
Top-Down? Bottom Up?
A Survey of Hierarchical
Design Methodologies

Trent McConaghy

@trentmc0

Pragmatic Ways to View AI,
by Example

Classification, in 2D

Salary

Age

Salary

Age

Didn’t pay

Paid bills

Credit profile:

Regression, in 1D

age

job
satisfaction

age

job
satisfaction

Regression, in 2D

How: Polynomials, splines, neural networks, support vector
machines, Gaussian process models, boosted trees, … [many refs]

Symbolic Regression (SR)
(Like regression, but output a symbolic model too)

Y

X

Symbolic model:
y=50.2 + 9.1 • x
+ 3.2 • max(0, x2)

Y

X

[e.g. McConaghy 2005;
McConaghy 2011]

AI Has a Toolbox of Ways to Solve…

•Classification – Fraud detection, spam filtering …
•Regression – Stock prediction, sensitivity analysis …
•Whitebox regression – Scientific discovery …
•Optimization – Airfoil design, circuit simulation …
•Structural synthesis – Analog synthesis, robotics …
•Pattern recognition – Face recognition, object recog …
•System identification – Scientific discovery …
•Ranking – Web search, ad serving, social discovery …
•Control – Auto-driving autos, spacecraft trajectories …
•…

AI Sub-fields

• machine learning
• neural networks
• evolutionary computation
• fuzzy logic
• data mining
• artificial general intelligence
• pattern recognition
• ..
• (nee) nonlinear programming
• (nee) databases
• ..

AI Sub-fields of sub fields

• machine learning + neural networks
– recurrent neural networks
– sparse linear regression
– deep learning
– ..

• evolutionary computation
– evolutionary programming, evolution strategies
– genetic algorithms
– genetic programming

• ..

Genetic Programming (GP):
A branch of a branch of AI

But a super-cool one..

Evolution

WTF?

Hornby & Lohn 2005

GP for SR

“A function is a tree”
f(x) = 4.8*x3 + √x2

4.8

√*

x2

+

x3

Searches through the space of trees:

1. Initial random population; evaluate

2. Create children from parents via operators; evaluate

3. Select best; goto 2

GP for SR: Crossover Operator

SR with Vanilla GP – Koza 1991

[Koza1992]

SR With Fancier GP – McConaghy 2005

Circuit synthesis with GP – Koza 2001

Circuit synthesis with GP – McConaghy 2005

Synthesis of jewelry – Hornby 2011

Let’s Get Ambitious!
SCALE

Auto-design a piston?

Evolution?

Auto-design a car?

Evolution?

How do you evolve a 5K-part car?

How do you evolve a
10G-part chip?

Ref. 1st Preamp 2nd Preamp Comp. NAND ROM

b0

b5

b6

b7

Latch

vin_minvin_plus

clk

G
R

A
Y

 C
O

D
E

R

S
/H

How do you evolve a
37T cell animal?

• Simple

• What 99% of optimization does

• But, doesn’t scale

• Yes, massive compute helps a lot. Eg deep learning

• But even for that: what about a 10x larger net?
1000x?

Approach the Design “Flat”?

Top-Down Design? How, Specifically?

Hierarchy!

Hierarchy in a Circuit

Bottom-up Design? How, Specifically?

Hierarchy! Bringing Method to the Madness

system

SB 1.1 SB 1.2 SB 1.m SB 2.1

subblock 1 subblock 2 subblock n

• Divide, conquer, stitch it back together

• Difficulty(design) ≈ Difficulty(hardest block)

Hierarchical Design Methodologies

system

SB 1.1 SB 1.2 SB 1.m SB 2.1

subblock 1 subblock 2 subblock n

• Target behavior of each sub-block is well defined

• Design involves

• A way to estimate performance of a candidate block

• A way to search each sub-block

• A way to stitch together the blocks

• Many possible ways!

A key requirement: we need a way to estimate
performance of each sub-block

• Input: design parameters (e.g. device sizes)

• Output: performance metrics (e.g. power, …)

• Higher-level blocks are lower fidelity (to simulate faster)

flat top-down
constraint-driven

design space organization & traversal

Top-Down Constraint-Driven Design

SystemSystem

constraints

Top-Down Constraint-Driven Design

SystemSystem design

Subblock 1 Subblock 2
Subblock 1 Subblock 2 Subblock n

constraints

con.con.con.

• Step 1: map specifications down the hierarchy (via search)

Top-Down Constraint-Driven Design

System

SB 1.1 SB 1.2 SB 1.m SB 2.1

System design

Subblock 1 Subblock 2
Subblock 1 Design Subblock 2 Design Subblock n Design

SB 1.1 SB 1.2 SB 1.m SB 2.1

constraints

con.con.con.

con. con. con. con.

