdf-viewer/pdfs/viewer?file=../library/dfinity-consensus.pdf
https://iex.ec/app/uploads/2017/04/iExec-WPv2.0-English.pdf

[ImageNet2018] “ImageNet”, Wikipedia, last accessed Feb. 13, 2018,
https://en.wikipedia.org/wiki/ImageNet

[Infura2018] “Infura: Scalable Blockchain Infrastructure”, Infura Homepage, last accessed Feb. 13,
2018, ​https://infura.io

[IPFS2018] “IPFS: IPFS is the Distributed Web”, IPFS homepage, last accessed Feb. 19, 2018,
https://ipfs.io/

[IPLD2018] “IPLD: IPLD is the data model of the content-addressable web”, IPLD Homepage, last
accessed Feb. 19, 2018, ​https://ipld.io/

[Kalra2016] Nidhi Kalra and Susan M. Paddock, “Driving to Safety: How Many Miles of Driving Would
It Take to Demonstrate Autonomous Vehicle Reliability?”, RAND Corporation, Apr 12, 2016
https://www.rand.org/pubs/research_reports/RR1478.html

[KellyCriterion2017] “Kelly Criterion”, Wikipedia, last accessed Feb. 17, 2018,
https://en.wikipedia.org/wiki/Kelly_criterion

[Kiayias2017] Aggelos Kiayias et al., “Ouroboros: A Provably Secure Proof-of-Stake Blockchain
Protocol”, Proc. Annual International Cryptology Conference, August 21, 2017,
https://eprint.iacr.org/2016/889.pdf

[Kokoris2018] Eleftherios Kokoris-Kogias et al., “OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding”, Proc. IEEE Symposium on Security & Privacy, 2018 (preprint in 2017),
https://eprint.iacr.org/2017/406.pdf

[Kwon2017] Jae Kwon and Ethan Buchmann, “Cosmos: Network of Distributed Ledgers”, 2017,
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md

[Lamport1982] Leslie Lamport et al., “The Byzantine Generals Problem”, ACM Trans. Programming
Languages and Systems 4(3), pp. 382-401, July 1982,
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf

[Mattereum2018], “Mattereum: Smart Contracts for the Real World”, Mattereum homepage, last
accessed Feb. 13, 2018, https://mattereum.com/

[McConaghy2008] Trent McConaghy et al., “Automated Extraction of Expert Knowledge in Analog
Topology Selection and Sizing”, Proc. Intern. Conference on Computer-Aided Design (ICCAD), Nov.
2008, ​http://trent.st/content/2008-ICCAD-cad_synthesis_insight.pdf

[McConaghy2009] Trent McConaghy and Georges G.E. Gielen, “Globally Reliable Variation-Aware
Sizing of Analog Integrated Circuits via Response Surfaces and Structural Homotopy,” IEEE Trans.
Computer-Aided Design 28(11), Nov. 2009, ​http://trent.st/content/2009-TCAD-sangria.pdf

[McConaghy2015] Trent McConaghy and David Holtzman, “Towards an Ownership Layer for the
Internet,” ascribe whitepaper v1.03, June 24, 2015,
http://trent.st/content/2015-06-24%20ascribe%20whitepaper.pdf

[McConaghy2016] Trent McConaghy, “The DCS Triangle: Decentralized, Consistent, Scalable”, July
10, 2016, ​https://blog.bigchaindb.com/the-dcs-triangle-5ce0e9e0f1dc

33

https://en.wikipedia.org/wiki/ImageNet
https://infura.io/
https://ipfs.io/
https://ipld.io/
https://www.rand.org/pubs/research_reports/RR1478.html
https://en.wikipedia.org/wiki/Kelly_criterion
https://eprint.iacr.org/2016/889.pdf
https://eprint.iacr.org/2017/406.pdf
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
http://research.microsoft.com/en-us/um/people/lamport/pubs/byz.pdf
http://trent.st/content/2008-ICCAD-cad_synthesis_insight.pdf
http://trent.st/content/2009-TCAD-sangria.pdf
http://trent.st/content/2015-06-24%20ascribe%20whitepaper.pdf
https://blog.bigchaindb.com/the-dcs-triangle-5ce0e9e0f1dc

[McConaghy2018] Trent McConaghy, “Token Design as Optimization Design”, 9984 Blockchain
Meetup, Feb. 7, 2018, Berlin, Germany,
https://www.slideshare.net/TrentMcConaghy/token-design-as-optimization-design

[ModifiedGHOST2018] “Ethereum Whitepaper: Modified GHOST Implementation”, Ethereum Wiki,
last accessed Feb. 13, 2018,
https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation

[MongoDB2018] “MongoDB Atlas: Database as a Service”, last accessed Feb. 13, 2018,
https://www.mongodb.com/cloud/atlas

[Moor2003] James Moor, ed. ​The Turing Test: The Elusive Standard of Artificial Intelligence​. Vol. 30.
Springer Science & Business Media, 2003

[Nakamoto2008] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”, Oct 31, 2008,
https://bitcoin.org/bitcoin.pdf

[NuCypher2018] “NuCypher: Proxy Re-encryption for Distributed Systems”, NuCypher Homepage,
last accessed Feb. 19, 2018, ​https://www.nucypher.com

[OceanMkt2018] Ocean Protocol team, “Ocean Protocol: Reference Marketplace Framework”, 2018,
https://oceanprotocol.com/marketplace-framework.pdf

[OrbitDB2018] “OrbitDB: Peer-to-Peer Database for the Decentralized Web”, Github repository, last
accessed Feb. 19, 2018, ​https://github.com/orbitdb/orbit-db
[Parno2013] Bryan Parno et al., “Pinocchio: Nearly Practical Verifiable Computation”, Security and
Privacy (SP)”, Proc. IEEE Symposium on Security & Privacy, 2013,
https://eprint.iacr.org/2013/279.pdf

[Poon2016] Joseph Poon and Thaddeus Dryja, “The Bitcoin Lightning Network: Scalable Off-Chain
Instant Payments”, January 14, 2016, ​https://lightning.network/lightning-network-paper.pdf

