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Abstract— This extended abstract describes variation issues 

in custom integrated circuits (ICs), and how those issues can be 

addressed via small, specific changes to corner-based design 

flows. It provides a case study in high-sigma standard cell 

optimization. 

Keywords—analog circuit; process variation; high-sigma 

analysis;custom integrated circuit; standard cell; optimization 

I. INTRODUCTION 

Analysis in the analog domain – continuous values in 
signals or in time – is necessary not only for classical analog 
circuits like opamps or bias generators, but also for custom 
circuits where analog behavior must be considered, including 
memory cells (bitcells, sense amps) and digital standard cells 
(NAND gates, flip flops).  

Environmental variation (temperature, Vdd, etc.), global 
process variation, and local process variation (mismatch) have 
always been around. With each new process node, the effect of 
variation has multiplied. For example, variance in electrical 
device performance doubled in one process node step, going 
from 40nm to 28nm in GF. Figure 1 illustrates. Transistors are 
getting smaller, but atoms aren’t. Gate oxides are only a few 
atoms thick, so even a few atoms out of place can make a big 
difference. Atomic variation leads to variation in electrical 
device performance, which leads to variation in electrical 
circuit performance at ever-higher levels of hierarchy.  

 

Figure 1: Process Variation: GF 40-nm vs. 28-nm. 

Increased variation was also observed for mismatch 

variation, and for global & mismatch combined; for both 

NMOS and PMOS. From [1]. 

II. MODERN CORNER-BASED VARIATION-AWARE DESIGN 

Variation ultimately hurts yield, or power/performance/area 
(take your pick – they are flip sides of the same coin). For 
some circuits, the effect of variation on performance has been 
long recognized, such as SRAM bitcells or Δ-Σ ADCs. But a 
simple Monte Carlo (MC) run on virtually any custom circuit 
will reveal a spread in its outputs, indicating a major effect of 
process variation on performance.   

On modern process nodes from 40 to 28 to 22/20 to 
16/14nm, design to handle variation has become essential. 
There have been many proposals over the years to counter the 
effects of variation. Revolutionary changes to methodology 
have been proposed, such as mandating automated sizing or 
direct MC on response surface models. Fortunately, there’s an 
easier way; no revolution is necessary.  

The key is in preserving corner-based design. But now, 
corners must be better: they must capture the bounds of the 
circuit performances rather than device performances [2]. 
Figure 2 illustrates. 

 

Figure 2: Left: a good statistical corner captures an n-

sigma bound of the circuit’s performance distribution. 

Right: improving the design against such a corner 

implicitly improves the whole distribution.  
 



 

Figure 3: A three-step corner-based variation-aware 

design flow. One extracts accurate statistical corners, 

designs on them, and finishes with accurate statistical 

verification. This variant has high-sigma corners and 

verification, with automated sizing. 

 
Designing on such “true analog” corners is implicitly 

“improving performance, subject to 3σ yield” 
1,2

.  

Once the design has been improved against the corners,  
there must be a more rigorous verification step. For example, 
one could run Monte Carlo until confident that 3σ yield is met / 
not met.  

Figure 3 illustrates a three-step flow that embodies these 
aims for high-σ: (i) extract high-σ corners, (ii) design on those 
corners, and (iii) verify to high-σ.  In step (ii), a full statistical 
analysis is not needed; just corner(s) are simulated. This 
enables rapid design iterations. Step (iii) is needed in case step 
(i)’s corners become inaccurate during step (ii) from the 
interaction between sizing variables and process variables. 

Effective variation tools are designed to support each step 
in the flow well. For each step, variation-aware tools should 
not only be fast and accurate, they must also be scalable and 
verifiable. The latter is extremely important: one must be able 
to trust the tool, and know if the tool has failed. This is akin to 
SPICE reporting non-convergence in solving for KCL.  

Besides the 3σ variation-aware design described above, 
there is also PVT design, with worst-case performance across 
PVT corners; and high-σ design for the statistical 4-6 σ level 
(1/1M to 1/1G failure rates).  

III. CASE STUDY: STANDARD CELL OPTIMIZATION 

For our case study of standard cell optimization, high-σ 
design is the most appropriate of the possible corner-based 
variation-aware design flows.  

Figure 4 illustrates the three-step approach on the specific 
case study circuit – minimizing 5σ setup time of a flip flop 
standard cell. We now elaborate on each step. 

                                                           
1 3σ as in 99.86% overall yield, where “σ” (sigma) is a unit of yield like 

“probability of failure”, not as in 3 standard deviations from mean.  
2 We are not restricted to just 3σ either. It can be 5σ, 6σ, 4.1243σ, or 
whatever. 

 

Figure 4: High-σ optimization of a flip flop, via (i) right -- 

generate original high-σ distribution and extract 5σ corner 

(ii) middle -- automatically change sizings to minimize 

setup time at 5σ corner, (iii) left -- run high-σ analysis for 

final verification. Each step uses SPICE in the loop. 
 

A. Step (i) – Extract Design-Specific High-σ  Corners 

We performed step (i) using Solido High-Sigma Monte 
Carlo (HSMC) to identify the tail distribution of flip flop setup 
time.  

Figure 5 illustrates the behavior of the HSMC algorithm; 
[2] provides further detail describing how it is fast, accurate, 
scalable, and verifiable.  

In our case study on the flip flop, HSMC drew 100M MC 
samples, then used adaptive data mining to identify which tail 
MC samples to actually simulate. It needed <2000 simulations 
total.  

Figure 4 right illustrates the tail distribution of flip flop 
setup time, as found by HSMC. Each dot corresponds to an 
MC sample, a point in process variation space. We retrieved a 
process point at 5σ (148 ps), to use as a corner. 

B. Step (ii) – Optimize on High-σ  Corners 

In the three-step flow, step (ii) can be performed manually 
or automatically.  

Automated sizing is palatable for standard cells because 
libraries having hundreds of cells may need re-sizing at once, 
e.g. for porting to a new process or re-optimizing from speed to 
power; and standard cells have simpler constraints than analog 
circuits. In our case study, we used Solido Cell Optimizer.  



Figure 5: Solido High-Sigma Monte Carlo (HSMC) Algorithm, for verifying circuits and extracting corners at 4-6σ [2]. 

 
Figure 6 illustrates the behavior of the Cell Optimizer 

algorithm [3]. It uses nonlinear regression models [4] to 
efficiently choose new simulations. To avoid model “blind 
spots” which could lead to local optima, new simulations are 
partly chosen based on model uncertainty.  

In our flip flop case study, the Cell Optimizer minimized 
setup time on the 5σ corner from step (i). It took <500 
simulations.  

 

Figure 6: Cell optimizer algorithm 

 
 

 

C.  Step (iii) – Statistical Verify 

We performed step (iii) by running Solido HSMC to verify 
the optimized flip flop design to 5σ. The final setup time tail 
distribution is shown in Figure 3 left. We see that setup time 
has reduced by 32% (at 5σ).  

IV. EXTENDED ABSTRACT CONCLUDING REMARKS  

To our knowledge, the flow shown is the only approach to 
SPICE-accurate high-σ standard cell optimization. More 
generally, this is the high-σ instance of a variation-aware 
design methodology in Figure 3.  

This methodology can also be applied for 3σ style variation 
and PVT style variation. To apply to 3σ or PVT design, one 
simply replaces the high-σ tool with a fast 3σ tool or a fast 
PVT tool respectively  (e.g. Solido Fast MC, Fast PVT [3]). 
For sizing, one can use manual or automated corner-based 
tools. 
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