
Trent McConaghy, PhD
Founder & CTO @ ADA | Solido | ascribe.io

Driving Moore's Law
with Python-Powered Machine Learning

Outline
• Moore’s Law

• Python, ML, & Moore’s Law

[Kurzweil]

“The Moore’s Law of Brain Scanning”

[Kurzweil]

“The Moore’s Law of Internet Hosts”

[Church]

The Moore’s Law of DNA Sequencing

1.5x / year
To 10x / year

(Sometimes the
exponent changes)

C
o

st
 o

f
Se

q
u

e
n

ci
n

g
O

n
e

 H
u

m
an

 G
e

n
o

m
e

Will the Real Moore’s Law Please Stand Up? (Please stand up)

[Kurzweil]

(Hint: not the real Moore’s Law)

The Moore’s Law of
Calculations per $

[Kurzweil]

(Hint: not the real Moore’s Law)

The Actual Moore’s Law
(About transistor size.)

12

14

16

18

20

22

24

26

28

30

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year of production

G
a

te
 l

e
n

g
th

 (
n

m
)

[International Technology Roadmap for Semiconductors, 2011]

[Church]

Redux:
The Moore’s Law of DNA Sequencing

1.5x / year
To 10x / year

(Celera/Venter/..)
“Silicon Midas touch”

C
o

st
 o

f
Se

q
u

e
n

ci
n

g
O

n
e

 H
u

m
an

 G
e

n
o

m
e

12

14

16

18

20

22

24

26

28

30

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year of production

G
a

te
 l

e
n

g
th

 (
n

m
)

Moore’s Law: How?
A: Silicon Midas touch applied to itself
One generation of machines, to design the next generation.
The ultimate bootstrap!

Moore’s Law is a Bull. Riding It Enables…

Content
Cloud Computing

Consumer Communications Computing

A Challenge to Moore’s Law:
Variation Gone Wild

A. Asenov, Extreme Statistics in Nanoscale Memory Design, Springer, 2010

At <22 nm (now), even one atom
out of place is trouble…

Transistors are shrinking
 …but atoms aren’t.

Variation = atoms out of place
…Propagating from devices to performance & yield

…

Process

variation ↑

Circuit performance

variation ↑

Device performance

variation ↑

Variation-based Circuit Challenges

• How to verify a memory with 1 billion bits? (Gbit)
• How to improve the design?
 (with variation gone wild)

• How to verify a PLL with 3375 PVT corners?
• How to improve the design?
 (with variation gone wild)

• To get lower power, lower delay, lower area, all in less time?

12

14

16

18

20

22

24

26

28

30

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year of production

G
a

te
 l

e
n

g
th

 (
n

m
)

Moore’s Law incl. Variation: How?
Use ML to abstract away the variation from the
perspective of the designer.

I build ML-powered CAD tools
To drive Moore’s Law

Python, ML & Moore’s Law

Example: ML-based whitebox models of circuits

Symbolic

Modeling

Example: ML-based whitebox models of circuits
How: Genetic Programming

“A function is a tree”
f(x) = 4.8*x3 + √x2

4.8

√ *

x2

+

x3

Searches through the space of trees:

1. Initial random population; evaluate

2. Create children from parents via operators; evaluate

3. Select best; goto 2

Example: ML-based whitebox models of circuits
Crossover Operator in Genetic Programming

Models with <10% error

Perf. Expression

ALF -10.3 + 7.08e-5 / id1

 + 1.87 * ln(-1.95e+9 + 1.00e+10 / (vsg1*vsg3)

 + 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2))

fu 10^(5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1)

PM 90.5 + 190.6 * id1 / vsg1 + 22.2 * id2 / vds2

voffset - 2.00e-3

SRp 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2

 + 4.63e+8 * id1

SRn - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2

 + 109.72 / id1

Example: ML-based whitebox models of circuits

Prediction Performance

Summary: Lower prediction error than FFNNs, Boosted FFNNs, SVMs, GPMs, ..

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

C
o
n
s
ta

n
t

(R
e
f.

