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Driving Moore's Law  
with Python-Powered Machine Learning 



Outline 
• Moore’s Law 

• Python, ML, & Moore’s Law 



[Kurzweil] 

“The Moore’s Law of Brain Scanning” 



[Kurzweil] 

“The Moore’s Law of Internet Hosts” 



[Church] 

The Moore’s Law of DNA Sequencing 

1.5x / year  
To 10x / year 

(Sometimes the  
exponent changes) 
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Will the Real Moore’s Law Please Stand Up? (Please stand up) 

[Kurzweil] 

(Hint: not the real Moore’s Law) 



The Moore’s Law of 
Calculations per $ 

[Kurzweil] 

(Hint: not the real Moore’s Law) 



The Actual Moore’s Law 
(About transistor size.) 
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[ International Technology Roadmap for Semiconductors, 2011] 



[Church] 

Redux:  
The Moore’s Law of DNA Sequencing 

1.5x / year  
To 10x / year 

(Celera/Venter/..) 
“Silicon Midas touch” 
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Moore’s Law: How? 
A: Silicon Midas touch applied to itself 
One generation of machines, to design the next generation. 
The ultimate bootstrap!  



Moore’s Law is a Bull. Riding It Enables… 

Content 
Cloud Computing 

Consumer Communications Computing 



A Challenge to Moore’s Law: 
Variation Gone Wild 



A. Asenov, Extreme Statistics in Nanoscale Memory Design, Springer, 2010 

At <22 nm (now), even one atom  
out of place is trouble… 

Transistors are shrinking 
 …but atoms aren’t. 



Variation = atoms out of place 
…Propagating from devices to performance & yield 

…
 

Process  

variation ↑ 

Circuit performance 

variation ↑ 

Device performance 

variation ↑ 



Variation-based Circuit Challenges 

• How to verify a memory with 1 billion bits? (Gbit)  
• How to improve the design? 
    (with variation gone wild) 

 
• How to verify a PLL with 3375 PVT corners? 
• How to improve the design? 
    (with variation gone wild) 

 
• To get lower power, lower delay, lower area, all in less time? 
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Moore’s Law incl. Variation: How? 
Use ML to abstract away the variation from the 
perspective of the designer. 



I build ML-powered CAD tools 
To drive Moore’s Law 



Python, ML & Moore’s Law 



Example: ML-based whitebox models of circuits 

Symbolic 

Modeling 



Example: ML-based whitebox models of circuits 
How: Genetic Programming 

“A function is a tree” 
f(x) = 4.8*x3 + √x2 

4.8 

√ * 

x2 

+ 

x3 

Searches through the space of trees:  

1. Initial random population; evaluate 

2. Create children from parents via operators; evaluate 

3. Select best; goto 2 
 



Example: ML-based whitebox models of circuits 
Crossover Operator in Genetic Programming 



Models with <10% error 

Perf. Expression 

ALF -10.3 + 7.08e-5 / id1  

  + 1.87 * ln( -1.95e+9 + 1.00e+10 / (vsg1*vsg3) 

                     + 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2) ) 

fu 10^( 5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1 ) 

PM 90.5 + 190.6 * id1 / vsg1  +  22.2 * id2 / vds2 

voffset - 2.00e-3 

SRp 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2  

  + 4.63e+8 * id1 

SRn - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2  

  + 109.72 / id1 

Example: ML-based whitebox models of circuits 



Prediction Performance 

Summary: Lower prediction error than FFNNs, Boosted FFNNs, SVMs, GPMs, .. 
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Example: ML-based whitebox models of circuits 



The Stack 
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Example: ML-based whitebox models of circuits 

• 100% Python  
• Python 2.7, numpy, scipy 
• Custom ML algorithm 

• grammar-constrained 
genetic programming 

• function-grammar 
• 3rd party circuit simulator 



Example: ML-based whitebox models redux (FFX) 

