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Mysteries of the
universe..

Is Deep Learning
cool or what?

' Hro'w does Google find
furry robots?




What is technology anyway?



Technology




Technology
The Exciting New F* ("Fork Fan”)

Designed by World Renown Entrepeneur: Rod Ryan

Cools down all those “too hot” to eat
foods before they get to your mouth!

Never burn your tounge again!
Go ahead, be in a hurry.

Never wait for your
food to cool down
ever again.

Featuring:
* High Tech Ergonomic Design
* Two Speed “Whisper Quiet” Fan
* Right and Left Handed Compatible

* Stainless Steel Anti-Corrosion Matenals
* Dishwasher Safe!

“This is the BEST new kitchen innovation / have ever seen! Ideal for prison food!” Martha Stewart

modameic 2ibcarthlsnk.




Technology




Technology — Alternate Definition

“We can say that solving least-squares
problems ... is a (mature) technology, that can
be reliably used by many people who do not
know, and do not need to know, the details.”

e Boyd and Vandenberghe, Convex Optimization, 2004
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On becoming a “too

e Long time standard tools: LS regression, matrix
inversion, FFT, SQP, SAT solvers, CLP, ...

e Recent standard tool: convex optimization —
became popular in the late 90s. “It just works.”

e GP was popularized in the early 90s
— And is not a standard tool (for many reasons)

e Deep learning became popular in the 10s

— And is not standard tool (for many reasons)



Summary:
Aiming for SR* as a Technology
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Summary of Goal
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A (Re) Introduction to
Regression



1D Linear Least-Squares Regression




1D Linear LS Regression

Many possible linear models!




1D Linear LS Regression

Find linear model that
minimizes > (yhat-y.)?
for all i in training data




1D Linear LS Regression

Find linear model that
minimizes 3 (yhat.-y,)?

That is:

[wy, w,]* = argmin >(yhat.-y.)?
where yhat(x,) = wy + w, * x4




1D Linear LS Regression

y=1.1+2.3*x,

l.e. wy=1.1, w;=2.3

Found with “least-squares learning”
(amounts to =matrix inversion)




1D Quadratic LS Regression

[wy, Wy, Wy ]* =argmin >(yhat.-y.)?
where yhat(x,) = wy + w; * X, + wy; * x,?

NSNS

We are applying linear (LS) learning on
linear & nonlinear basis functions. OK!




1D Nonlinear LS Regression

[w,, Wy, W, ]* =argmin Y (yhat.-y,)?
where yhat(x,) = wg + w; * x; + wg * sin(x,)

e

We are applying linear (LS) learning on linear &
nonlinear basis functions. OK!
e i




2D Linear LS Regression

[wy, Wy, W,]* = argmin >(yhat.-y.)°
where yhat(x) = wy + w; * x, + w, * x,




LS Regression

1C
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2D Quadrat

[Wo, Wy, Wy, Wy, Wy, Wo,]* =argmin 3 (yhat.-y.)?

where yhat(x) = w,
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Generalized Linear Model (GLM)

Generalized linear model (GLM) of B basis functions.
yhat(x) = wq+w, * f (x) +w, * f,(x) + ... + wy * f3(x)

Just treat each basis function as an input variable, and LS-learn!
Examples:

® vhat(x,) = wy+ w; * x, +wy, * x,2

e yhat(x;) = wy + w; * x, + w, * sin(x,)

e yvhat(x) = wy+ wy * xg + Wy * X + Wy, X0 + Wy, ¥ X * X,

e polynomials, SVMs, FFNNs, many GP SR. Universal approximator!
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Constraint on LS Regression?
(1D Example)

> K 1 Sample — too few

Xq

g / 2 Samples — enough

X1

General rule?



Constraint on LS Regression

General Rule:
e |If n variables, need N 2 n+1 training samples

Examples:
1D Lin: [w,, w,]* 2D Quad [Wy, Wy, W, Wy, Wy, Wy, ¥
=argmin (yhat.-y.)? = argmin >(yhat-y.)?

Needs > 1+1 = 2 training samples. Needs > 6+1 = 7 training samples.




LS Regression On High Dimensionality

Consider 10,000 basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes! (As long as 210,001 samples)*

Consider 1M basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes! (As long as 21M+1 samples)*

*and no memory issues etc



Regression in 10°D ?

How?? (and why??)



90 turn...
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Q: How does Google (accurately) find furry robots?
A:
1. Treat images as 1000x1000 = 10° input variables (!)