)

L
in

e
a
r

S
te

p
w

is
e
 P

o
s
y
n
o
m

ia
l

P
ro

je
c
ti
o
n
-b

a
s
e
d
 q

u
a
d
ra

ti
c

F
u
ll

q
u
a
d
ra

ti
c

M
A

R
S

 (
S

te
p
w

is
e
 P

W
P

)

C
A

F
F

E
IN

E

F
F

N
N

B
o
o
s
te

d
 F

F
N

N

S
V

M

K
ri
g
in

g

A
v
g

.
p

re
d

ic
ti

o
n

 e
rr

o
r

fu

offsetn

srp

srn

lfgain

pm

Example: ML-based whitebox models of circuits

The Stack

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

C
o
n
s
ta

n
t

(R
e
f.

)

L
in

e
a
r

S
te

p
w

is
e
 P

o
s
y
n
o
m

ia
l

P
ro

je
c
ti
o
n
-b

a
s
e
d
 q

u
a
d
ra

ti
c

F
u
ll
 q

u
a
d
ra

ti
c

M
A

R
S

 (
S

te
p
w

is
e
 P

W
P

)

C
A

F
F

E
IN

E

F
F

N
N

B
o
o
s
te

d
 F

F
N

N

S
V

M

K
ri
g
in

g

A
v
g

.
p

r
e
d

ic
ti

o
n

 e
r
r
o

r

fu

offsetn

srp

srn

lfgain

pm

Example: ML-based whitebox models of circuits

• 100% Python
• Python 2.7, numpy, scipy
• Custom ML algorithm

• grammar-constrained
genetic programming

• function-grammar
• 3rd party circuit simulator

Example: ML-based whitebox models redux (FFX)

FFX

Problem: Scales poorly past >20 variables

Algorithm:

1. Explode # basis functions (e.g. 13 → 100K)

2. Pathwise learning on elastic net formulation (BHALR),
track # variables vs. train error

3. Nondominated filter on test error

Result: scalability & speed ↑

• 10K+ input variables

• 100 – 100K+ training points

Example: ML-based whitebox models redux (FFX)
The stack

FFX

• 100% Python
• Python 2.7, numpy
• Scikit-learn

• Coordinate descent pathwise
learning

• Custom ML: FFX
• Explode # basis functions
• Nondominated filtering

• General enough for other domains
• Extends to classification too
• Open source at trent.st/ffx

Example: Density Estimation

Algorithm:

1. Build many different density models: Gaussian, mixture of 2-4
Gaussians, lognormal, uniform, Rayleigh, KDE, and more.

2. Pick model with the best fit in NQ space (not MLE).

Example: Density Estimation with Sane Extrapolation

• 100% Python
• Python 2.7, numpy
• Scipy – kde, optimize (BFGS),

specific distributions
• Custom ML algorithm

• Conversion to/from NQ
space

• Special-case distributions
(e.g. uniform, spike)

• 3rd party circuit simulator

Example: Density Estimation with Sane Extrapolation:
The Stack

Example: ML-driven Rare Event Estimation
(High Sigma Monte Carlo)

Problem: Brute force takes 2 months on 100 cores
Algorithm:
1. Active learning on 10K+ dimensions to learn X-> y
2. Draw & rank 10G pts (≈scale of Google search)
3. Simulate from highest-rank first (≈ top 10 search results)
Result: 20 min on 10 cores

What is probability of these rare,
 high-impact events happening?

Conclusion
Rare Events, HSMC, And Beyond

Example: ML-driven Rare Event Estimation
(High Sigma Monte Carlo): The Stack

• 99% Python
• Python 2.7, numpy, scipy
• scikit-learn pathwise learning
• Custom high-dimensional regression (FFX)
• Qt4, Chaco

• 1% C
• Random number generation - Mersenne Twister.

(incidentally, traditional LCG is inadequate because
period is too small.)

• Simulate regressor on each of 10G points
• 3rd party circuit simulator, env’t

Example: ML to synthesize analog circuit topologies
How: Design a language for circuit topologies; populate it;

then do grammar-constrained multi-obj. tree search

Example: ML to synthesize analog circuit topologies:
The Stack

• 100% Python
• Python 2.7, numpy, scipy
• Custom ML algorithms

• grammar-constrained genetic
programming

• circuit grammar
• derivative-free optimizer
• high-resolution interpolator

• 3rd party circuit simulator

• General enough for other domains
• Open source at trent.st/mojito

Example: ML-driven Corners Analysis(Fast PVT)
• TSMC 28nm, VCO of a PLL

• Specs: 48.3 < duty cycle < 51.7 %, 3 < Gain < 4.4GHz/V

• Traditional: 3375 PVT corners to simulate (temp, voltage1, ..)

