
Massively Shallow Learning

with FFX

Trent McConaghy, PhD

What does AI
encompass?

How does Google find
furry robots?

WTF is genetic
programming or

symbolic regression?
Why should I care?

Is Deep Learning
cool or what?

Mysteries of the
universe..

What is technology anyway?

Technology

Technology

Technology

Technology – Alternate Definition

 “We can say that solving least-squares
problems … is a (mature) technology, that can
be reliably used by many people who do not
know, and do not need to know, the details.”

• Boyd and Vandenberghe, Convex Optimization, 2004

On becoming a “tool”

• Long time standard tools: LS regression, matrix
inversion, FFT, SQP, SAT solvers, CLP, …

• Recent standard tool: convex optimization –
became popular in the late 90s. “It just works.”

• GP was popularized in the early 90s

– And is not a standard tool (for many reasons)

• Deep learning became popular in the 10s

– And is not standard tool (for many reasons)

Summary:
Aiming for SR* as a Technology

* SR ≠ Shopping Robot

Summary of Goal
Speed of LS, Accuracy of GP-SR (CAFFEINE)

A (Re) Introduction to
Regression

1D Linear Least-Squares Regression

x1

y

1D Linear LS Regression

x1

y

Many possible linear models!

1D Linear LS Regression

x1

Find linear model that
minimizes ∑(yhati-yi)

2

for all i in training data
y

1D Linear LS Regression

x1

Find linear model that
minimizes ∑(yhati-yi)

2
y

That is:
[w0, w1]* = argmin ∑(yhati-yi)

2

where yhat(x1) = w0 + w1 * x1

1D Linear LS Regression

x1

y = 1.1 + 2.3 * x1

i.e. w0=1.1, w1=2.3
Found with “least-squares learning”
(amounts to ≈matrix inversion)

y

1D Quadratic LS Regression

x1

y

[w0, w1, w11]* = argmin ∑(yhati-yi)
2

where yhat(x1) = w0 + w1 * x1 + w11 * x1
2

We are applying linear (LS) learning on
linear & nonlinear basis functions. OK!

1D Nonlinear LS Regression

x1

y

[w0, w1, wsin]* = argmin ∑(yhati-yi)
2

where yhat(x1) = w0 + w1 * x1 + wsin * sin(x1)

We are applying linear (LS) learning on linear &
nonlinear basis functions. OK!

2D Linear LS Regression
[w0, w1, w2]* = argmin ∑(yhati-yi)

2

where yhat(x) = w0 + w1 * x1 + w2 * x2

2D Quadratic LS Regression

[w0, w1, w2, w11, w22, w12]* = argmin ∑(yhati-yi)
2

where yhat(x) = w0 + w1 * x1 + w11 * x1
2 + w22 * x2

2 + w12 * x1 * x2

Generalized Linear Model (GLM)

Generalized linear model (GLM) of B basis functions.
yhat(x) = w0 + w1 * f1(x) + w2 * f2(x) + … + wB * fB(x)

Just treat each basis function as an input variable, and LS-learn!
Examples:

• yhat(x1) = w0 + w1 * x1 + w11 * x1
2

• yhat(x1) = w0 + w1 * x1 + wsin * sin(x1)
• yhat(x) = w0 + w1 * x1 + w11 * x12 + w22 * x22 + w12 * x1 * x2

• polynomials, SVMs, FFNNs, many GP SR. Universal approximator!

x1

y

Constraint on LS Regression?

x1

y

x1

y

(1D Example)

1 Sample – too few

2 Samples – enough

General rule?

Constraint on LS Regression

x1

y

General Rule:
• If n variables, need N ≥ n+1 training samples

Examples:

1D Lin: [w0, w1]*
= argmin ∑(yhati-yi)

2
Needs ≥ 1+1 = 2 training samples.

2D Quad [w0, w1, w2, w11, w22, w12]*
 = argmin ∑(yhati-yi)

2
Needs ≥ 6+1 = 7 training samples.

LS Regression On High Dimensionality

Consider 10,000 basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes! (As long as ≥10,001 samples)*

Consider 1M basis functions in a GLM
Q: Can we fit this with LS-learning?
A: Yes! (As long as ≥1M+1 samples)*

*and no memory issues etc

Regression in 106D ?

y

How?? (and why??)