[Poon2017] Joseph Poon and Vitalik Buterin, “Plasma: Scalable Autonomous Smart Contracts”,
August 11, 2017, ​https://plasma.io/plasma.pdf

[PoReq2018] Proof of Replication Technical Report (WIP) Protocol Labs,
https://filecoin.io/proof-of-replication.pdf

[Raiden2018] “What is the Raiden Network?”, last accessed Feb. 13, 2018,
https://raiden.network/101.html

[Randao2018] “RANDAO: A DAO working as RNG of Ethereum”, last accessed Feb. 17, 2018,
https://github.com/randao/randao

[Rodgers1985] David P. Rodgers, “Improvements in Multiprocessor System Design”, ACM SIGARCH
Computer Architecture News 13(3), pp. 225–231, ​https://dl.acm.org/citation.cfm?id=327215

[Rouviere2017] Simon de la Rouviere, “Introducing Curation Markets: Trade Popularity of Memes &
Information (with code)!”, Medium, May 22, 2017,
https://medium.com/@simondlr/introducing-curation-markets-trade-popularity-of-memes-informat
ion-with-code-70bf6fed9881

34

https://www.slideshare.net/TrentMcConaghy/token-design-as-optimization-design
https://github.com/ethereum/wiki/wiki/White-Paper#modified-ghost-implementation
https://www.mongodb.com/cloud/atlas
https://bitcoin.org/bitcoin.pdf
https://www.nucypher.com/
https://oceanprotocol.com/marketplace-framework.pdf
https://github.com/orbitdb/orbit-db
https://eprint.iacr.org/2013/279.pdf
https://lightning.network/lightning-network-paper.pdf
https://plasma.io/plasma.pdf
https://filecoin.io/proof-of-replication.pdf
https://raiden.network/101.html
https://github.com/randao/randao
https://dl.acm.org/citation.cfm?id=327215
https://medium.com/@simondlr/introducing-curation-markets-trade-popularity-of-memes-information-with-code-70bf6fed9881
https://medium.com/@simondlr/introducing-curation-markets-trade-popularity-of-memes-information-with-code-70bf6fed9881

[Salomon2017] David L. Salomon et al, “Orchid: Enabling Decentralized Network Formation and
Probabilistic Micro-Payments”, January 29, 2018 Version 0.9.1,
https://orchidprotocol.com/whitepaper.pdf

[Sasson2014] Eli Ben Sasson et al., “Zerocash: Decentralized Anonymous Payments from Bitcoin",
Proc. IEEE Symposium on Security & Privacy, 2014,
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf

[Schwartz2018]“Schwartz-Zippel Lemma: Probabilistic Polynomial Identity Testing”, Wikipedia, last
accessed Feb. 13, 2018, ​https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma

[Setty2012] Srinath Setty et al., “M. Making Argument Systems for Outsourced Computation
Practical (sometimes)”, Proc. Network and Distributed System Security, 2012,
http://www.cs.utexas.edu/users/richard/pepper-ndss12.pdf

[Setty2012b] Srinath Setty et al., "Taking Proof-Based Verified Computation a Few Steps Closer to
Practicality", Proc. USENIX Security Symposium, 2012,
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final26_0.pdf

[Setty2013] Srinath Setty et al., “Resolving the Conflict between Generality and Plausibility in
Verified Computation”, Proc. ACM European Conference on Computer Systems, 2013,
https://dl.acm.org/citation.cfm?id=2465359

[Simmons2017] Andrew Simmons, “Prediction markets: How betting markets can be used to create a
robust AI”, Sept. 13, 2017, ​http://dstil.ghost.io/prediction-markets/amp/

[SingularityNET2017] SingularityNET team, “SingularityNET: A Decentralized, Open Market and
Inter-Network for AIs,” Dec. 2017,
https://public.singularitynet.io/whitepaper.pdf

[Smolenski2017] Mike Smolenski, “Permissioned Blocks: A Protocol for Blockchain Privacy &
Confidentiality”, Dec. 2017,
https://github.com/autocontracts/permissioned-blocks/blob/master/whitepaper.md

[SoundExchange2018], SoundExchange homepage, last accessed Feb. 13, 2018,
https://www.soundexchange.com

[Spark2018] “Apache Spark: Lightning-Fast Cluster Computing”, Apache Spark homepage, last
accessed Feb. 13, 2018, ​https://spark.apache.org

[Syta2017] Ewa Syta et al., “Scalable Bias-Resistant Distributed Randomness”, Proc. IEEE Symposium
on Security & Privacy, 2017, ​https://eprint.iacr.org/2016/1067.pdf

[Teusch2017] Jason Teutsch and Christian Reitwießner, “A Scalable Verification Solution for
Blockchains”, November 16, 2017, ​https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf

[Teusch2017b] Jason Teutsch, “On decentralized oracles for data availability”,
Dec. 25, 2017, ​http://people.cs.uchicago.edu/~teutsch/papers/decentralized_oracles.pdf

[Thaler2013] Justin Thaler, “Time-optimal Interactive Proofs for Circuit Evaluation", Proc. Advances
in Cryptology, Springer, Berlin, Heidelberg, 2013,
https://link.springer.com/chapter/10.1007/978-3-642-40084-1_5

35

https://orchidprotocol.com/whitepaper.pdf
http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
https://en.wikipedia.org/wiki/Schwartz%E2%80%93Zippel_lemma
http://www.cs.utexas.edu/users/richard/pepper-ndss12.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final26_0.pdf
https://dl.acm.org/citation.cfm?id=2465359
http://dstil.ghost.io/prediction-markets/amp/
https://public.singularitynet.io/whitepaper.pdf
https://github.com/autocontracts/permissioned-blocks/blob/master/whitepaper.md
https://www.soundexchange.com/
https://spark.apache.org/
https://eprint.iacr.org/2016/1067.pdf
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
http://people.cs.uchicago.edu/~teutsch/papers/decentralized_oracles.pdf
https://link.springer.com/chapter/10.1007/978-3-642-40084-1_5

