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FAST FUNCTION EXTRACTION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of prionty of
U.S. Provisional Patent Application No. 61/493,643 filed Jun.

6, 2011, which 1s incorporated herein by reference in its
entirety.

FIELD

[0002] The present disclosure relates to automatically gen-
erating functions that map a set of input variables to an output
variable, for use 1n scientific/engineering analysis and design.
More particularly, the present disclosure relates to design
tools used to improve the performance and vyield of analog,

mixed-signal, and custom digital electrical circuit designs
(ECDs).

BACKGROUND

[0003] Symbolic models of analog circuits have many
applications. Fundamentally, they increase a designer’s
understanding of a circuit, which leads to better decision
making in circuit sizing, layout, verification, and topology
design. Automated approaches to symbolic model generation
are therefore of great interest.

[0004] In symbolic analysis, models are derived via topol-
ogy analysis, a survey of which 1s found 1n G. E. Gielen,
“Techniques and Applications of Symbolic Analysis for Ana-
log Integrated Circuits: A Tutorial Overview”, in Computer
Aided Design of Analog Integrated Circuits And Systems, R.
A. Rutenbar et al., eds., IEEE, 2002, pp. 245-261. The main
weakness of symbolic analysis 1s that 1t 1s limited to linear and
weakly nonlinear circuits.

[0005] Leveraging simulations from a Simulation Program
with Integrated Circuit Emphasis (SPICE), 1n circuit model-
ing, can be useful because simulators readily handle nonlin-
car circuits, as well as environmental effects, manufacturing
elfects, and different technologies. Simulation data has been
used to train neural networks as shown in: P. Vancorenland, G.
Van der Plas, M. Steyaert, G. Gielen, W. Sansen, “A Layout-
aware Synthesis Methodology for RF Circuits,” Proc. ICCAD
01, November 2001, p. 338; H. Liu, A. Singhee, R. A. Ruten-
bar, L. R. Carley, “Remembrance of Circuits Past: Macro-
modeling by Data Mining 1n Large Analog Design Spaces,”
Proc. DAC 02, June 2002, pp. 437-442"; and G. Wolie, R.
Vemuri, “Extraction and Use of Neural Network Models 1n
Automated Synthesis of Operational Amplifiers.” [EEE
Trans. CAD, February 2003. However, such modeling pro-
vide no sight to the designer.

[0006] The aim of symbolic modeling 1s to use simulation
data to generate interpretable mathematical expressions that
relate the circuit performances to the design variables. In W.
Daems, G. Gielen, and W. Sansen, “An Efficient Optimiza-
tion-based Technique to Generate Posynomial Performance
Models for Analog Integrated Circuits”, Proc. DAC 02, June
2002; and W. Daems, G. Gielen, W. Sansen, “Simulation-
based generation of posynomial performance models for the
s1zing of analog integrated circuits,” IEEE Trans. CAD 22(3),
May 2003, pp. 517-534, symbolic models are built from a
posynomial (positive polynomial) template. The main prob-
lem 1n this approach 1s that the models are constrained to a
template, which restricts the functional form and 1n doing so
also 1imposes bias. Also, the models have dozens of terms,
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limiting their interpretability (1.€., the insight they provide 1s
often limited). Finally, the approach assumes posynomials
can fit the data; in circuits, there 1s no guarantee of this, and
one might never know 1n advance.

[0007] Onthe other end of the spectrum are approaches that
generate more open-ended models. Traditional genetic pro-
gramming (GP) (e.g., see John R. Koza. Genetic Program-
ming. MIT Press, 1992) uses a population-based search to
traverse a set of possible tree expressions, where each tree
expression represents a function. Unfortunately, the returned
functions are overly complex. A variant called CAFFEINE
(T. McConaghy, T. Eeckelaert, G. G. E. Gielen, CAFFEINE:
template-free symbolic model generation of analog circuits
via canomical form functions and genetic programming, in
Proc. Design Automation and Test in Furope (DATE), pp.
1070-1075, Mar. 7-11, 2005) uses a special grammar to
restrict the search space to functions that are easier for
humans to interpret. These approaches have other drawbacks:
they are time-consuming for larger problems; they return
models with high prediction error when there 1s high input
dimensionality and fewer samples; and they are stochastic,
which means they can return very different results from run to
run, and convergence 1s hard to predict.

[0008] Therefore improvements in symbolic modeling of
clectrical circuit designs are desirable.

SUMMARY

[0009] In a first aspect, the present disclosure provides a
tangible, non-transitory computer-readable medium having,
stored thereon 1nstructions to be carried out by a computer to
perform a method to model a performance metric of a system
as a function of variables of the system. The method com-
prises: 1n accordance with a set of sample points of a space
defined by the variables of the system, calculating a value of
the performance metric for each point of the set of sample
points, the values of the performance metric defining perfor-
mance data; in accordance with the set of sample points and in
accordance with the performance data, performing, on a set of
basis functions, each basis fTunction having associated thereto
a weight factor, a pathwise regularized linear regression algo-
rithm having associated thereto a regularization term, to
obtain multiple models of the performance metric of the
system at respective multiple values of the regularization
term, each model having a set of weight factors values, each
value of the regularization term having associated thereto a
single model of the performance metric; for a plurality of
regularization term values, calculating an error value and a
complexity value of a corresponding model of the perfor-
mance metric; and for the plurality of regularization term
values, performing a non-dominated filtering of the models
corresponding to the plurality of regularization term values,
the non-dominated filtering being performed in accordance
with the error value and the complexity value of each model,
the non-dominated filtering to obtain non-dominated models
of the performance metric.