2. Do regression on “known” images (furry vs. non)

3. Rank the other images. Easy! ©

[NIPS 2010]



Q: State of the art in image search? (NIPS '09)
A: BHALR!*

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.

Then apply linear regression or classification



Q: State of the art in image search? (NIPS '09)
A: BHALR!*

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.

Then apply linear regression or classification

But 100 << 1M. HOW ??



Linear Regression

Q: What happens when samples N - # variables n ?




Linear Regression

Q: What happens when # samples N = # variables n ?
A: Model gets more sensitive!

|




Linear Regression

Q: What happens when # samples N - # variablesn ?
A: Model gets more sensitive!

|




Linear Regression

A model that’s “less sensitive”




Linear Regression

A model that’s “less sensitive”

Smaller |dy/dx| means less sensitive

|




Linear Regression
A model that’s “less sensitive”

Smaller |dy/dx| means less sensitive
i.e. given yhat(x,) = wy + w, * x,
A smaller |w,| means less sensitive
or smaller Yw, for n > 1 (ignore w,)




Linear Regression

Least-sensitive model has slope of O
(By definition)
(And also when viewed pragmatically as a model)




Linear Regression

A model that’s “less sensitive”

“less sensitive” = lower future prediction error
(in light of less training data)
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Linear Regression

e Aim: minimize future prediction error

e Pragmatic Issue: we only have access to training data!

e Trick: minimize sensitivity = minimize future prediction error

e But do consider training data to bias the model (otherwise we end
up with a constant — useless!)

e So: minimize a combination of training error vs. sensitivity

(bias vs. variance tradeoff) (explanation-of-data vs. overfitting)




Linear Regression

e Minimize a combination of training error and model
sensitivity
e Formulation:

w* =argmin ( Y(yhat(w)-y.)? + A*Y|w,]|)

e
training error model sensitivity
o
[
>
o
—




Linear Regression

* Minimize a combination of training error and sensitivity
e Formulation:
w* = argmin ( Y(yhat(w) - y.)2 + A * Y |wi])
[Lasso]
OR

w* = argmin ( Y (yhat(w) - y.)2 + A * Sw.?)
[Ridge Regression]

... [Elastic Net, Gradient Directed Regularization, ...]

This is regularized linear learning



Regularized Linear Regression

e Cool property #1: solving a regularized learning problem is
just as fast (or faster) than solving a least-squares learning
problem!

e Why: convex optimization problem — one big hill



Regularized Linear Regression

e Remember BHALR image search problem?
e n = 1M variables, N=1000 samples
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Regularized Linear Regression

e Remember BHALR image search problem?
e n = 1M variables, N=1000 samples

e Cool property #2: can have more coefficients than samples!
That is, can handle n >> N!
e Because the regularization term minimizes the sensitivity,
i.e. the “degree of screwup”
w* =argmin ( 3(yhat(w) - y;)*+ A * 3 |w;])



Regularized Linear Regression

When solving w* = argmin ( Y (yhat(w) - y.)2+ A * 3 |w]),
What is a good value for A?
0

e Case:A\=0  >(yhat(w) -y.)? +

...reduces to least-squares



Regularized Linear Regression

When solving w* = argmin ( Y (yhat(w) - y.)2+ A * 3 |w]),
What is a good value for A?

0
e Case:A\=0  >(yhat(w) -y.)? +

...reduces to least-squares

0
e Case: A=co yhat(w]-vy)? + 2 * > |w |

...gives a constant (w,=const; w,=w,=... = 0)




Regularized Linear Regression

When solving w* = argmin ( Y (yhat(w) - y.)2+ A * 3 |w]),
What is a good value for A?

0
e Case:A=0  3(yhatj(w)-y,)* +

...reduces to least-squares

0
e Case: A=co yhat(w]-vy)? + 2 * > |w |

...gives a constant (w,=const; w,=w,=... = 0)

e Case: A in-between

...Is a balance between constant & LS.



Regularized Linear Regression

When solving w* = argmin ( Y (yhat,(w) - y.)?+ A * > |w.]),
What-is-a-geed-valueforit——

Learn w* at many values of A

Train error
—

A=oco A=0

(reduces to constant) (reduces to LS)




Regularized Linear Regression

When solving w* = argmin ( Y (yhat(w) - y.)2+ A * 3 |w]),
Whatis-a-geed-valueforit——

Learn w* at many values of A, and keep “best”
(“Best” = best error on a left-out test set.)