[Thomas2015] Stefan Thomas and Evan Schwartz, “A Protocol for Interledger Payments”, Ripple Inc.,
2015, ​https://interledger.org/interledger.pdf

[Trón2018] Viktor Trón et al, “Swarm Documentation”, Jan. 25, 2018,
https://media.readthedocs.org/pdf/swarm-guide/latest/swarm-guide.pdf

[Vu2013] Victor Vu et al., “A Hybrid Architecture for Interactive Verifiable Computation,” Proc. IEEE
Symposium on Security & Privacy, May 2013,
http://ieeexplore.ieee.org/abstract/document/6547112/

[W3C2018] “Semantic Web”, W3C Homepage, last accessed Feb. 19, 2018,
https://www.w3.org/standards/semanticweb/

[Webhook2018] “Webhook”, Wikipedia, last accessed accessed Feb. 19, 2018,
https://en.wikipedia.org/wiki/Webhook

[Wood2016] Gavin Wood, “PolkaDot: Vision for a Heterogenous Multi-Chain Framework”, 2016,
https://github.com/polkadot-io/polkadotpaper/raw/master/PolkaDotPaper.pdf

[Zeppelin_os2018] “zeppelin_os: Securely develop and manage any smart contract application”,
homepage, last accessed Feb. 19, 2018, ​https://zeppelinos.org/

[Zindros2017] Dionysis Zindros, “Trust is Risk: A Decentralized Trust System”, Aug. 1, 2017,
https://www.openbazaar.org/blog/trust-is-risk-a-decentralized-trust-system/

[Zurrer2017] Ryan Zurrer, “Keepers — Workers that Maintain Blockchain Networks” , Aug. 5, 2017,
https://medium.com/@rzurrer/keepers-workers-that-maintain-blockchain-networks-a40182615b66

[Zyskind2015] Guy Zyskind, Oz Nathan, and Alex Pentland, “Enigma: Decentralized Computation
Platform with Guaranteed Privacy”, arXiv (whitepaper), June, 2015,
https://arxiv.org/abs/1506.03471

14. Appendix: Extended Functionality
This section describes Ocean functionality that will not be in the initial core, but when deployed will
help make Ocean a much richer ecosystem for ontologies of knowledge and reputation.

14.1. Extended Functionality: Labels
If we want to organize data/services, we could “bucket” it into groups, or even organize it as a
hierarchy. But what if the dataset/service belongs to multiple groups? Labels overcome this. While
they are simple, they are highly useful. The power of labels and ontological mappings have long been
recognized for their value in both AI and data domains.

Ocean’s will have a curation market for ​labels​. Think of each label as having a registry of
datasets/services that fit that label; but then add incentive to curate the labels more strongly (via
curation market).

This enables users to flexibly choose labels for a variety of use cases, in an entirely market-based
approach:

● Labels for ​security and privacy​ needs. For example: “to follow GDPR, this data cannot leave
German soil”.

● Labels for ​AI usage​. E.g. “this AI training data has binary outputs”.

36

https://interledger.org/interledger.pdf
https://media.readthedocs.org/pdf/swarm-guide/latest/swarm-guide.pdf
http://ieeexplore.ieee.org/abstract/document/6547112/
https://www.w3.org/standards/semanticweb/
https://en.wikipedia.org/wiki/Webhook
https://github.com/polkadot-io/polkadotpaper/raw/master/PolkaDotPaper.pdf
https://zeppelinos.org/
https://www.openbazaar.org/blog/trust-is-risk-a-decentralized-trust-system/
https://medium.com/@rzurrer/keepers-workers-that-maintain-blockchain-networks-a40182615b66
https://arxiv.org/abs/1506.03471

● Labels for ​data shape.​ E.g. “this is streaming data”.
● Labels for​ hierarchies of data​. E.g. “this is farm data & streaming data”

This, in turn, enhances Ocean’s scalability across many data assets, moving from a single global pool
to a collection of local pools organized by the crowd. This is best exemplified by hierarchies of data,
such as subreddits of subreddits for data. We can use labels similarly for services. Ultimately, an
ontology of knowledge ​[W3C2018]​ about AI data and services emerges.

14.2. Extended Functionality: Stake Machines
Initially we will have a single Token Curated Registry (TCR) for “good” actors. But as Ocean grows, we
want to make it possible for actors to get promoted to new responsibilities such as being able to
curate a datasets with a particular label, or having greater governance responsibilities.

We can implement this with ​stake machines​ ​[DeJonghe2017]​. Stake machines marry TCRs with
Finite State Machines (FSMs). In a traditional Finite State Machine (FSM) ​[FSM2018]​, the machine
can be in one of many discrete states (represented as nodes), and can transition from one state to
another via a state transition function (represented as directed edges). A stake machine is an FSM
where the state transition function is ​staking-based​ using TCR mechanics.

In Ocean, the state relates to the actor’s reputation. So, for an actor to transition from the initial
“good actors” TCR to a next-stage TCR, that actor stakes to join the next-stage TCR and the actors
already in the next-stage TCR have the opportunity to challenge the actor.

Traditional TCRs have binary state (in or out); stake machines can have >2 discrete states; and
curation markets have continuous states.

15. Appendix: Addressing Key Goals in Token Design
The main goal of Ocean network is to deliver a large supply of relevant data/services: “commons”
data, priced data, and AI compute services. As previously discussed, we developed a set of questions
as key criteria to compare candidate designs against. ​Table 2​ describes the question / criteria (left
column) and how the token design addresses those criteria (right column).

Table 2: How Ocean Token design addresses key goals

Key Question

For priced data, is there
incentive for supplying
more?

Block rewards are a function of stake in a dataset/service. Actors
are incentivized to stake on ​relevant​ data/services as soon as
possible because of curation market pricing. The most obvious way
to get the best price then is to supply it.

For priced data, is there
incentive for referring?

Curation markets incentivize data referrals, because they signal
which is high quality data. If I’ve bet on a dataset, I’m incentivized
to tell others about it, as they’ll download it or stake on it, both of
which reward me.

For priced data, is there
good spam prevention?