FFX 

Problem: Scales poorly past >20 variables 

Algorithm:  

1. Explode # basis functions (e.g. 13 → 100K) 

2. Pathwise learning on elastic net formulation (BHALR), 
track # variables vs. train error 

3. Nondominated filter on test error 
 

Result: scalability & speed ↑ 

• 10K+ input variables 

• 100 – 100K+ training points 

 



Example: ML-based whitebox models redux (FFX) 
The stack 

FFX 

• 100% Python  
• Python 2.7, numpy 
• Scikit-learn 

• Coordinate descent pathwise 
learning 

• Custom ML: FFX 
• Explode # basis functions 
• Nondominated filtering 

 
• General enough for other domains 
• Extends to classification too 
• Open source at trent.st/ffx 



Example: Density Estimation 

Algorithm: 

1. Build many different density models: Gaussian, mixture of 2-4 
Gaussians, lognormal, uniform, Rayleigh, KDE, and more. 

2. Pick model with the best fit in NQ space (not MLE). 

 

Example: Density Estimation with Sane Extrapolation 



• 100% Python  
• Python 2.7, numpy 
• Scipy – kde, optimize (BFGS), 

specific distributions 
• Custom ML algorithm 

• Conversion to/from NQ 
space 

• Special-case distributions 
(e.g. uniform, spike) 

• 3rd party circuit simulator 

Example: Density Estimation with Sane Extrapolation: 
The Stack 



Example: ML-driven Rare Event Estimation 
(High Sigma Monte Carlo) 

Problem: Brute force takes 2 months on 100 cores 
Algorithm:  
1. Active learning on 10K+ dimensions to learn X-> y 
2. Draw & rank 10G pts (≈scale of Google search) 
3. Simulate from highest-rank first (≈ top 10 search results) 
Result: 20 min on 10 cores 

What is probability of these rare,   
   high-impact events happening? 



Conclusion 
Rare Events, HSMC, And Beyond 

Example: ML-driven Rare Event Estimation 
(High Sigma Monte Carlo): The Stack 

• 99% Python  
• Python 2.7, numpy, scipy 
• scikit-learn pathwise learning 
• Custom high-dimensional regression (FFX) 
• Qt4, Chaco  

• 1% C 
• Random number generation - Mersenne Twister. 

(incidentally, traditional LCG is inadequate because 
period is too small.) 

• Simulate regressor on each of 10G points 
• 3rd party circuit simulator, env’t 

 



Example: ML to synthesize analog circuit topologies 
How: Design a language for circuit topologies; populate it; 

then do grammar-constrained multi-obj. tree search 



Example: ML to synthesize analog circuit topologies: 
The Stack 

• 100% Python  
• Python 2.7, numpy, scipy 
• Custom ML algorithms  

• grammar-constrained   genetic 
programming 

• circuit grammar 
• derivative-free optimizer 
• high-resolution interpolator 

• 3rd party circuit simulator 
 

• General enough for other domains 
• Open source at trent.st/mojito 



Example: ML-driven Corners Analysis(Fast PVT) 
• TSMC 28nm, VCO of a PLL  

• Specs: 48.3 < duty cycle < 51.7 %,  3 < Gain < 4.4GHz/V 

• Traditional: 3375 PVT corners to simulate (temp, voltage1, ..) 

• With ML: 275 corners to simulate, as thorough as before 



Example: ML-driven Corners Analysis 

Cast PVT verification as a global optimization problem: 

 Search through space of “corners” - x 
 Minimize / maximize simulated output value f(x) 

            x (Example: temp) 

f(x)  
 

Example:  
pwr(temp) 

Optimal f(x) 
=worst-case pwr 

Then, solve the optimization problem reliably. 