Test error

Train error
—

A=oco A=0

(reduces to constant) (reduces to LS)




Regularized Linear Regression

Algorithm
A= huge (e.g. 1e40)
w=0
while A > 1e-10
A= )\/ 10 Solves
W = solveAt(Xiains Yirains N Winit=W) 4~ w* = argmin ( Z(yhat(w) - v;)? + A * 3 |w;])

Compute error on test set
Return w with best test error

/ Test error

;| rain error

A=oc0 A=0
(reduces to constant) (reduces to LS)




Coefficient

Regularized Linear Regression:
How Coefficients Change With A

w; “pops in”

(All other w,=0)



Regularized Linear Regression:
How Coefficients Change With A

A=co
(reduces-

Coefficient
o
o

w, “pops in”



Regularized Linear Regression:
How Coefficients Change With A

| Q

B¢

A=co
(reduces to constani

Coefficient
o
o



Regularized Linear Regression:
How Coefficients Change With A

\

| > > OO

Best

A=co
(reduces to constant)

Coefficient
o
o



Regularized Linear Regression:
How Coefficients Change With A

<

\

| > > >

Best

A=co A=(
(reduces to constant) (reduces

Coefficient
o
o

w, “pops in”



Regularized Linear Regression:
How Coefficients Change With A

/ Test error

\

| > > >

Best _
Jrain error
A=co A=0
(reduces to constant) (reduces to LS)
0.2 /
E w. “pops in”
= 0.0
S
—0.2
— 0.4 ]
This is pathwise regularized linear learning “




Regularized Linear Regression

e Cool property #3: solving a full regularized path is = as fast as
solving single regularized problem
(or a least-squares learning problem)

Why fast:

Hot starts on

] local optimize
Algorithm

A= huge (e.g. 1e40)
w=0
while A > 1e-10

A=A/10
W= SOIVeAt(Xtrain' ytrain' }\' Wi @
Compute error on test set

Return w with best test error




Regularized Linear Regression:
The Error-Complexity Tradeoff

Test error

Belest

rain error
0 coefs 1 coef 2 coefs 3 coefs 4 coefs

Coefficient




Regularized Linear Regression

e Cool property #4: solving a full regularized path gives us
error-complexity tradeoffs!

e train error versus # coefs (bases)

e test error versus # coefs (bases)

Error (%)

Complexity



Recap on Linear Regression

e Generalized linear models: nonlinear basis functions with
linearly-learned coefficients!

Path-based Regularized Linear Regression:
e Can have more coefficients than samples! That is, can handle
n>> N!

e BHALR: 1M basis functions for 1K samples
e Solving path is = as fast as solving a least-squares learning
problem! (Convex problem!)
e Solving path gives error vs. complexity tradeoffs!

One final trick:
e Can cast a rational-learning problem f(x)/(1+g(x)) as a linear-
learning problem. See paper for details.



FFX: Fast Function Extraction
Technology



FFX Step 1/3: GenerateBases()

Inputs: X #input training data
Outputs: B #list of bases

# Generate univariate bases
Bi={ | |
for each input variable v = {x;. xa. ... }
for each exponent exp = {0.5, 1.0, 2.0 }
let expression ht.”, =y
if ok(eval(b.,p. X))
add b, to By
for each operator op = {abs(). logyq. ... } «“ H
let expression by = 0p(bry) Replace linear bases
if ok(eval(bop, X)) .
0. add by, to B with a crazy amount of

# Generate interacting-variable bases non I inear on ES"
11. Ba={}

12. fori =1 to length(B1)

13.  let expression b; = Bqz]

14 forj=1toi—1

L R

AL

i I s

15. let expression b; = B1[j]

16. if b; is not an operator # disallow op(} = op()
17. let expression by,¢e, = b; * b;

18. if ok(eval(b;,ter. X))

19. add b; i, to Bo

20. return B = By U B




FFX Step 2/3: PathFollow()
[using BHALR]

Inputs: X.y. B #input data, output data, bases
Outputs: A  #list of coefficent-vectors