No one (or at least few) will download low-quality data, i.e. spam.
Therefore no one is incentivized to stake on it in a curation
market. Therefore, while it can exist in the system (and not hurt
anyone) there is no incentive to stake on it.

37

For free data, is there
incentive for supplying
more? Referring? Good
spam prevention?

Same as priced data.

Does it support compute
services, including
privacy-preserving
compute? Do they have
incentives for supplying
more, and for referring?

Ocean’s core construction is a Proofed Curation Market, binding
cryptographic proofs with Curation Markets. For data, the main
proof is for data availability. But this can be replaced with other
proofs for compute, including privacy-preserving compute. In
doing so, all the benefits of data supply and curation extend to
compute services supply and curation.

Does the token give higher
marginal value to users of
the network versus
external investors?

Yes. Token owners can use the tokens to stake in the system, and
get block rewards based on the amount staked (and other factors).
This means that by participating in the system, they’re getting
their tokens to “work” for them.

Are people incentivized to
run keepers?

Yes. One only gets block rewards for data they’ve staked if they
also make it available when requested; making data available is a
key role of keepers.

Is it simple? The system is conceptually simple: its simple block reward
function is implemented as a binding of cryptographic proofs
*curation market, to form a Proofed Curation Market. It adds
ancillary affordances as needed, though those are changeable as
new ideas emerge.

Is onboarding
low-friction?

On-boarding for the actors registry, and for each dataset might
have been high because in each case there is a token-curated
registry that asks for staking and a vetting period. However, in
each case we have explicitly added low-friction alternative paths,
such as risk-staking.

.

16. Appendix: FAQs and Concerns
This section addresses frequently asked questions and concerns about Ocean.

16.1. Data Storage
Q: ​Where does data get stored?

A: ​Ocean itself does not store the data. Instead, it links to data that is stored, and provides
mechanisms for access control. The most sensitive data (e.g. medical data) should be behind
firewalls, on-premise. Via its services framework, Ocean can bring the compute to the data, using
on-premise compute. Other data may be on a centralized cloud (e.g. S3 ​[Amazon2018b]​) or
decentralized cloud (e.g. Filecoin ​[Filecoin2017]​). In both cases it should be encrypted.

This means that the Ocean blockchain does not store data itself. This also means that we can remove
the data, if it’s not on a decentralized and immutable substrate.

38

16.2. Data Protection Regulations
Q:​ What about data protection regulations, such as General Data Protection Regulations (GDPR)
which come into effect in Europe in May 2018?

A: ​Higher-level marketplaces will provide the necessary resources around data protection laws,
including GDPR. As part of the overall Ocean project, DEX is creating open-source software to
support this, and the related compliance and legals. It will be used as a reference marketplace that
other marketplaces can use as a starting point.

Ocean’s labels registry will create a bridge from the network technology level with the higher level
legals: people can curate labels on data assets such as “must meet GDPR”.

16.3. Data Escapes
Concern: ​You’re trying to sell data. But, someone else downloads it and then posts it for cheaper, or

even for free. In fact the system incentivizes “free” block rewards, because there will be more

downloads for something that’s free, versus paid.

A:​ The only way to post is to be in the registry of “good” actors, which can only be there by staking

themselves or by others risk-staking for them. If some actor is found to be using data that is not

theirs, then the contention mechanism is invoked, and the actor’s stake (or their voucher’s stake) is

lost. So, any gains an actor might have had for “escaping the data” evaporate because the actors

collectively have an incentive to be good actors, and they have a mechanism to take away the stake

of bad actors. If a data rightsholder is especially worried, they can also set permissions such that the

data never leaves the premises; rather, compute must be done locally. They do this at the cost of

virality due to the data’s openness, of course.

16.4. Curation Clones

Concern: ​You’ve published a new unique dataset into the commons, and have kicked off a curation

market. It’s popular, so you earn many block rewards and many others stake on it too, raising the

price of staking. Someone else sees the dataset’s popularity, so they​ re-publish​ the dataset and

started a brand new curation market, where they get significant stake in the market because they

were the early adopter. Then, others repeat this. In a short time, we have 50 curation markets for

the same dataset, hindering discoverability not to mention being unfair to the first publisher.

A:​ The main solution is the same as for the Data Escapes problem: in the registry of good actors, the

contention mechanism would be invoked and the misbehaving actor’s stake is lost. We can also

leverage local compute.

A complementary tactic is in the design of the bonding curve: make the price to stake in the curation

market ​flat ​to start with, rather than rising immediately. In this way the first 10 or 50 actors no

longer have an incentive to start their own curation market; rather they are incentivized to grow the

popularity of that collectively-owned curation market.

16.5. Elsa & Anna Attack

Concern: ​An actor stakes and publishes IP that they clearly don’t own, such as the Disney movie

“Frozen” featuring Elsa & Anna. As any parent of young girls would recognize, the asset quickly

becomes extremely popular. In other words, Elsa & Anna have bombarded the network. Because the

39

actor has staked on the asset and served it up when requested, they would have quickly earned a

tremendous amount of block reward tokens. Finally, the actor leaves the network, taking their

earnings with them (and none to the rights holder).

A: ​What’s the solution? Actually, the system would prevent the scenario above, as described in the

section on vetting IP​. In short: when an actor publishes IP, they must first get that IP vetted; and

during that vetting process all block rewards are held in escrow by the network until the appropriate

rights holder is identified.

16.6. Drops Supply When Stake is Lost

Q:​ When a misbehaving actor loses stake (drops in a dataset or service), where does that stake go?

A: ​We have a few options. We could burn the drops; redistribute them to other stakeholders in the
market; or give the stake to the winning challenger. We choose the last option, because it maintains
the same supply of drops which means simpler incentive dynamics; and it comes “out of the box”
with TCR designs.

16.7. Sybil Downloads
Concern: ​An actor puts a high stake in one data asset, then downloads it many times themselves to

get more mining rewards. This could be from their own single account, or from many accounts they

create, or in a ring of the actor and their buddies. This is bad for a second reason: it’s a giant waste of

bandwidth. This issue is analogous to the “click fraud” problem in online ads.