• With ML: 275 corners to simulate, as thorough as before

Example: ML-driven Corners Analysis

Cast PVT verification as a global optimization problem:

 Search through space of “corners” - x
 Minimize / maximize simulated output value f(x)

 x (Example: temp)

f(x)

Example:
pwr(temp)

Optimal f(x)
=worst-case pwr

Then, solve the optimization problem reliably.

ML-driven Corners Analysis: underlying Model

• Typically a Gaussian Process Model (GPM)

– Natural interpolator

– Convenient confidence intervals

– Well-behaved, no crazy extrapolation (usually)

ML-driven Corners Analysis
Benchmarks on 226 Circuit PVT Verification Problems

• 226 test cases in benchmark suite:
– From Solido customers, in-house realistic cases, and in-house corner cases targeting

challenging problems

– Many contain complex interactions, non-linearities, discontinuities, etc.

• 226/226 (100%) of cases find true optimum

• Speedup 2.34X to 226X

• Median speedup is 22X

0

50

100

150

200

250

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1
2
9

1
3
3

1
3
7

1
4
1

1
4
5

1
4
9

1
5
3

1
5
7

1
6
1

1
6
5

1
6
9

1
7
3

1
7
7

1
8
1

1
8
5

1
8
9

1
9
3

1
9
7

2
0
1

2
0
5

2
0
9

2
1
3

2
1
7

2
2
1

2
2
5

Speedup

ML-driven Corners Analysis: Scalability Challenge

• Problem: GPM training is O(N3) on # Training Samples
• Becomes very unhappy when >1000 samples
• This happens for circuit verification problems with larger #

dimensions and highly nonlinear circuit
• First solution: just cut loose and sim all
• Is there a better way?

ML-driven Corners Analysis:
Divide-and-Conquer on Training Samples

• New model is a set of Gaussian Process Models (GPM)
• One GPM for each region of input x space
• Regions are automatically determined at build time

– Via classic CART learning
– Stop at a leaf when <700 samples

• Build a GPM on each leaf’s samples (and k neighbors)
– Each GPM is O(1) on # training samples because N=const
– CART learning is O(N log N) on # samp with tiny constant

x1

x2

GPM 5
GPM 4

GPM 3

GPM 2

GPM 1

ML-driven Corners Analysis:
Benchmarking: GPM vs Divide-and-Conquer GPM

Problem

vars

train

pts

test

pts

Build

Time (s)

Test

Time (s) Error

Build

Time

Test

Time Error

Low-dimensional

opamp-pvt-bandwidth 10 4425 1475 667.4 91.1 0.044 55.6 7.4 0.006

opamp-pvt-dc_gain 10 4425 1475 741.9 91.5 0.001 57.9 8.5 0.003

opamp-pvt-gain_margin 10 4425 1475 319.9 92.2 0.313 59.6 8.2 0.168

opamp-pvt-gbw 10 4425 1475 845.7 92.8 0.010 62.4 8.8 0.008

opamp-pvt-idc 10 4425 1475 775.2 91.7 0.000 41.2 8.2 0.000

opamp-pvt-phase_margin 10 4425 1475 268.2 90.9 0.149 49.8 6.6 0.155

High-dimensional

senseamp_pwr 125 3750 1250 failed failed failed 165.8 37.9 4.139

opamp_AV 215 600 200 38.3 18.2 2.933 23.3 9.8 3.628

opamp_SR 215 600 200 34.8 18.2 2.604 37.3 9.5 2.515

compar_bw 639 1502 500 246.2 56.9 16.010 73.7 23.0 16.458

opamp_PM 215 600 200 63.9 18.3 3.678 26.7 9.4 2.441

opamp_BW 215 600 200 34.9 18.3 1.800 31.6 9.6 2.084

mem 385 7500 2500 failed failed failed 422.4 78.3 0.480

senseamp_delay 125 3750 1250 failed failed failed 286.0 38.4 5.135

Divide-and-conquer

GPM
GPM

Example: ML-driven Corners Analysis

• 100% Python
• Python 2.7, numpy, scipy
• scikit-learn for base GPM
• Custom ML:

