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What does AI 
encompass? 

How does Google find 
furry robots? 

WTF is genetic 
programming or 

symbolic regression? 
Why should I care?  

Is Deep Learning 
cool or what? 

Mysteries of the 
universe.. 



What is technology anyway? 



Technology 



Technology 



Technology 



Technology – Alternate Definition 

 “We can say that solving least-squares 
problems … is a (mature) technology, that can 
be reliably used by many people who do not 
know, and do not need to know, the details.” 

 

• Boyd and Vandenberghe, Convex Optimization, 2004 



On becoming a “tool” 

• Long time standard tools: LS regression, matrix 
inversion, FFT, SQP, SAT solvers, CLP, … 

• Recent standard tool: convex optimization – 
became popular in the late 90s. “It just works.” 

• GP was popularized in the early 90s 

– And is not a standard tool (for many reasons) 

• Deep learning became popular in the 10s 

– And is not standard tool (for many reasons) 



Summary:  
Aiming for SR* as a Technology 

* SR ≠ Shopping Robot 



Summary of Goal 
Speed of LS, Accuracy of GP-SR (CAFFEINE) 



A (Re) Introduction to 
Regression 



1D Linear Least-Squares Regression 

x1 

y
 



1D Linear LS Regression 

x1 

y
 

Many possible linear models! 



1D Linear LS Regression 

x1 

Find linear model that 
minimizes ∑(yhati-yi)

2 

for all i in training data 
y

 



1D Linear LS Regression 

x1 

Find linear model that 
minimizes ∑(yhati-yi)

2 
y

 

That is: 
[w0, w1]* = argmin ∑(yhati-yi)

2  

where yhat(x1) = w0 + w1 * x1 



1D Linear LS Regression 

x1 

y = 1.1 + 2.3 * x1 

i.e. w0=1.1, w1=2.3 
Found with “least-squares learning” 
(amounts to ≈matrix inversion) 

y
 



1D Quadratic LS Regression 

x1 

y
 

[w0, w1, w11]* = argmin ∑(yhati-yi)
2  

where yhat(x1) = w0 + w1 * x1 + w11 * x1
2 

 

We are applying linear (LS) learning on 
linear & nonlinear basis functions.  OK! 



1D Nonlinear LS Regression 

x1 

y
 

[w0, w1, wsin]* = argmin ∑(yhati-yi)
2  

where yhat(x1) = w0 + w1 * x1 + wsin * sin(x1) 
 

We are applying linear (LS) learning on linear & 
nonlinear basis functions.  OK! 



2D Linear LS Regression 
[w0, w1, w2]* = argmin ∑(yhati-yi)

2  

where yhat(x) = w0 + w1 * x1 + w2 * x2 



2D Quadratic LS Regression 

[w0, w1, w2, w11, w22, w12]* = argmin ∑(yhati-yi)
2  

where yhat(x) = w0 + w1 * x1 + w11 * x1
2 + w22 * x2

2 + w12 * x1 * x2 
 



Generalized Linear Model (GLM) 

Generalized linear model (GLM) of B basis functions. 
yhat(x) =  w0 + w1 * f1(x) + w2 * f2(x) + … + wB * fB(x)  
 
Just treat each basis function as an input variable, and LS-learn! 
Examples:  

• yhat(x1) = w0 + w1 * x1 + w11 * x1
2 

• yhat(x1) = w0 + w1 * x1 + wsin * sin(x1) 
• yhat(x) = w0 + w1 * x1 + w11 * x12 + w22 * x22 + w12 * x1 * x2 

• polynomials, SVMs, FFNNs, many GP SR.  Universal approximator! 

x1 

y
 



Constraint on LS Regression? 

x1 

y  

x1 

y  

(1D Example) 
 
 
1 Sample – too few 
 
 
 
 
2 Samples – enough 
 
 
General rule? 



Constraint on LS Regression 

x1 

y
 

General Rule:  
• If n variables, need N ≥ n+1 training samples 

 

Examples:  
 

1D Lin: [w0, w1]*  
= argmin ∑(yhati-yi)

2 
Needs ≥ 1+1 = 2 training samples. 

2D Quad [w0, w1, w2, w11, w22, w12]*  
   = argmin ∑(yhati-yi)

2                     
Needs ≥ 6+1 = 7 training samples. 
 



LS Regression On High Dimensionality 
 

Consider 10,000 basis functions in a GLM 
Q: Can we fit this with LS-learning? 
A: Yes!  (As long as ≥10,001 samples)* 
 
 
Consider 1M basis functions in a GLM 
Q: Can we fit this with LS-learning? 
A: Yes!  (As long as ≥1M+1 samples)* 
 
*and no memory issues etc 

  



Regression in 106D ? 

y 

How?? (and why??) 



90  turn… 





How does Google find furry robots? 



