Predicting Black Swans for Fun and Profit

High-Dimensional Estimation of Low Failure Rates for Memory Design

Trent McConaghy

Co-founder & CTO, Solido Design Automation Inc. www.solidodesign.com www.trent.st

Berlin, February 2014

2008 Market Crash

High Impact, Low probability = Black Swan

THE BLACK SWAN

The Impact of the HIGHLY IMPROBABLE

Nassim Nicholas Taleb (NNT)

Sony PlayStation Sony PS3 Black Swan Phenomenal Production Vield

Sony Hopes to Fulfill Demand for PlayStation 4 This Year [09/16/2013 11:10 PM] by <u>Anton Shilov</u>

When Sony Corp. launched its PlayStation 3 game console seven years ago, the firm face a number of problems, one of which was high price of the system and another one was poor yield of Cell processor, the heart of the PS3. With PlayStation 4 the <u>company</u> of made a lot of decisions differently and now it hopes that the same issues that harmed success of the PS3 will not hurt the PS4.

"It is everything we can manufacture. We want to make sure that consumers have an opportunity to buy one on November 15 and through holding back some inventory to make sure that people have an opportunit on launch **High Impact (for Sony)**, anufacture, and the production yields have been people and the biggest launch we have **Low probability (at least Sony thought so)** and the in an interview with Fox Business, reports Games Industry web-site.

Low predictability is a common Black Swan characteristic

Q: How to handle Black Swans?

NNT: (Since hard to predict) don't try to predict. Protect from downside, gain upside

Money, And Moore's Law

1G phones a year 56% smartphones (个) • \$150G now, \$300G in 2015

Chips Power Smartphones

Chips Are Everywhere (not just Smartphones)

This is the \$300G / year Semiconductor Industry.

But smartphones *are* the biggest driver for chips' speed, power, memory.

Moore's Law: Shrinking Transistors

For faster, lower power, and better-packed transistors Therefore faster, lower power, and higher-memory *smartphones*

[International Technology Roadmap for Semiconductors, 2011]

Transistors are shrinking But atoms aren't!

A. Asenov, "Statistical Nano CMOS Variability and Its Impact on SRAM", Chapter 3, A. Singhee and R. Rutenbar, Eds., Extreme Statistics in Nanoscale Memory Design, Springer, 2010

Variation = atoms out of place ...Propagating from devices, to circuit, to yield

Variation = atoms out of place

...Propagating from devices, to circuit, to yield... to finances

Q: How to handle *semiconductor* Black Swans?

NNT: (Since hard to predict) don't try to predict. Semiconductor: Predict, even if it's hard. \$G's at stake.

Yield Prediction

The Yield Prediction Problem

We know:

- The distribution for input variables. E.g. r1,r2 are NIID
- Given an input point, a way to estimate an output like power. E.g. simulation
- Constraint for output. E.g. power < 1 mW

We want to know:

- Yield = volume under PDF that meets output constraint
- Alternatively, Pfail = 1 yield

Example approach: Monte Carlo (shown)

- Draw N points in input space
- Simulate each
- Est. yield = (# meet constraint) / N

High-Sigma Yield Prediction

Memory Bitcell Failures are Highly Improbable (1/1G) How can we estimate yield? Try Monte Carlo...

power

Let's Survey Approaches... Approach: 10K Monte Carlo Samples

	10K Monte Carlo Samples
Fast	Yes
Accurate	No
Scalable	Yes
Verifiable	Yes

Approach: 5G MC Samples

	10K MC Samples	5G MC Samples	
Fast	Yes	No	
Accurate	No	Yes	
Scalable	Yes	Yes	
Verifiable	Yes	Yes	

density

Approach: MC + Extrapolate Tail

		MC + Extrapolate Tail
Fast	••	No
Accurate	••	No
Scalable	••	Yes
Verifiable	••	No

Approach: Importance Sampling

Step 1: Find highest-probability regions of process space that cause infeas.Step 2: Draw points from a distribution that is *biased to those regions*

Prob. Failure = weighted sum of failing points Yield = (1 - Prob. Failure)

Approach: Importance Sampling

		Importance Sampling
Fast	••	Yes
Accurate	••	No
Scalable	••	Sometimes
Verifiable	••	No

Approach: Worst-Case Distances (WCD)

		WCD
Fast	••	Yes
Accurate	••	No
Scalable	••	Sometimes
Verifiable	••	No

High-Sigma Yield Prediction: A New Approach

Rethinking the problem

Hint: Benefit of MC: computational complexity is *independent of dimensionality* (pretty amazing!)