# Compute X g
1. fori=1 to length(B)
2. Xp[2] =eval(B[z]. X)

Generate A,e. = range of A values

1;. )’\”“M. = FIE('!..E’I::|XTy|::I_I.-"'I::}‘vf'r * I;i'::l a
T Generate set of

vee = logspace(logio( Amaz * €ps), logro( Az ). Na)
# Main path-following mOd E|S, at Increasl ng
5. A={} .
6. Nygees = 0 complexity
7. i=0
8. a=1{0,0,...}
9. while Npgses < Ninar—bases and @ < length(Apee)
10. }" - )\'I!E:C‘ ['?]
11. a = elasticNetLinearFit( X 5. y. A, p. a)

12. Niases = number of nonzero values in a (not counting offset)
13, b *?l"’. bases *?l."li'ufr.r—ll,l-:-:.'-cr'.'-c
14, add ato A

15, P=1+1
16. return A




FFX Step 3/3: NondominatedFilter()

Error

Complexity



FFX Benchmarks



FFX Benchmarks:

Same Setup as CAFFEINE
High Speed amplifier

13 design variables S
— Vds, Vgs, Ids (operating-point ~a | |
driven formulation) - pe™ e Rl
orthogonal hypercube o | ol oo om
sampling " —
243 training samples E H[:L HE;
243 testing samples a2 Iﬁ




FFX Step 1: The 176 Candidate
1-Variable Bases
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FFX Step 1: Some Candidate
2-Variable Bases (3374 total)

log1o(#; 3}*5 z'm;m{f,bg}*f, f%Jlg(z 3}*%1 ;'r){,:m{LH}*L !UJIQD{‘T’E)E}*LW log1o(7; .3}*
1h9, frJJl.[].(e‘, 3}*{, t'r}{;l[}(f,lg}* 55.3‘3 logio(is 3}*{,{)3 t'r}{;l[}(élg * 1pq

(and 3364 more)




Coefficient for base * 1e3

FFX Step 2: PathFollow:
First Four Bases (A ¢ problem)

e mln(D vdsz2 ™2) * vdsz""*z [denom]

B min(0, vsd5™2) * vsd57™2 [denom]
0.4 « min(0, vsd6™2) * vsd6~2 [denom]

< loglo(id2™2) * vds2™2 [denom]
0.2 |

ded 3ed 2ed led
Lambda



FFX Step 3: Nondominated Filter
Error vs. # Bases (A ; problem)

25
— -
— 15
S
— & Training Pareto-
g 10 Optimal Set
LLI - Test Pareto-
Optimal set
S
\g —0
0

0 1 2 3 4 5
Number of Bases



FFX Step 3: Final Pareto-Optimal Set

Total Runtime <5 s (1 GHz CPU)
This is Fast Function Extraction

Test error
(Etest) (%)

Extracted Function

3.72 37.619
37.379
3-93 1.0—6.78¢-5xmin(0,v7_, )*v7_,
3 45 37.020

i (002 Vw2 A 00 e (002w
1.0—1.22¢e-4xmin(0,v5 4 ) ¥v5 o —4.72e-5xmin (0,07 ;- ) *v

2

I'e
sdb




FFX Functions with Lowest Test Error
on 6 Different Problems.

Problem | Test error | Extracted Function
(€test) (%)
37.020
AL F 3.45 1.0—1.22e-4xmwn ((),-’1;382 ) *-’1)382 —4.72e-5xman (O,-’UE% ) *-’UEdS
90.148
PM L.51 1 .0—8.796—6*-'m,1i=n,((ﬁ),vgg1 ) *vggl +2.28€—6*min((:)3-1;382) *-’1}382
3 —5.21e7
S f 2.10 1 .0—8.226—5*-m,’in((),-’1}382 ) *-’1)382
SR, 474 | 2.35¢7
Voffset 2.16 —0.0020 — 1.22e-23 * min(0, -'1J3_32) * -'1;382
ZOQl(Z)(fu.) 2.17 0.74 — 1.10e-5 * min(0,v2,,) * vy

+1.88e-5 x man(0, -vjsg) % -vjsg




Compare FFX vs. GP-SR

Average test time & build errors over 6 problems

0.18

0 16® B |inear (LS)
[ ¢ quad (LS)

0.14 > FFX

0 1o 4 GP-SR

0.10

0.08

0.06

Average test error

0.04 =

>
0.02

0.00
0 100 200 300 400 500 600 700

Build time (s)



Scaling Up FFX?



FFX So Far

Problems: 13 input variables, 256 samples
Results: <5 s, best error

Pretty good!

What about 100-1000+ input variables...?