A: ​We don’t make rewards a function based only on the number of files accessed. Instead, we make

it a function of the number of bits accessed versus registered and the price paid for the data.

16.8. Registry Scaling
Concern: ​Typical token curated-registries don’t scale, with respect to the number of participants.

That is, actors in tokenized registries have diminishing returns for letting more people in. Once they

get to say 1000 people, it’s really not worth the risk to let anyone else in, the system is rich enough.

This is especially the case when there are rewards beyond just membership in the registry.

A: ​Have a have an additional mechanism to on-board: ​risk-staking​ (vouching) which has a direct

incentive to refer others, because the vouching party can get some of their block rewards. Therefore,

it keeps going and going. The new participants stay linked in a web-of-trust risk-staking framework.

16.9. Onboarding Friction
Concern: ​Typical tokenized registries need the user to stake in order to join; and must go through a
vetting period of e.g. 28 days. That means they must go and purchase the network’s tokens and then
wait before even participating.

A: ​We address this via the risk-staking mechanism, where existing actors are incentivized to onboard
new actors because they get block rewards for doing so (assuming the new actor stakes on
high-quality data or services).

16.10. Sybil Referrals
Concern: ​A malicious actor has many tokens. They risk-stake these tokens to refer in thousands of

people at once, and overtake the system by voting for a protocol update in their favor.

40

A: ​The risk for this attack is reduced with a large number of users in the system, because it will be

too expensive to risk-stake so many people. The only concern is when there is a smaller number

system users. However, because protocol governance is handed off gradually over time, by the time

it’s handed off to be exposed to this risk, there will either be a large number of users (then we’re ok)

or there won’t be yet and additional constraints could be introduced (e.g. only one referral per actor

per day). We can take actions to seed the network with a large number of relevant users, e.g. via

airdrops.

16.11. Sybil Membership Applications
Concern: ​If there are lots of applications at once, existing holders get swamped. They don't have the

bandwidth to properly review the applications.

A:​ The applicants need to stake tokens to apply. Token holders are incentivized to increase the

number of actors in the system, since it will grow the value of the token; therefore they might go to

great lengths to support growth. However, that might still have a breaking point. In this case, the

community might decide, off-chain, to throttle all applications and publicly state “we can only take ​x

applications per month, we will vote no to the rest”.

16.12. Staking Vs. Liquidity
Concern: ​To make a sale, a vendor must stake 1x the sale amount for a fixed time period. This affects

the overall velocity of tokens flowing through the system.

A: ​Our response has three parts.

“Work” mechanics.​ At first glance, Ocean may look like a proof-of-stake system. However, to get

block rewards, keepers actually have to do work in some cryptographically provable way, such as

making data or services available. This costs money / resources. Therefore people making lot of data

available and using expensive bandwidth will need to periodically sell tokens to finance their

operations. This ensures steady velocity of tokens. As an aside, this means that Ocean combines

proof-of-stake mechanics with proof-of-work.

Security / simplicity. ​We are reluctant to compromise on the “1x” mechanic because it compromises

security. A stake of <1x makes it easier for a bad actor to make money from acting badly. We could

use insurance or another mechanic, but 1x staking is simple.

Emergent loans. ​If the 1x hinders data vendors, an external loans market could emerge. People

could borrow money to be able to stake it; the interest rate could be based on the lender's

calculations of risk.

16.13. Rich Get Richer
Concern:​ A long-standing concern with Proof-of-Stake (PoS) systems is that stakeholders get

wealthier simply by having more tokens. As a result, many PoS systems have changed to where stake

is needed simply to participate in the network; and perhaps higher staking gives a more active role

like being a keeper node in Cosmos ​[Kwon2017]​.

A: ​“Rich get richer” is less of a concern for Ocean because of curation markets. Recall that stake in a

data curation market is not “just” the amount you initially staked, but also how many tokens you

would receive if you withdrew. Therefore, early adopters to a popular data or service asset will get

41

rewarded. For Ocean, it's not rich get richer, it's “curate data well” = “get richer”. A secondary

equalizing factor is using log10 on stake.

16.14. Pump-and-Dump on Drops

Concern: ​Recall that each AI dataset/service has its own token - its ​drops​ Ḍ, which are staked and

un-staked in the context of its corresponding curation market. In this scenario,

“pumping-and-dumping” is a concern. For instance, if someone stakes early in a curation market to

get Ḍ, then promotes that dataset/service to others (pumps), and finally sells their Ḍ at a big profit

and leaves everyone else hanging (dumps).

A:​ Overall, this may not be a significant concern because “active” Ḍ holders are actually earning

Ocean Tokens ​Ọ by making that service available when asked; they are getting ​positive marginal

benefits​ for staking Ḍ. If assuming an efficient market, over time we’d end up with only active Ḍ

holders. That said, we might still see this type of behaviour from bad actors. Possible mitigations

include:

● Have one bonding curve for buying Ḍ and a second ​one for selling Ḍ, where the sell price is
lower than buy price.

● When selling, use a Dutch auction: the sell price is the ​previous ​buy price, not the current
price.

● Have minimum staking periods. For example, the requirement to hold any Ḍ for at least a
week.

In general, we simply want to add friction on the sell side in a way that good actors won’t mind, and

bad actors will leave. Overall, it’s clear that if pumping-and-dumping becomes a real issue, we have

tools to address it.

16.15. Block Rewards for On-Premise Data
Concern:​ If a data asset is on-premise, then only the actor storing that data asset can “keep” it and

earn block rewards for making it available. Others who might believe that it’s valuable may stake on

it in a curation market (and sell that stake at a gain later); but they cannot make it available and

therefore cannot get block rewards for it. This also means there is no automatic CDN functionality,

so retrieving that data will become a bottleneck if it becomes popular.

A:​ The answer is twofold: privacy and markets.

Privacy.​ If the reason to store the data on-premise is privacy, then it should stay that way! Privacy

trumps access convenience and CDN scaling.