ML-driven Corners Analysis: underlying Model 

• Typically a Gaussian Process Model (GPM) 

– Natural interpolator 

– Convenient confidence intervals 

– Well-behaved, no crazy extrapolation (usually) 
 



ML-driven Corners Analysis 
Benchmarks on 226 Circuit PVT Verification Problems 

• 226 test cases in benchmark suite: 
– From Solido customers, in-house realistic cases, and in-house corner cases targeting 

challenging problems 

– Many contain complex interactions, non-linearities, discontinuities, etc. 

• 226/226 (100%) of cases find true optimum 

• Speedup 2.34X to 226X 

• Median speedup is 22X 
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ML-driven Corners Analysis: Scalability Challenge 

• Problem: GPM training is O(N3) on # Training Samples 
• Becomes very unhappy when >1000 samples 
• This happens for circuit verification problems with larger # 

dimensions and highly nonlinear circuit 
• First solution: just cut loose and sim all 
• Is there a better way? 



ML-driven Corners Analysis:  
Divide-and-Conquer on Training Samples 

• New model is a set of Gaussian Process Models (GPM) 
• One GPM for each region of input x space 
• Regions are automatically determined at build time 

– Via classic CART learning 
– Stop at a leaf when <700 samples 

• Build a GPM on each leaf’s samples (and k neighbors) 
– Each GPM is O(1) on # training samples because N=const 
– CART learning is O(N log N) on # samp with tiny constant 

 

x1 

x2 

GPM 5 
GPM 4 

GPM 3 

GPM 2 

GPM 1 



ML-driven Corners Analysis: 
Benchmarking: GPM vs Divide-and-Conquer GPM 

Problem

# 

vars

# train 

pts

# test 

pts

Build 

Time (s)

Test 

Time (s) Error

Build 

Time

Test 

Time Error

Low-dimensional

opamp-pvt-bandwidth 10 4425 1475 667.4 91.1 0.044 55.6 7.4 0.006

opamp-pvt-dc_gain 10 4425 1475 741.9 91.5 0.001 57.9 8.5 0.003

opamp-pvt-gain_margin 10 4425 1475 319.9 92.2 0.313 59.6 8.2 0.168

opamp-pvt-gbw 10 4425 1475 845.7 92.8 0.010 62.4 8.8 0.008

opamp-pvt-idc 10 4425 1475 775.2 91.7 0.000 41.2 8.2 0.000

opamp-pvt-phase_margin 10 4425 1475 268.2 90.9 0.149 49.8 6.6 0.155

High-dimensional

senseamp_pwr 125 3750 1250 failed failed failed 165.8 37.9 4.139

opamp_AV 215 600 200 38.3 18.2 2.933 23.3 9.8 3.628

opamp_SR 215 600 200 34.8 18.2 2.604 37.3 9.5 2.515

compar_bw 639 1502 500 246.2 56.9 16.010 73.7 23.0 16.458

opamp_PM 215 600 200 63.9 18.3 3.678 26.7 9.4 2.441

opamp_BW 215 600 200 34.9 18.3 1.800 31.6 9.6 2.084

mem 385 7500 2500 failed failed failed 422.4 78.3 0.480

senseamp_delay 125 3750 1250 failed failed failed 286.0 38.4 5.135

Divide-and-conquer 

GPM
GPM



Example: ML-driven Corners Analysis 

• 100% Python  
• Python 2.7, numpy, scipy 
• scikit-learn for base GPM 
• Custom ML: 

• Customized GPM for high # samples 
• Inner optimization via random search 

and derivative-free optimization 
• Qt4, Chaco  

• 3rd party circuit simulator, environment 

ML-driven Corners Analysis: The Stack 



Example: Low-Discrepancy Sampling 
Status quo: Pseudo-Random Sampling 

•The typical simplistic approach to generate samples 
• Draws each point separately from other points, using a pseudo-
random number generator (e.g. Mersenne Twister) 
• Has issues… 

Points clumping together in 
small region 

Large region has no points 

100 samples drawn from 2-d 
uniform distribution: 



Example: Low-Discrepancy Sampling 
Approach: Lattice Rules  

• Considers all the variables simultaneously (unlike Latin Hypercube) 
• Works well in high dimensionality (unlike digital nets, e.g. Sobol’) 
• No heuristics necessary (unlike modified Sobol’) 
 
Example: 100 uniformly-distributed 2d points: 

Pseudo-Random Lattice Rules 



Average number of samples to achieve  
1% error from true yield value. 