How does Google accurately find furry robots? 



Q: How does Google (accurately) find furry robots?  

A: 

1. Treat images as 1000x1000 = 106 input variables (!) 

2. Do regression on “known” images (furry vs. non) 

3. Rank the other images. Easy!  

[NIPS 2010] 

y                    (rank 
score) 



 
Q: State of the art in image search? (NIPS ’09) 
A: BHALR!* 
 
*Big, Hairy, Audacious Linear Regression 
 
 
1000 pixels x 1000 pixels = 1M input variables 
100-1000 samples. 
Then apply linear regression or classification 
 
 



Q: State of the art in image search? (NIPS ’09) 
A: BHALR!* 
 
*Big, Hairy, Audacious Linear Regression 
 
 
1000 pixels x 1000 pixels = 1M input variables 
100-1000 samples. 
Then apply linear regression or classification 
 
But 100 << 1M.  HOW ?? 
 



 
Q: What happens when samples N → # variables n ? 

x1 

y
 

Linear Regression 



x1 

y
 

Q: What happens when # samples N → # variables n ? 
A: Model gets more sensitive! 

Linear Regression 
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y
 

Q: What happens when # samples N → # variables n ? 
A: Model gets more sensitive! 

Linear Regression 



A model that’s “less sensitive” 

x1 

y
 

Linear Regression 



A model that’s “less sensitive” 

x1 

y
 

 
Smaller |dy/dx| means less sensitive 
 

Linear Regression 



A model that’s “less sensitive” 

x1 

y
 

Smaller |dy/dx| means less sensitive 
  i.e. given yhat(x1) = w0 + w1 * x1  
  A smaller |w1| means less sensitive 
  or smaller ∑wi for n > 1 (ignore w0) 

Linear Regression 



Least-sensitive model has slope of 0 
(By definition) 

(And also when viewed pragmatically as a model) 

x1 

y
 

Linear Regression 



A model that’s “less sensitive” 

x1 

y
 

 
“less sensitive” ≈ lower future prediction error 
                            (in light of less training data) 
 

Linear Regression 
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y
 

• Aim: minimize future prediction error 
• Pragmatic Issue: we only have access to training data! 
• Trick: minimize sensitivity ≈ minimize future prediction error 
• But do consider training data to bias the model (otherwise we end 
up with a constant – useless!) 
• So: minimize a combination of training error vs. sensitivity 
(bias vs. variance tradeoff) (explanation-of-data vs. overfitting)  

Linear Regression 



x1 

y
 

• Minimize a combination of training error and model 
sensitivity  
• Formulation: 
 w* = argmin ( ∑(yhati(w) - yi)

2   +   λ * ∑|wi| ) 

training error model sensitivity 

Linear Regression 



• Minimize a combination of training error and sensitivity  
  
• Formulation: 

 w* = argmin ( ∑(yhati(w) - yi)
2  +  λ * ∑|wi|)  

                                                                  [Lasso] 
                                           OR 
 
 w* = argmin ( ∑(yhati(w) - yi)

2  +  λ * ∑wi
2)  

                                                                  [Ridge Regression] 
 
 … [Elastic Net, Gradient Directed Regularization, …] 
 
         
                    This is regularized linear learning 
 

Linear Regression 



Regularized Linear Regression 

• Cool property #1: solving a regularized learning problem is 
just as fast (or faster) than solving a least-squares learning 
problem! 

• Why: convex optimization problem – one big hill 
 
 



Regularized Linear Regression 

• Remember BHALR image search problem? 
• n = 1M variables, N=1000 samples 

 
 

 
 
 
 

 



Regularized Linear Regression 

• Remember BHALR image search problem? 
• n = 1M variables, N=1000 samples 

 
 

 
 
 
 

• Cool property #2: can have more coefficients than samples!  
That is, can handle n >> N! 

• Because the regularization term minimizes the sensitivity, 
i.e. the “degree of screwup” 

 w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|) 

 



Regularized Linear Regression 

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|),  

What is a good value for λ? 
 
• Case: λ=0       ∑(yhati(w) - yi)

2  + λ * ∑|wi| 
 
…reduces to least-squares 

 
 

0 



Regularized Linear Regression 

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|),  

What is a good value for λ? 
 
• Case: λ=0       ∑(yhati(w) - yi)

2  + λ * ∑|wi| 
 
…reduces to least-squares 

 
• Case: λ=∞     ∑(yhati(w) - yi)

2  + λ * ∑|wi| 
 

…gives a constant (w0=const; w1=w2=… = 0) 
 

 

0 

0 



Regularized Linear Regression 

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|),  

What is a good value for λ? 
 