Markets. ​If the actor storing that data asset sees that it becomes popular, they are incentivized to

spread its usage more. The way to do that is to remove themselves as a bottleneck, by letting other

actors store the data and make it available in CDN scaling fashion.

There’s a variant of this concern when we bring in on-premise compute. With on-premise compute,

anyone ​can play a keeper for data that is on-premise, where they play middleman between the party

that’s hosting the data on-premise and the buyer of the data. However the keeper won’t be able to

make the data available if the data host doesn’t make it available. In this case, the discussion of the

42

previous section still holds: the host won’t either make it available because of privacy, or they will

make it available because of market forces.

17. Appendix: Decentralization, Consistency, and Scale

This section provides context on the constraints in design of the Ocean blockchain.

17.1. Decentralization and Fault Tolerance
There are three levels of fault tolerance in increasing levels: crash faults, Byzantine faults, and Sybil
attacks. Ocean must handle them all. Let’s elaborate.

Crash tolerance​ is when a network can tolerate crash faults, such as hard drives failing. This is
acceptable in environments when one is trusting a single administrator of the system.

Byzantine fault tolerance (BFT).​ In a blockchain setting, each full node is effectively another
sysadmin. We need to be tolerant to several of these sysadmins acting maliciously against the
system; this is modeled as assuming they will attempt arbitrary behavior on the system. A BFT
system handles such faults; typically malicious nodes out of a population of f ≥ 3fn + 1
[Lamport1982]​. In traditional BFT settings, the participants are all identified by their public keys.
Each participant gets one vote whether a transaction or block of transactions enters the system.
Each sysadmin has their list of allowed public keys, aka the “keyring”. One needs ​permission ​to get
on this list using some mechanism not built into the network, such as knowing the right person.

Sybil tolerance.​ Ocean needs to be ​permissionless​, i.e. where anyone can run a node in the network
without getting approval from some list. One cannot do this by simply making the keyring public and
editable, because a malicious actor could come and replicate themselves many times, thereby
swamping the votes and overtaking the system. This is a “Sybil attack”; what we call “attack of the
clones”. One solution is to change from “one actor one vote” to some other resource like “one
electron one vote”, as in Bitcoin’s a Proof-of-Work setup ​[Nakamoto2008]​, assuming equal hashing
efficiency. Or, traditional Proof of Stake setups give “one token, one vote”. These Sybil-tolerant
mechanisms can be framed as ​power protocols​ which capture ​relative ​power for each actor
[Filecoin2017]​. Depending on the consensus protocol, a system can tolerate up to malicious1%5

power. ​Figure 17​ illustrates.

Figure 17: Modeling faults - Byzantine and Power protocols. Actors (defined by public keys) have

equal votes in a Byzantine setting but not Power protocol setting.

17.2. Consistency / Finality
A practical definition for ​consistency ​in a blockchain setting is: ​it’s consistent if it prevents double
spends​. That is, it won’t let me successfully send the same tokens to two different addresses at once.
If I attempt this, the transaction will not go through.

43

We can frame whether a transaction has gone through in a deterministic “sure” way, or a more
probabilistic way - some protocols yield ​finality ​while others have ​statistical convergence​ under
polynomial attacker assumptions. In this context, a blockchain is actually a directed acyclic graph
(DAG), but for finality the algorithm must decide which fork of the directed acyclic graph is the main
chain. This could be with the longest chain rule as in Bitcoin ​[Nakamoto2008]​, a weighted approach
like modified GHOST protocol in Ethereum ​[ModifiedGHOST2018]​, or otherwise.

Figure 18: Finality in context of a blockchain - which fork is the main chain?

17.3. Scale and the DCS Triangle
It’s well understood that Bitcoin and most other public blockchains have scaling issues. For example,
the core Bitcoin network has <10 transactions per second. Systems so far have improved scaling by
giving up consistency (e.g. ​[IPFS2018]​) or loosening up decentralization (e.g. ​[BigchainDB2018]​).

Overall, there is a tradeoff among ​d​ecentralization, ​c​onsistency, and ​s​cale - the ​DCS Triangle
[McConaghy2016]​. However, we see this more as an engineering challenge than a fundamental
constraint, and are hopeful about efforts to improve scaling while retaining sufficient consistency
(preventing double spends) and decentralization (Sybil tolerance).

Scaling efforts include:

● Improving the consensus protocol​. Examples: Ouroboros ​[Kiayias2017]​, Dfinity ​[Hanke2018]​,
Red Belly ​[Crain2017]​, OmniLedger ​[Kokoris2018]

● Sharding ​so that each node only has a fraction of the compute or data workload. Example:
[EthSharding2018]

● Independent networks / chains​ with “​glue​” connectors. Examples: Interledger
[Thomas2015]​, Cosmos ​[Kwon2017]​, PolkaDot ​[Wood2016]​, Plasma ​[Poon2017]​, TrueBit
[Teusch2017]​)

● “Layer 2” payment channels.​ Examples: Lightning ​[Poon2016]​, Raiden ​[Raiden2018]

18. Appendix: Computational Integrity
This section describes some popular approaches to computational integrity, as part of Ocean’s
overall services integrity framework.

18.1. Probabilistic Checkable Proofs (PCP)

PCP implies that a verifier can send any computation task and input to a prover and the proverC i

outputs . The proof runs in a randomized way through a set of interactions such that if is correcto o

the verifier will set to True else the verifier will reject all interactions but with bounded error. This
error means that there is a small or negligible probability that the verifier could mistakenly view the
wrong answer. What distinguishes the PCP protocols is the availability of compilers, as well as the

44

concrete efficiency of verifiers, but these systems are limited to small executions, and are extremely
expensive. It might be useful only for special purpose applications.

In PCP frameworks, the computations are represented by Boolean circuits (AND, OR, and NOT gates).
Because of the property of turing completeness in boolean circuits, it is easy to describe any
deterministic computation/verification using boolean circuits. Thus the verifier will submit the circuit

and inputs to a prover. The prover executes the circuit and produces a “claim” or, i , ... , ii 1
2

N C
︿

output including the transcript which contains the assignment for each wire in the circuit aftero

computation. The verifier can do the correctness check of the circuit output by executing any of the
gates using the transcript and inputs. The prover, however, shouldn’t send all transcripts to the
verifier to satisfy the property of zero-knowledge. Therefore, the verifier queries particular locations
in the prover’s transcript. PCP can be classified into three approaches.