Top-Down Constraint-Driven Design

System

SB 1.1 SB 1.2 SB 1.m SB 2.1

System design

Subblock 1 Subblock 2
Subblock 1 Design Subblock 2 Design Subblock n Design

SB 1.1 SB 1.2 SB 1.m SB 2.1

constraints

con.con.con.

con. con. con. con.

Top-Down Constraint-Driven Design

System

SB 1.1 SB 1.2 SB 1.m SB 2.1

System design

Subblock 1 Subblock 2
Subblock 1 Design Subblock 2 Design Subblock n Design

SB 1.1 SB 1.2 SB 1.m SB 2.1

Verify

Verify Verify

• bottom-up verification to verify performance against
specifications

Top-Down Constraint-Driven Design

System

SB 1.1 SB 1.2 SB 1.m SB 2.1

System design

Subblock 1 Subblock 2
Subblock 1 Design Subblock 2 Design Subblock n Design

SB 1.1 SB 1.2 SB 1.m SB 2.1

constraints

con.con.con.

con. con. con. con.

• What happens when constraints cannot be met?
• General heuristic: backtrack

flat top-down
constraint-driven

manual or
semi-auto
feasibility
modeling

design space organization & traversal

flat top-down
constraint-driven

manual or
semi-auto
feasibility
modeling

automatic
bottom-up
feasibility
modeling

design space organization & traversal

Feasibility modeling bottom-up
• Model feasible performance space of a design

• For entire range of design parameters

• E.g. for a car: “can have 200mph top speed and 20 mpg
separately but not together”. Represent this continuously.

Top-down constraint-driven design

• Pros:

• Scale! (Compared to flat)

• Feasible runtime

• Can re-use feasibility models of building blocks

• “Natural choice” for advocates of top-down design

• Cons:

• Need a way to know what performance combinations of
sub-blocks are feasible

• Once feasibility modeling is done, still need to do top-down
steps (i.e. optimization at each node in hierarchy)

flat concurrenttop-down
constraint-driven

design space organization & traversal

Concurrent hierarchical methodology

System

SB 1.1 SB 1.2 SB 1.m SB 2.1

Subblock 1 Subblock 2 Subblock n

optimize all at once via glue constraints

• Pros: an alternative to “flat”

• Cons: scales badly; more complex than “flat”

flat concurrenttop-down
constraint-driven

bottom-up
multi-

objective

design space organization & traversal

Multi-objective bottom-up design (MOBU)

system

SB 1.1 SB 1.2 SB 1.m SB 2.1

subblock 1 subblock 2 subblock n

• Pareto front of a lower level block is “dimensions” in the design
space of each layer that uses it

• Effectively “compresses” lower level design spaces into the
meaningful part (i.e. into the tradeoffs)

• Ref Eeckelaert et al 2005

MOBU Example #1

MOBU Example #2

Multi-objective bottom-up design (MOBU)

• Pros:

• Feasible runtime

• Provides system level tradeoffs

• Can re-use multi-objective tradeoffs of building blocks

• “Model” of tradeoffs is simply the discrete designs themselves

• Once once top-level tradeoffs are known, the designs already exist
too. No need for a subsequent top-down sizing

• Cons:

• No full model of feasibility, just of tradeoffs

• Cannot refine designs precisely, the way that top-down does

How do you
evolve a 37T cell

animal?

flat concurrenttop-down
constraint-driven

bottom-up
multi-

objective

design space organization & traversal

bottom-up
ossification

Bottom-up Ossification

system

SB 1.1 SB 1.2 SB 1.m SB 2.1

subblock 1 subblock 2 subblock n

• Two levels at a time are evolving

• Then lower level’s mutation rate →0 (ossifies), and a new
upper level emerges

Bottom-up Ossification

system

SB 1.1 SB 1.2 SB 1.m SB 2.1

subblock 1 subblock 2 subblock n

• Two levels at a time are evolving

• Then lower level’s mutation rate →0 (ossifies), and a new
upper level emerges

Conclusion

• Hierarchical design methodologies enable ridiculously
complicated designs

• In machine learning

• And in nature!

• They are structured, not ad-hoc

• Top-down constraint-driven

• Multi-objective bottom up

• And more

• Are you ready for 1000x larger nets?

Trent McConaghy

@trentmc0

Survey / further reading
• Georges Gielen, Trent McConaghy, and Tom Eeckelaert,

“Performance Space Modeling for Hierarchical Synthesis of
Analog Integrated Circuits”, Proc. Design Automation Conference,
2005. http://trent.st/content/2005_DAC_hierarchy.pdf

• For further references, see references of that work