90 turn…

How does Google find furry robots?

How does Google accurately find furry robots?

Q: How does Google (accurately) find furry robots?

A:

1. Treat images as 1000x1000 = 106 input variables (!)

2. Do regression on “known” images (furry vs. non)

3. Rank the other images. Easy! 

[NIPS 2010]

y (rank
score)

Q: State of the art in image search? (NIPS ’09)
A: BHALR!*

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.
Then apply linear regression or classification

Q: State of the art in image search? (NIPS ’09)
A: BHALR!*

*Big, Hairy, Audacious Linear Regression

1000 pixels x 1000 pixels = 1M input variables
100-1000 samples.
Then apply linear regression or classification

But 100 << 1M. HOW ??

Q: What happens when samples N → # variables n ?

x1

y

Linear Regression

x1

y

Q: What happens when # samples N → # variables n ?
A: Model gets more sensitive!

Linear Regression

x1

y

Q: What happens when # samples N → # variables n ?
A: Model gets more sensitive!

Linear Regression

A model that’s “less sensitive”

x1

y

Linear Regression

A model that’s “less sensitive”

x1

y

Smaller |dy/dx| means less sensitive

Linear Regression

A model that’s “less sensitive”

x1

y

Smaller |dy/dx| means less sensitive
 i.e. given yhat(x1) = w0 + w1 * x1
 A smaller |w1| means less sensitive
 or smaller ∑wi for n > 1 (ignore w0)

Linear Regression

Least-sensitive model has slope of 0
(By definition)

(And also when viewed pragmatically as a model)

x1

y

Linear Regression

A model that’s “less sensitive”

x1

y

“less sensitive” ≈ lower future prediction error
 (in light of less training data)

Linear Regression

x1

y

• Aim: minimize future prediction error
• Pragmatic Issue: we only have access to training data!
• Trick: minimize sensitivity ≈ minimize future prediction error
• But do consider training data to bias the model (otherwise we end
up with a constant – useless!)
• So: minimize a combination of training error vs. sensitivity
(bias vs. variance tradeoff) (explanation-of-data vs. overfitting)

Linear Regression

x1

y

• Minimize a combination of training error and model
sensitivity
• Formulation:
 w* = argmin (∑(yhati(w) - yi)

2 + λ * ∑|wi|)

training error model sensitivity

Linear Regression

• Minimize a combination of training error and sensitivity

• Formulation:

 w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|)

 [Lasso]
 OR

 w* = argmin (∑(yhati(w) - yi)

2 + λ * ∑wi
2)

 [Ridge Regression]

 … [Elastic Net, Gradient Directed Regularization, …]

 This is regularized linear learning

Linear Regression

Regularized Linear Regression

• Cool property #1: solving a regularized learning problem is
just as fast (or faster) than solving a least-squares learning
problem!

• Why: convex optimization problem – one big hill

Regularized Linear Regression

• Remember BHALR image search problem?
• n = 1M variables, N=1000 samples

Regularized Linear Regression

• Remember BHALR image search problem?
• n = 1M variables, N=1000 samples

• Cool property #2: can have more coefficients than samples!
That is, can handle n >> N!

• Because the regularization term minimizes the sensitivity,
i.e. the “degree of screwup”

 w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|)

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?

• Case: λ=0 ∑(yhati(w) - yi)

2 + λ * ∑|wi|

…reduces to least-squares

0

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?

• Case: λ=0 ∑(yhati(w) - yi)

2 + λ * ∑|wi|

…reduces to least-squares

• Case: λ=∞ ∑(yhati(w) - yi)

2 + λ * ∑|wi|

…gives a constant (w0=const; w1=w2=… = 0)

0

0

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?