• Case: λ=0       ∑(yhati(w) - yi)

2  + λ * ∑|wi| 
 
…reduces to least-squares 

 
• Case: λ=∞     ∑(yhati(w) - yi)

2  + λ * ∑|wi| 
 

…gives a constant (w0=const; w1=w2=… = 0) 
 
• Case: λ in-between  

 
…is a balance between constant & LS. 

 
 

0 

0 



Regularized Linear Regression 

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|),  

What is a good value for λ? 
Learn w* at many values of λ 

λ=∞  
(reduces to constant)     

λ=0 
(reduces to LS)     

Train error     



Regularized Linear Regression 

When solving w* = argmin ( ∑(yhati(w) - yi)
2 + λ * ∑|wi|),  

What is a good value for λ? 
Learn w* at many values of λ, and keep “best” 
(“Best” = best error on a left-out test set.) 

λ=∞  
(reduces to constant)     

λ=0 
(reduces to LS)     

Test error     

Train error     
Best     



Regularized Linear Regression 
Algorithm 
λ= huge (e.g. 1e40) 
w = 0 
while λ > 1e-10 
 λ = λ / 10 
 w = solveAt(Xtrain, ytrain, λ, winit=w) 
 Compute error on test set 
Return w with best test error 

λ=∞  
(reduces to constant)     

λ=0 
(reduces to LS)     

Test error     

Train error     
Best     

Solves 
w* = argmin ( ∑(yhati(w) - yi)

2 + λ * ∑|wi|) 



Regularized Linear Regression: 
How Coefficients Change With λ  

λ=∞  
(reduces to constant)     

λ=0 
(reduces to LS)     

Test error     

Train error     
Best     

w3 “pops in” 

(All other wi=0) 



Regularized Linear Regression: 
How Coefficients Change With λ  

λ=∞  
(reduces to constant)     

λ=0 
(reduces to LS)     

Test error     

Train error     
Best     

w6 “pops in” 



Regularized Linear Regression: 
How Coefficients Change With λ  

λ=∞  
(reduces to constant)     

λ=0 
(reduces to LS)     

Test error     

Train error     
Best     



Regularized Linear Regression: 
How Coefficients Change With λ  

λ=∞  
(reduces to constant)     

λ=0 
(reduces to LS)     

Test error     

Train error     
Best     



Regularized Linear Regression: 
How Coefficients Change With λ  

λ=∞  
(reduces to constant)     

λ=0 
(reduces to LS)     

Test error     

Train error     
Best     

w2 “pops in” 



Regularized Linear Regression: 
How Coefficients Change With λ  

λ=∞  
(reduces to constant)     

λ=0 
(reduces to LS)     

Test error     

Train error     
Best     

This is pathwise regularized linear learning 

w5 “pops in” 



Regularized Linear Regression 

• Cool property #3: solving a full regularized path is ≈ as fast as 
solving single regularized problem  
(or a least-squares learning problem) 

 
 

Algorithm 
λ= huge (e.g. 1e40) 
w = 0 
while λ > 1e-10 
 λ = λ / 10 
 w = solveAt(Xtrain, ytrain, λ, winit=w) 
 Compute error on test set 
Return w with best test error 

Why fast: 

Hot starts on 
local optimize 



Regularized Linear Regression: 
The Error-Complexity Tradeoff  

λ=∞     λ=0 

Test error     

Train error     
Best     

0 coefs     1 coef 2 coefs 4 coefs 3 coefs 



Regularized Linear Regression 

• Cool property #4: solving a full regularized path gives us 
error-complexity tradeoffs! 

• train error versus # coefs (bases) 
• test error versus # coefs (bases) 

 
 

 

0

5

10

15

20

25

0 50 100 150 200 250Complexity 



Recap on Linear Regression 

• Generalized linear models: nonlinear basis functions with 
linearly-learned coefficients! 
 
Path-based Regularized Linear Regression: 
• Can have more coefficients than samples!  That is, can handle 
n >> N! 

• BHALR: 1M basis functions for 1K samples 
• Solving path is ≈ as fast as solving a least-squares learning 
problem!  (Convex problem!) 
• Solving path gives error vs. complexity tradeoffs! 

 
One final trick: 
• Can cast a rational-learning problem f(x)/(1+g(x)) as a linear-
learning problem.  See paper for details. 

 
 



FFX: Fast Function Extraction 
Technology 



FFX Step 1/3: GenerateBases() 

“Replace linear bases 
with a crazy amount of 
nonlinear ones” 



FFX Step 2/3: PathFollow() 
[using BHALR] 

“Generate set of  
models, at increasing  
complexity” 



FFX Step 3/3: NondominatedFilter()  

Complexity 

Er
ro

r 



FFX Benchmarks 



FFX Benchmarks:  
Same Setup as CAFFEINE 

• High Speed amplifier 

• 13 design variables 

– Vds, Vgs, Ids (operating-point 
driven formulation) 

• orthogonal hypercube 
sampling 

• 243 training samples 

• 243 testing samples 

 



FFX Step 1: The 176 Candidate 
1-Variable Bases 



FFX Step 1: Some Candidate  
2-Variable Bases (3374 total) 



FFX Step 2: PathFollow: 
First Four Bases (ALF problem) 



FFX Step 3: Nondominated Filter 
Error vs. # Bases (ALF problem) 



FFX Step 3: Final Pareto-Optimal Set 

 
Total Runtime <5 s (1 GHz CPU) 
This is Fast Function Extraction 



FFX Functions with Lowest Test Error 
on 6 Different Problems.  