1. Heuristic interactive based approach ​uses higher random order of messages between

verifier and prover where verifier sends a lot of queries to prover then gets the returned
results. Therefore the verifier checks if there is any contradiction among queries results.
Examples for interactive proofs such as CMT [​Cormode2012​], Allspice [​Vu2013​], and Thaler
[​Thaler2013​].

2. Commitment based approach ​has two rounds. In the the first round, the verifier enforces
the prover to commit particular transcript or proof. In the second round, the verifier queries
different locations in the commited proof. Examples are Pepper [​Setty2012​], Ginger
[​Setty2012b​], and Zaatar [​Setty2013​].,

3. Encrypted queries approach​ is a more theoretical approach where the verifier encrypts the
queries beforehand, asks locations, retrieves prover’s results and checks them using PCP. In
the last few years there has been development and implementation activities such as
Pinocchio [​Parno2013​].

18.2. Zero-Knowledge Proofs

Zero-knowledge based protocols preserve the privacy of inputs as well as providing transparency to
multiple parties in the system. For instance, if a prover sends a transaction to a blockchain network,
it might be better if the prover doesn’t reveal any information about a particular transaction to the
verifier, and also to keep the verification time small. Overall, the goal of zero-knowledge proofs is to
provide the integrity, privacy, and succinctness (the proof can be verified in time t). These properties
can be achieved using polynomials, pairing-based proof systems, and homomorphic encryption.

A zk-SNARK ​[Bitansky2012] ​is a variant of a zero-knowledge proof that enables a prover to succinctly
convince any verifier of the validity of a given statement and achieve computational zero-knowledge
without requiring interaction between the prover and any verifier. zk-SNARK stands for
“Zero-Knowledge Succinct Non-Interactive Argument of Knowledge”. It uses homomorphic
encryption or hiding that concretely hide the actual data even after performing addition, or
multiplication operations using the modulo and discrete logarithms. For instance, if “x, y” are two
numbers, we can perform the addition and multiplication on modulo as follows:

A = x ​mod m​ (1)
B = y ​mod m​ (2)

A + B = (x + y) ​mod m

45

A . B = (x + y) ​mod m

The ​discrete logarithm term means that we need to apply the modulo operation on the logarithm i.e
X = log2 8 ​(mod 13)​. The word discrete refers to a discrete group {1,..,p-1} where p is a modulus and
only an integer number. The primitive roots or generators for a modulus can generate all elements in
the discrete group as shown below. If there is a loop where the remainder is repeated after a cycle,
this group is called a cyclic group for a particular generator. For example, 3 and 5 are called
generators ​for the group {1,...,7}, and is a cyclic group because it repeats itself every 7 steps, as
shown below in the following table:

mod 7 remainder bx =

Table 3: Generators

b b^1 mod 7 b^2 mod 7 b^3 mod 7 b^4 mod 7 b^5 mod 7 b^6 mod 7 b^7 mod 7

1 1 1 1 1 1 1 1

2 2 4 1 2 4 1 2

3 3 2 6 4 5 1 3

4 4 2 1 4 2 1 4

5 5 4 6 2 3 1 5

6 6 1 6 1 1 1 6

If the modulus is at least greater than 300 digits, calculating the discrete logarithm will be considered
as computationally expensive/hard to find the valid exponent. The cyclic group is the basis of
discrete logarithm crypto systems where refers to cyclic group for modulus p. The * means that Z*

p

the cyclic group starts from 1 to p-1. Moreover, zk-SNARK relies on Polynomials to define the
computations. Polynomials are sum of multiple terms with different exponents. For example, Lines
are polynomials with degree (the largest exponent) 1. For two polynomials, they can intersect in less
than or equal to ​N points, where ​N is the degree of polynomial. Polynomials have a property known
as Schwartz-Zippel Lemma ​[Schwartz2018] in which “[f]or multiple polynomials of degree ​N ​they can
agree on at most N ​points”. This means that If the prover (Alice) is able to compute a puzzle in terms
of a polynomial language, the verifier (Bob) will be convinced by evaluating a small, randomly chosen
point in this polynomial.

46

Figure 19: Using polynomials, homomorphic encryptions and pairing

As shown in ​Figure 19​, the protocol preserves the blindness of computations, where the prover has
no clue about the inputs and the verifier doesn’t learn anything about the computation itself. But
what could happen if Alice doesn’t follow the protocol and she sends some cheated results. What
assumptions can guarantee that she will send the right polynomial evaluation. The key point is to use
pairing-based cryptography which assumes that Bob sends encoded, randomly chosen elements
((​a​1​,​b​1​), (​a​2​,​b​2​), …, ​a​d​,​b​d​) using pair. For each coefficients tuple (​a​i​,​b​i​), the pairing between two α

elements should be computationally expensive in order to hide the prover’s secret (polynomial). The
role of Alice is to send her results encoded with the same pair with small negligible error over α

Bob’s choices.

The question now is how to convert a typical computation into a polynomial’s world? The answer is
using Quadratic Arithmetic Program (QAP) [​Gennaro2013​]. To keep the zero-knowledge maintained,
the prover masks the polynomials using random shift in which the verifier accepts the statement
without revealing any information about the computation/polynomial. Zcash ​[Sasson2014] uses
zk-SNARK as a proof system for private transactions. The pairing, key generation, and polynomials
setup is called the trusted setup because you have to trust the party who is generating those keys
and hidden parameters, as well as destroying them after computation.

18.3. Multi-party Computation

Secure multiparty computation (MPC) addresses the problem of jointly computing a function among
a set of mutually distrusted parties. It has a long history in the cryptographic literature, with its
origins being found in literature in the mid 1980s. The basic scenario is that a group of parties wish
to compute a given function on their private inputs, while still keeping their inputs private from each
other. The goal is that the output of the protocol is just the value of the function, and nothing else is
revealed. In particular, all that the parties can learn from one another is what they can learn from
the output and their own input.