• Case: λ=0 ∑(yhati(w) - yi)

2 + λ * ∑|wi|

…reduces to least-squares

• Case: λ=∞ ∑(yhati(w) - yi)

2 + λ * ∑|wi|

…gives a constant (w0=const; w1=w2=… = 0)

• Case: λ in-between

…is a balance between constant & LS.

0

0

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?
Learn w* at many values of λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Train error

Regularized Linear Regression

When solving w* = argmin (∑(yhati(w) - yi)
2 + λ * ∑|wi|),

What is a good value for λ?
Learn w* at many values of λ, and keep “best”
(“Best” = best error on a left-out test set.)

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

Regularized Linear Regression
Algorithm
λ= huge (e.g. 1e40)
w = 0
while λ > 1e-10
 λ = λ / 10
 w = solveAt(Xtrain, ytrain, λ, winit=w)
 Compute error on test set
Return w with best test error

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

Solves
w* = argmin (∑(yhati(w) - yi)

2 + λ * ∑|wi|)

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

w3 “pops in”

(All other wi=0)

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

w6 “pops in”

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

w2 “pops in”

Regularized Linear Regression:
How Coefficients Change With λ

λ=∞
(reduces to constant)

λ=0
(reduces to LS)

Test error

Train error
Best

This is pathwise regularized linear learning

w5 “pops in”

Regularized Linear Regression

• Cool property #3: solving a full regularized path is ≈ as fast as
solving single regularized problem
(or a least-squares learning problem)

Algorithm
λ= huge (e.g. 1e40)
w = 0
while λ > 1e-10
 λ = λ / 10
 w = solveAt(Xtrain, ytrain, λ, winit=w)
 Compute error on test set
Return w with best test error

Why fast:

Hot starts on
local optimize

Regularized Linear Regression:
The Error-Complexity Tradeoff

λ=∞ λ=0

Test error

Train error
Best

0 coefs 1 coef 2 coefs 4 coefs 3 coefs

Regularized Linear Regression

• Cool property #4: solving a full regularized path gives us
error-complexity tradeoffs!

• train error versus # coefs (bases)
• test error versus # coefs (bases)

0

5

10

15

20

25

0 50 100 150 200 250Complexity

Recap on Linear Regression

• Generalized linear models: nonlinear basis functions with
linearly-learned coefficients!

Path-based Regularized Linear Regression:
• Can have more coefficients than samples! That is, can handle
n >> N!

• BHALR: 1M basis functions for 1K samples
• Solving path is ≈ as fast as solving a least-squares learning
problem! (Convex problem!)
• Solving path gives error vs. complexity tradeoffs!

One final trick:
• Can cast a rational-learning problem f(x)/(1+g(x)) as a linear-
learning problem. See paper for details.

FFX: Fast Function Extraction
Technology

FFX Step 1/3: GenerateBases()

“Replace linear bases
with a crazy amount of
nonlinear ones”

FFX Step 2/3: PathFollow()
[using BHALR]

“Generate set of
models, at increasing
complexity”

FFX Step 3/3: NondominatedFilter()

Complexity

Er
ro

r

FFX Benchmarks

FFX Benchmarks:
Same Setup as CAFFEINE

• High Speed amplifier

• 13 design variables

– Vds, Vgs, Ids (operating-point
driven formulation)

• orthogonal hypercube
sampling

• 243 training samples

• 243 testing samples

FFX Step 1: The 176 Candidate
1-Variable Bases

FFX Step 1: Some Candidate
2-Variable Bases (3374 total)

FFX Step 2: PathFollow:
First Four Bases (ALF problem)

FFX Step 3: Nondominated Filter
Error vs. # Bases (ALF problem)

FFX Step 3: Final Pareto-Optimal Set

Total Runtime <5 s (1 GHz CPU)
This is Fast Function Extraction

FFX Functions with Lowest Test Error
on 6 Different Problems.