• Customized GPM for high # samples
• Inner optimization via random search

and derivative-free optimization
• Qt4, Chaco

• 3rd party circuit simulator, environment

ML-driven Corners Analysis: The Stack

Example: Low-Discrepancy Sampling
Status quo: Pseudo-Random Sampling

•The typical simplistic approach to generate samples
• Draws each point separately from other points, using a pseudo-
random number generator (e.g. Mersenne Twister)
• Has issues…

Points clumping together in
small region

Large region has no points

100 samples drawn from 2-d
uniform distribution:

Example: Low-Discrepancy Sampling
Approach: Lattice Rules

• Considers all the variables simultaneously (unlike Latin Hypercube)
• Works well in high dimensionality (unlike digital nets, e.g. Sobol’)
• No heuristics necessary (unlike modified Sobol’)

Example: 100 uniformly-distributed 2d points:

Pseudo-Random Lattice Rules

Average number of samples to achieve
1% error from true yield value.

 GMC filter Comparator Folded opamp Low noise amp Current mirror

Example: Low-Discrepancy Sampling
Benchmark for Yield Estimation

2
8
5

2
1
5

6
5

3
2
5

2
5
5

1
8
0

2
9
5 2

5
0

2
4
5

9
5

5
0

8
0

5
5
0

4
4
5

5
5

Monte Carlo Latin Hypercube Lattice Rules

Legend

Example: Low-Discrepancy Sampling
Convergence of Pseudo-Random vs. OSS
(In estimating mean of VGA bw)

10x fewer
samples
for same
accuracy

Example: Low-Discrepancy Sampling
On Ring Oscillator

Example: ML-driven Design Space Exploration
How: GPMs / high-dim Bayesian opt. + natural interface
Benefit: Speed of opt. with control & insight of manual

Decision variables
are ranked by
importance. User
selects variable(s)…

… to plot predictions of
outcomes at selected
variables

… and explore decision
space (by dragging the
orange crosshairs)

Example: ML-driven Corners Analysis ML-driven Design Space Exploration: The Stack

• 100% Python
• Python 2.7, numpy, scipy
• scikit-learn for base GPM
• Custom ML:

• Customized GPM for high #
samples

• Inner optimization via random
search & derivative-free
optimization

• Qt4, Chaco
• 3rd party circuit simulator, environment)

High-Sigma MC
Fast, accurate,

scalable, verifiable

6σ Monte Carlo

Cell Optimizer
Auto variation-aware design space exploration

of memory/std cells

Fast PVT
2-50X faster

verification across

PVT corners

Fast MC
2-10x faster 3s

verification, statistical

corners

Fast Design Sweep
Fast, thorough manual variation-aware

design space exploration

Solido Variation Designer
Hier. MC

Fast statistical

memory array /

column analysis

•Regression with
interpolation & CIs (KRC:
scalability via divide-and-
conquer on GPM)
•Model-based optimization,

reliably finds global
optimum by accounting for
error in CIs

• 1-d density estimation (extrapolate via NQ)
• Low-discrepancy sampling (High

dimensionality via modified Lattice Rules)
•Data mining for variable sensitivities
• Fast-evaluation opt. (evolutionary progr.)
•Regression w/ interpolation; model-based

opt.

•Rare-event estimation (HSMC algorithm:
transform into ranking problem, solve with
adaptive sampling)
•High-dimensional regression (FFX: pathwise

learning on huge # basis functions)
•High-dimensional classification (FFXC: pathwise ..)
•Data mining for variable sensitivities

•Model-based optimization
•Regression with

interpolation & CIs (KRC:
scalability via divide-and-
conquer on GPM)

•Active learning via model-based optimization
•Regression with interpolation & CIs (KRC:

scalability via divide-and-conquer on GPM)
•High-dimensional visualization / sweep

exploration
•Data mining for variable sensitivities
•Data mining for variable-interaction

sensitivities

•MC sampling on hierarchically organized
design (Fast Hier MC algorithm: transform
into ranking problem, solve with adaptive
sampling)
•High-dimensional regression (FFX)
•High-dimensional classification (FFXC)
•Data mining for variable sensitivities

Summary of Python-powered ML inside Solido

12

14

16

18

20

22

24

26

28

30

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year of production

G
a

te
 l

e
n

g
th

 (
n

m
)

Conclusion: Python & ML Help Drive Moore’s Law
Silicon Midas touch applied to itself
(It helped to design the phone in your pocket, the
servers on the cloud, …)