Hint: In other domains, can simplify the problem by adding more information about the problem

Hint: Adding info "problem is 1/1G failures" means we have to consider "just" 10^{10} MC samples. $10^{10} \ll 10^{150}$

Idea: Recast the yield estimation problem into a *ranking* problem: of the 10^{10} MC samples, find the 10-50 that are highest-rank. (\approx web search problem)

Approach: High-Sigma Monte Carlo (HSMC)

- 1. Generate (but don't simulate) 5G **Monte Carlo samples**
- 2. Order the 5G samples:
 - Choose initial samples, & simulate
 - Build model that predicts order
 - Order the samples using model
- 3. Simulate in that order
 - Until tail found / all failures found

offset

HSMC: Algorithm Details

 Generate (but don't simulate) 5G Monte Carlo samples

 Choose initial samples = the 1000 generated samples that are farthest from nominal

- Simulate initial samples
- Build model that predicts order, mapping process points → simulated output values

• Order the samples using model. Simulate the points in order, until all failures found or max # sims hit

(PS Parallelize everything: generating samples, simulating, model-building, sorting 5G samples)

Contour lines are model- predicted output values.

Details of HSMC Modeling

 $\lambda = 0$

(reduces to LS)

- 1K to 40K training points, 60 to 30K variables
- For real-valued outputs, use regression:
 - basis functions are 2nd order polynomial & hockey-stick
 - elastic-net regularized formulation
- solve with coordinate descent
 "Fast Function Extraction" (FFX)
 - For binary-valued outputs: use two-class classification:
 basis functions like regression
 - logistic regression formulation
 - solve with stochastic gradient descent

This is pathwise regularized linear learning

HSMC on Example Test Problem I (delta bit voltage on 6T SRAM bitcell)

HSMC in Action: NQ Plot of Bitcell cell_i

(HSMC worked off 100M generated)

HSMC On Binary-Valued Outputs Example on 30K-Variable Memory Column

⁵⁴⁵ simulations failed 💧

Summary of Approaches To Yield Prediction

	10K MC	5G MC	MC + Extrap.	Importance Sampling	Worst-Case Distances	HSMC
Fast	Yes	No	No	Yes	Yes	Yes
Accurate	Νο	Yes	Νο	Νο	Νο	Yes
Scalable	Yes	Yes	Yes	Sometimes	Sometimes	Yes
Verifiable	Yes	Yes	No	No	Νο	Yes

Sony's doing Yield Prediction. PS4 != Black Swan

Sony PlayStation 4 Enters Mass Production, Has Phenomenal Production Yield.

Sony Hopes to Fulfill Demand for PlayStation 4 This Year

[09/16/2013 11:10 PM] by <u>Anton Shilov</u>

When Sony Corp. launched its PlayStation 3 game console seven years ago, the firm face a number of problems, one of which was high price of the system and another one was poor yield of Cell processor, the heart of the PS3. With PlayStation 4 the <u>company</u> I made a lot of decisions differently and now it hopes that the same issues that harmed success of the PS3 will not hurt the PS4.

COMMENTS

(13)

"It is everything we can manufacture. We want to make sure that consumers have an opportunity to buy one on November 15 and through the holidays, so we are

Semiconductor companies now routinely use HSMC to predict their black swans

and many more

Conclusion

- Black swan events are very rare and high impact
- A popular belief is that they are unpredictable.
 - Advice: "Don't try to predict. Just protect from downside, and stay open for upside."
- So what if something's hard? That's a challenge to algorithms people :)
- The specific problem to solve the high-sigma yield prediction.
- Many approaches (extrapolate, importance sampling, WCD).
- A new approach, High-Sigma Monte Carlo, ranks 5G points with the help of machine learning.
- HSMC slays semiconductor black swans