12 Larger Problems
Up to 1468 input variables

Circuit # Devices | # Process variables Outputs Modeled
opamp 30 215 AV (gamn). BW (bandwidth), PM (phase margin), SH (slew rate)
bitcell 6 30 cell; (read current)
sense amp 12 125 delay, pwr (power)
voltage reference 11 105 DV REF (difference in voltage), PW R (power)
GMC filter 140 1468 ATTEN (attenuation), IL
comparator 62 639 BW (bandwidth)

The opamp and voltage reference had 800
Monte Carlo sample points, the comparator and GMC filter
2000, and bitcell and sense amp 5000.




Other Approaches
on 30T Opamp Problems

(215 input vars.) [McConaghy GPTP 2009]

Problem GP Boost | Bootstr.
(CAFF- tree tree LVSR- LVSR-
EINE) (SGB) (RF) GDR | GDR-tune
30T AV >10.0 | 0.6418 0.8183 | 0.0765 0.1073
30T BW >10.0 | 0.5686 | 0.7730 | 0.0378 0.0442
30T PM >10.0 | 0.5894 | 0.7656 | 0.0732 0.0693
30T SR >10.0 | 0.5208 0.7436 | 0.1642 0.1403

e A “direct” GP-SR approach did terrible
e Resorted to a latent-variable SR approach for good results




Scaling Up FFX

e What about 100-1000 input variables...?
e Summary of results:

— Out of memory
— Time for some theory...



Computational Complexity of FFX?

e Step one. Let e be the number of exponents and o be the number of
nonlinear operators. Therefore the number of univariate bases per variable
is (0 + 1) xe. (The +1 1s when no nonlinear operator 1s applied; or,
equivalently, unity). With n as the number of input variables, then the total
number of univariate bases 1s (04 1) x exn. With [N samples, the univariate
part of step one has a complexity of O((o+ 1) xexn x V). Since € and o
are constants, this reduces to O(n x [N ). The number of bivariate bases 1s
p = O(n?), so the bivarate part of step one has complexity O(n? % N).



Computational Complexity of FFX?

e Step two. Elastic net path-following 1s the dominant part. The cost of
an older elastic-net learning technique, LARS, was approximately that of
one least-squares (LS) fitting according to p.93 of (Hastie et al., 2008).
Since then, the coordinate descent algorithm (Friedman et al., 2010) has
been shown to be 10x faster. Nonetheless, we will use LS as a baseline.
With p mput variables, LS fitting with QR decomposition has complexity
O(N x p?). Because p = O(n?), FFX has approximate complexity
O(N % nt).



Computational Complexity of FFX?

e Step three. Reference (Deb et al., 2002) shows that nondominated filtering
has complexity O(N, * Ny ondom ) Where N, 1s the number of objectives,
and N,,,.dom 18 the number of nondominated individuals. In the SR cases,
N, 1s a constant (at 2) and N,,ondom < Nar—bases Where Nyor—bases 1S @

constant (= 5). Therefore, FFX step three complexity is O(1).

The complexity of FFX is the maximum of steps one, two,
and three, which is O(N * n?).

an

# samples # input variables



Improving FFX

A batch-style riff on MARS.

Revised FFX Algorithm:

1. Learn univariate coefficients

2. Only combine the k £ O(Vn) most important basis
functions

3. Pathwise-learn univariate & combination

4. Nondominated filter

Complexity down to O(N*n?) |



Improving FFX

A batch-style riff on MARS.

Revised FFX Algorithm:

1. Learn univariate coefficients

2. Only combine the k £ O(Vn) most important basis functions
3. Pathwise-learn univariate & combination

4. Nondominated filter

Complexity down to O(N*n?) !



Improving Complexity to O(N*n?):
A batch-style riff on MARS.
Revised algorithm:
1. First learn univariate coefficients
2. Only combine the k £ O(Vn) most important basis functions
3. Pathwise-learn univariate & combination
4. Nondominated filter

Complexity down to O(N*n?) !

Overall runtime 5-30 s



Test Error vs. Complexity
Large Problems 1-3 (of 12). <30 s!

Test error
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Test error

Test Error vs. Complexity
Large Problems 4-6 (of 12). <30 s!
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Test error
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Test Error vs. Complexity
Large Problems 7-9 (of 12). <30 s!

Test error (%)

———a—
000000000000000000
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Sense amp PWR  Voltage reference  Voltage reference
DVREF power



Test error

Test Error vs. Complexity
Large Problems 10-12 (of 12). <30 s!