Compare FFX vs. GP-SR
Average test time & build errors over 6 problems

FFX

Scaling Up FFX?

FFX So Far

• Problems: 13 input variables, 256 samples

• Results: <5 s, best error

• Pretty good!

• What about 100-1000+ input variables…?

12 Larger Problems
Up to 1468 input variables

Other Approaches
on 30T Opamp Problems

(215 input vars.) [McConaghy GPTP 2009]

• A “direct” GP-SR approach did terrible
• Resorted to a latent-variable SR approach for good results

Scaling Up FFX

• What about 100-1000 input variables…?

• Summary of results:

– Out of memory

– Time for some theory…

Computational Complexity of FFX?

Computational Complexity of FFX?

FFX

Computational Complexity of FFX?

The complexity of FFX is the maximum of steps one, two,
and three, which is O(N * n4).

FFX

samples # input variables

Improving FFX

A batch-style riff on MARS.

Revised FFX Algorithm:
1. Learn univariate coefficients
2. Only combine the k ≤ O(√n) most important basis

functions
3. Pathwise-learn univariate & combination
4. Nondominated filter

Complexity down to O(N*n2) !

Improving FFX

A batch-style riff on MARS.

Revised FFX Algorithm:
1. Learn univariate coefficients
2. Only combine the k ≤ O(√n) most important basis functions
3. Pathwise-learn univariate & combination
4. Nondominated filter

Complexity down to O(N*n2) !

Improving Complexity to O(N*n2):

A batch-style riff on MARS.

Revised algorithm:
1. First learn univariate coefficients
2. Only combine the k ≤ O(√n) most important basis functions
3. Pathwise-learn univariate & combination
4. Nondominated filter

Complexity down to O(N*n2) !

Overall runtime 5-30 s

Test Error vs. Complexity
Large Problems 1-3 (of 12). <30 s!

Opamp AV Opamp BW Opamp PM

bases

Te
st

 e
rr

o
r

bases # bases

Test Error vs. Complexity
Large Problems 4-6 (of 12). <30 s!

Opamp SR Bitcell cell_i Sense amp delay

bases

Te
st

 e
rr

o
r

bases # bases

Test Error vs. Complexity
Large Problems 7-9 (of 12). <30 s!

Sense amp PWR Voltage reference
DVREF

Voltage reference
power

bases

Te
st

 e
rr

o
r

bases # bases

Test Error vs. Complexity
Large Problems 10-12 (of 12). <30 s!

GMC filter IL GMC filter
ATTEN

Comparator BW

bases

Te
st

 e
rr

o
r

bases # bases

Opamp PM Equations. <30 s!

Voltage Reference DVREF. <30 s!

Outline

• Introduction

• Background

• FFX: Fast Function Extraction

• Results

• Scaling Higher?

• Discussion

FFX Summary of Results 1/2

FFX

• ≈ as fast as LS-linear:
 <5 s on smaller, <30 s on larger

• As accurate as GP-SR

• Gives error-complexity tradeoffs

• Scalable

• Simple

• Deterministic!

• O(N * n2) complexity. (Theory!)

• Massively shallow learning.

This is Fast Function Extraction

FFX Summary of Results 2/2

• Has been deployed to industry since 2010

• Off-the-shelf, under-the-hood, no fuss

• Solved >10,000 problems in just one

application (Solido HSMC)

• Adopted by others in their research with

great success (e.g. De Jonghe, Maricau)

• Now 100K+ variables, 100-10K training pts

• Extended for classification too (beat out 20+

other approaches)

FFX ≠ Fork Fan Experience

FFX is SR Technology:
Fast, Scalable, Deterministic

Code is online at trent.st/ffx

What does AI
encompass?

How does Google find
furry robots?

Conclusion WTF is genetic
programming or

symbolic regression?
Why should I care?

Is Deep Learning
cool or what?