Compare FFX vs. GP-SR 
Average test time & build errors over 6 problems 

FFX 



Scaling Up FFX? 



FFX So Far 

• Problems: 13 input variables, 256 samples 

• Results: <5 s, best error 

• Pretty good! 

 

• What about 100-1000+ input variables…? 



12 Larger Problems 
Up to 1468 input variables 



Other Approaches  
on 30T Opamp  Problems  

(215 input vars.) [McConaghy GPTP 2009]  

• A “direct” GP-SR approach did terrible 
• Resorted to a latent-variable SR approach for good results 



Scaling Up FFX 

• What about 100-1000 input variables…? 

• Summary of results: 

– Out of memory 

– Time for some theory… 



Computational Complexity of FFX? 



Computational Complexity of FFX? 

FFX 



Computational Complexity of FFX? 

The complexity of FFX is the maximum of steps one, two, 
and three, which is O(N * n4). 

FFX 

# samples # input variables 



Improving FFX 

A batch-style riff on MARS. 
 
Revised FFX Algorithm: 
1. Learn univariate coefficients 
2. Only combine the k ≤ O(√n) most important basis 

functions 
3. Pathwise-learn univariate & combination 
4. Nondominated filter 
 
Complexity down to O(N*n2) ! 



Improving FFX 

A batch-style riff on MARS. 
 
Revised FFX Algorithm: 
1. Learn univariate coefficients 
2. Only combine the k ≤ O(√n) most important basis functions 
3. Pathwise-learn univariate & combination 
4. Nondominated filter 
 
Complexity down to O(N*n2) ! 
 



Improving Complexity to O(N*n2): 

A batch-style riff on MARS. 
 
Revised algorithm: 
1. First learn univariate coefficients 
2. Only combine the k ≤ O(√n) most important basis functions 
3. Pathwise-learn univariate & combination 
4. Nondominated filter 
 
Complexity down to O(N*n2) ! 
 
Overall runtime 5-30 s 



Test Error vs. Complexity 
Large Problems 1-3 (of 12). <30 s! 

Opamp AV Opamp BW Opamp PM 

# bases 

Te
st

 e
rr

o
r 

# bases # bases 



Test Error vs. Complexity 
Large Problems 4-6 (of 12). <30 s! 

Opamp SR Bitcell cell_i Sense amp delay 

# bases 

Te
st

 e
rr

o
r 

# bases # bases 



Test Error vs. Complexity 
Large Problems 7-9 (of 12). <30 s! 

Sense amp PWR Voltage reference 
DVREF 

Voltage reference 
power 

# bases 

Te
st

 e
rr

o
r 

# bases # bases 



Test Error vs. Complexity 
Large Problems 10-12 (of 12). <30 s! 

GMC filter IL GMC filter 
ATTEN 

Comparator BW 

# bases 

Te
st

 e
rr

o
r 

# bases # bases 



Opamp PM Equations. <30 s! 



Voltage Reference DVREF. <30 s! 



Outline 

• Introduction 

• Background 

• FFX: Fast Function Extraction 

• Results 

• Scaling Higher? 

• Discussion 



FFX Summary of Results 1/2 

FFX 

• ≈ as fast as LS-linear: 
   <5 s on smaller, <30 s on larger 

• As accurate as GP-SR 

• Gives error-complexity tradeoffs 

• Scalable 

• Simple 

• Deterministic! 

• O(N * n2) complexity. (Theory!) 

• Massively shallow learning. 

This is Fast Function Extraction 



FFX Summary of Results 2/2 

• Has been deployed to industry since 2010 

• Off-the-shelf, under-the-hood, no fuss 

• Solved >10,000 problems in just one 

application (Solido HSMC) 

• Adopted by others in their research with 

great success (e.g. De Jonghe, Maricau) 

• Now 100K+ variables, 100-10K training pts 

• Extended for classification too (beat out 20+ 

other approaches) 



FFX ≠ Fork Fan Experience 



FFX is SR Technology: 
Fast, Scalable, Deterministic 

Code is online at trent.st/ffx 



What does AI 
encompass? 

How does Google find 
furry robots? 

Conclusion WTF is genetic 
programming or 

symbolic regression? 
Why should I care?  

Is Deep Learning 
cool or what? 