47

Informally speaking, the most basic properties that a multi-party computation protocol aims to
ensure are:

● Input privacy ​- The information derived from the execution of the protocol should not allow
any inference of the private data held by the parties, except for what is revealed by the
prescribed output of the function; and,

● Correctness - Adversarially colluding parties willing to share information or deviate from the
instructions during the protocol execution should not be able to force honest parties to
output an incorrect result.

Secure multiparty computation can be leveraged to obtain a new paradigm of security: encryption of
data while in use. For example, consider the case in which Alice holds an encryption key and Bob
holds an encrypted database, and the parties wish to run an SQL query on the database without ever
decrypting it. This exact problem can be cast as a two-input function, and thus can be securely
computed. In fact, in this case input privacy means that the result of the SQL query is revealed and
nothing else! Thus, SQL queries are computed while the database is encrypted, thereby keeping the
database secure, even while it is being used.

19. Appendix: Data Integrity
This section describes some popular approaches to data integrity, as part of Ocean’s overall services
integrity framework.

19.1. Data Availability via Proof-of-Space-Time (PoST)

Filecoin ​[Filecoin2017]​ introduced the notion of PoST. We can use that directly in Ocean. However,
that solution is overkill for our needs, as we do not need to prove that the data was stored uniquely
over time. We just need to prove that the correct data was made available at this point in time. We
do not care where it came from; unlike Filecoin, it’s ok if it was served up from S3 copy at the last
minute. That said, PoST is coming, and data on the Filecoin network is then a good fit for Ocean.

We can expect similar proofs coming from other decentralized storage networks, such as Ethereum
Swarm ​[Trón2018]​.

19.2. Data Availability via Dedicated PoW Blockchain

Teusch recently introduced a new approach for data availability ​[Teusch2017b]​. It uses a dedicated
PoW blockchain where each keeper must actually promise to serve up each dataset. This means that
each keeper is asked to perform a tremendous amount of work. However, it’s a starting point; more
efficient approaches are coming . 10

19.3. Data Availability via Challenge-Response

This is another possible approach that has potential to be more efficient. However, we add a
disclaimer that this is a work-in-progress and will need much deeper vetting.

In this approach, the receiver can contend by querying more senders and penalizing the initial
sender if the initial sender is not in the majority. The party found to be wrong loses stake.

Here is the protocol:

10 Personal communication with J. Teusch, Jan. 2018

48

1. The receiver issues a “contention request” and posts stake.

2. The network (keeper nodes) randomly chooses two more providers of the data; each of
which must make the data available.

3. The network computes a random seed S, and sends S to both initial provider, the two new
providers, and to the receiver.

4. Each provider uses S to select a subset of the data, and compute the hash of that subset, and
returns the result to the network.

5. From that the network determines whether the receiver was lying (or wrong), initial sender
was lying, or other. Whoever is lying (or wrong) loses stake.

a. Receiver was lying (or wrong) if the initial sender hash lines up with at least one
other sender.

b. Otherwise, initial sender was lying (or wrong) if hash of other two senders lines up,
and does not line up with initial sender.

c. Otherwise, one of the new providers was lying (or wrong); in this case the network
randomly selects two more providers of the data, and re-initiates the process.

6. If there is still no resolution after 6 repeats, the contention stops and no one loses stake.
This might happen, for example, if there are a small number of providers of that data asset.

This protocol is a bit like TrueBit’s challenge-response mechanism. However, it has fewer constraints
because it does not need to find the instruction that went awry; therefore it has less complexity.

19.4. Data availability via Proof-of-Replication (PoRep)

Proof of Replication [​PoRep2018​] provides strong proof of retrievability and strong defense against
data generation attack (A prover uses random seed to generate junk data rather than storing the
actual data). The proof has two phases, the setup phase, and challenge phase. The setup phase
returns a unique identifier for replica with an optional commitment. This phase includes slow
encoding and fast decoding (verification) that is based on ​verifiable delay functions​. The Challenge
phase includes prove step and verification step. The prove step that takes challenge C and generates
proof of storage R and the verification step takes the challenge, data identifier and commitment
then outputs accept or reject.

What distinguishes this proof is that even if an adversary passes the verification step this implies that
there is some entity that the adversary communicates with where he can extract the original data
which implies the proof of retrievability. Moreover, PoRep preserves the proof of storage using
prover state where two replicas can be stored in terms of snapshots. A verifier takes the prover
state, splits it into two parts and from each of which the prover can get the original data. This is
relying on the cryptography perspectives where each of data replica is XORed with the hash of the
other replica then the whole data are encrypted and stored in one state. Also, the proof uses a
strong encoding approach called Depth Robust graph which provides data availability in case of data
deletion.

49

20. Appendix: Block Rewards Schedule
The overall supply of Ocean Tokens (​Ọ) is fixed. 55% of Ocean Tokens are pre-mined, to build Ocean
software (e.g. with developer bounties), incentivize the community, and more. The remaining 45%
are for block rewards.

The block rewards schedule is:

(H , t) 1 (0.5)F = − t/H

where

● ​is the fraction of all block reward tokens that have been released after​ ​years(H , t)F t

● is the half-life, in years. Half-life is the time taken for 50% of remaining supply to beH

released.

We use a half-life of ten years, i.e. =10. This is longer than most comparable systems, because itH

can take several years for internal enterprise processes to prepare their data assets for sharing; we
want to give them breathing space.

Figure 20​ and ​Table 4​ illustrate the percentage of mining tokens released over time.

Figure 20: % mining tokens released over the next 50 years

Table 4: % mining tokens released over the next 150 years

Years 0 1 2 5 10 25 50 100 150

% Released 0.0% 6.7% 12.9% 29.3% 50.0% 82.32% 96.88% 99.90% 99.9969%

% Left 100.0% 93.3% 87.1% 70.7% 50.0% 17.68% 3.13% 0.10% 0.0031%

50