 

 

 

 

 
  
 
 
 
  GMC filter               Comparator          Folded opamp        Low noise amp      Current mirror 

Example: Low-Discrepancy Sampling 
Benchmark for Yield Estimation 
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Example: Low-Discrepancy Sampling 
Convergence of Pseudo-Random vs. OSS 
(In estimating mean of VGA bw) 

10x fewer 
samples 
for same 
accuracy 



Example: Low-Discrepancy Sampling 
On Ring Oscillator 



Example: ML-driven Design Space Exploration 
How: GPMs / high-dim Bayesian opt. + natural interface 
Benefit: Speed of opt. with control & insight of manual 

Decision variables 
are ranked by 
importance. User 
selects variable(s)… 

… to plot predictions of 
outcomes at selected 
variables  

… and explore decision 
space (by dragging the 
orange crosshairs) 



Example: ML-driven Corners Analysis ML-driven Design Space Exploration: The Stack 

• 100% Python  
• Python 2.7, numpy, scipy 
• scikit-learn for base GPM 
• Custom ML: 

• Customized GPM for high # 
samples 

• Inner optimization via random 
search & derivative-free 
optimization 

• Qt4, Chaco  
• 3rd party circuit simulator, environment) 



High-Sigma MC 
Fast, accurate,  

scalable, verifiable  

6σ Monte Carlo 

Cell Optimizer  
Auto variation-aware design space exploration 

of memory/std cells 

Fast PVT 
2-50X faster  

verification across  

PVT corners 

Fast MC 
2-10x faster 3s 

verification,  statistical 

corners 

Fast Design Sweep 
Fast, thorough manual variation-aware  

design space exploration 

Solido Variation Designer 
Hier. MC 

Fast statistical 

memory array / 

column analysis 

•Regression with 
interpolation & CIs (KRC: 
scalability via divide-and-
conquer on GPM) 
•Model-based optimization, 

reliably finds global 
optimum by accounting for  
error in CIs 

• 1-d density estimation (extrapolate via NQ) 
• Low-discrepancy sampling (High 

dimensionality via modified Lattice Rules) 
•Data mining for variable sensitivities 
• Fast-evaluation opt. (evolutionary progr.) 
•Regression w/ interpolation; model-based 

opt. 

•Rare-event estimation (HSMC algorithm: 
transform into ranking problem, solve with 
adaptive sampling) 
•High-dimensional regression (FFX: pathwise 

learning on huge # basis functions) 
•High-dimensional classification (FFXC: pathwise ..) 
•Data mining for variable sensitivities 

•Model-based optimization 
•Regression with 

interpolation & CIs (KRC: 
scalability via divide-and-
conquer on GPM) 

•Active learning via model-based optimization 
•Regression with interpolation & CIs (KRC: 

scalability via divide-and-conquer on GPM) 
•High-dimensional visualization / sweep 

exploration 
•Data mining for variable sensitivities 
•Data mining for variable-interaction 

sensitivities 

•MC sampling on hierarchically organized 
design (Fast Hier MC algorithm: transform 
into ranking problem, solve with adaptive 
sampling)  
•High-dimensional regression (FFX)  
•High-dimensional classification (FFXC) 
•Data mining for variable sensitivities 

Summary of Python-powered ML inside Solido 



12

14

16

18

20

22

24

26

28

30

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year of production

G
a

te
 l

e
n

g
th

 (
n

m
)

Conclusion: Python & ML Help Drive Moore’s Law 
Silicon Midas touch applied to itself 
(It helped to design the phone in your pocket, the 
servers on the cloud, …) 