Number of hases Number of bases
T T T T

# bases # bases H# bases
GMC filter IL GMC filter Comparator BW

ATTEN



Opamp PM Equations. <30 s!

# Bases Test error Extracted Function
(€test) (%0)
0 155 59.6
1 6.8 59.6 — 0.303 * dxl
2 6.6 59.6 — 0.308 % dxl — 0.00460 * cgop
3 5.4 59.6 — 0.332 % dxl — 0.0268 % cgop + 0.0215 * dvthn
4 4.2 59.6 — 0.353 « dxl — 0.0457 % cgop + 0.0403 * dvthn — 0.0211 * dvthp
5 4.1 59.6 — 0.354 # dxl — 0.0460 % cgop — 0.0217 % dvthp + 0.0198 x dvthn + 0.0134 * abs(dvthn) * dvthn
G 4.07 59.6 —0.354%dxl—0.0466xcgop—0.0224xdvthp+0.0202+dvthn+0.0135%abs( dvthn ) #dvthn+0.000550+ DX L
46 1.0 (58.9 —0.136 * dxl 4 0.0299 % dvthn — 0.0194 % maxz(0,0.784 — dvthn) +...)/(1.0+...)




Voltage Reference DVREF. <30 s!

# Bases Test error Extracted Function
(€test) (%)
0 2.6 512.7
1 2.1 504/(1.0 + 0.121 * max(0, dvthn + 0.875))
2 1.8 503 — 199 % max(0, dvthn + 1.61) — 52.1 * maz(0, dvthn + 0.875)
3 1.6 496 /(1.0 — 0.0447 * max(0, —1.64 — dvthp) * maz(0, dvthn 4+ 0.875) — 0.0282 % maz(0, —1.90 — dzrw) *

maz(0,dvthn + 0.875) — 0.0175 % max(0, —1.64 — dvthp) * max(0, dvthn + 0.142))

8 0.9 476/(1.040.105*maz (0, dvthn+1.61) —0.0397 x max (0, —1.64 — dvthp) *maz(0, dvthn+0.875) — 0.0371 x
maz(0, —1.90 — dzw) * maz (0, dvthn+0.875) — 0.0151 x maxz(0, —1.64 — dvthp) * maz(0, dvthn +0.142) . ..)
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FFX Summary of Results 1/2

~ as fast as LS-linear:

<5 s on smaller, <30 s on larger

As accurate as GP-SR 5
Gives error-complexity tradeoﬁ%s
Scalable §
Simple

Deterministic!
O(N * n?) complexity. (Theory!)
Massively shallow learning.

0.18

m i
0.16® linear (LS)

] ¢ quad (LS)
0.14 > FFX

< -

0.12 GP-SR
0.10
0.08
0.06
0.04 =
0.02
0.00

0O 100 200 300 400 500 600 700

Build time (s)

This is Fast Function Extraction



FFX Summary of Results 2/2

Has been deployed to industry since 2010
Off-the-shelf, under-the-hood, no fuss

Solved >10,000 problems in just one
application (Solido HSMC)

Adopted by others In their research with
great success (e.g. De Jonghe, Maricau)

Now 100K+ variables, 100-10K training pts

Extended for classification too (beat out 20+
other approaches)




FFX # Fork Fan Experience
The Exciting New F~ ("Fork Fan”)

Designed by World Renown Entrepeneur: Rod Ryan

Cools down all those “too hot” to eat
foods before they get to your mouth!

Never burn your tounge again!

Go ahead, be in a hurry.

Never wait for your
food to cool down
ever again.

Featuring:
* High Tech Ergonomic Design
* Two Speed “Whisper Quiet” Fan
* Right and Left Handed Compatible

* Stainless Steel Anti-Corrosion Matenals
* Dishwasher Safe!

“This is the BEST new kitchen innovation | have ever seen’ ideal for prison food'” Martha Stewart

{ ;{',";:./I;/,/?'IUUU.C‘JNI ( € ﬁ @' @ @ ‘®” m
modameé 2earthlink set




FFX is SR Technology:
Fast, Scalable, Deterministic
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Build time (s)

Code is online at trent.st/ffx



Conclusion WTE is genetic

programming or
V;’::;:‘o::;? ‘g symbolic regression?
Pe -g Why should I care?

?}:: T ; | >
i/ Lr ;

—

Is Deep Learning
cool or what?

How does Google find
furry robots? )