[0010] Inasecond aspect, the present disclosure provides a
tangible, non-transitory computer-readable medium having
stored thereon 1nstructions to be carried out by a computer to
perform a method to model a performance metric of a system
as a function of variables of the system. The method com-
prises: 1n accordance with a set of sample points of a space
defined by the variables of the system, calculating a value of
the performance metric for each point of the set of sample
points, the values of the performance metric defining perfor-
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mance data; generating a first set of basis functions consisting,
of univariate basis functions; in accordance with the set of
sample points and 1n accordance with the performance data,
performing, on the set of univanate basis functions, each
univariate basis function having associated thereto a weight
factor, a pathwise regularized linear regression algorithm
having associated thereto a first regularization term, to obtain
multiple models of the performance metric of the system at
multiple values of the first regularization term, each model
having a respective set of weight factors values, each value of
the first regularization term having associated thereto a single
model of the performance metric; identifying a model having,
a lowest test error to obtain an 1dentified model; 1dentifying
the univariate basis functions of the identified model that have
the highest impacts, to obtain identified univariate basis func-
tions; 1n accordance with the 1dentified univariate basis func-
tions, generating a set of bivariate basis functions; generating,
a union set of basis functions comprising the identified
univariate basis functions and the set of bivariate basis func-
tions; 1n accordance with the first set of sample points and in
accordance with the performance data, performing, on the
union set of basis functions, each basis function having asso-
ciated thereto a weight factor, a pathwise regularized linear
regression algorithm having associated thereto a second regu-
larization term, to obtain multiple models of the performance
metric of the system at multiple values of the second regular-
ization term, each model having a respective set of weight
factors values, each value of the second regularization term
having associated thereto a single model of the performance
metric; and for a plurality of second regularization term val-
ues, calculating an error value of a corresponding model of
the performance metric.

[0011] In a thurd aspect, the present disclosure provides a
tangible, non-transitory computer-readable medium having,
stored thereon instructions to be carried out by a computer to
perform a method to model a performance metric of a system
as a function of variables of the system. The method com-
prises: 1 accordance with a set of sample points of a space
defined by the variables of the system, calculating a value of
the performance metric for each point of the set of sample
points, the values of the performance metric defining perifor-
mance data; generating a first set of basis functions consisting,
of univariate basis functions; in accordance with the set of
sample points and in accordance with the performance data,
performing, on the set of univanate basis functions, each
univariate basis function having associated thereto a weight
factor, a pathwise regularized linear regression algorithm
having associated thereto a first regularization term, to obtain
multiple models of the performance metric of the system at
multiple values of the first regularization term, each model
having a respective set of weight factors values, each value of
the first regularization term having associated thereto a single
model of the performance metric; identifying a model having
a lowest test error to obtain an identified model; 1dentifying
the univariate basis functions of the identified model that have
the highest impacts to obtain identified univariate basis func-
tions; 1n accordance with the identified univariate basis func-
tions, generating a set o bivariate basis functions; generating,
a union set of basis functions comprising the identified
univariate basis functions and the set of bivariate basis func-
tions; 1n accordance with the first set of sample points and in
accordance with the performance data, performing, on the
union set of basis functions, each basis function having asso-
ciated thereto a weight factor, a pathwise regularized linear
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regression algorithm having associated thereto a second regu-
larization term, to obtain multiple models of the performance
metric of the system at multiple values of the second regular-
ization term, each model having a respective set of weight
factors values, each value of the second regularization term
having associated thereto a single model of the performance
metric; for a plurality of second regularization term values,
calculating an error value and a complexity value of a corre-
sponding model of the performance metric; and for the plu-
rality of second regularization term values, performing a non-
dominated filtering of the models corresponding to the
plurality of second regularization term values, the non-domi-
nated filtering being performed 1n accordance with the error
value and the complexity value of each model, the non-domi-
nated filtering to obtain non-dominated models of the perfor-
mance metric.

[0012] Other aspects and features of the present disclosure
will become apparent to those ordinanly skilled in the art
upon review of the following description of specific embodi-
ments of the disclosure 1n conjunction with the accompany-
ing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Embodiments of the present disclosure will now be
described, by way of example only, with reference to the
attached drawings, wherein:

[0014] FIG. 1A shows an example of a plot of weight coet-
ficients as a function of a regularization parameter for the
regularization parameter having a value of 107°.

[0015] FIG. 1B shows an example of a plot of weight coet-
ficients as a function of the regularization parameter for the
regularization parameter reaching a value of 10°°.

[0016] FIG. 1C shows an example of a plot of weight coet-
ficients as a function of the regularization parameter for the
regularization parameter reaching a value of 10°°.

[0017] FIG. 1D shows an example of a plot of weight coet-
ficients as a function of the regularization parameter for the
regularization parameter reaching a value of 10'°.

[0018] FIG. 1E shows an example of a plot of weight coet-
ficients as a function of the regularization parameter for the
regularization parameter reaching a value of 10"

[0019] FIG. 1F shows an example of a plot of weight coet-
ficients as a function of the regularization parameter for the
regularization parameter reaching a value of 107",

[0020] FIG. 2 show an embodiment of a flow for a method
ol the present disclosure.

[0021] FIG. 3A shows the same plot as FIG. 1F.

[0022] FIG. 3B shows a plot of training error as a function
of the regularization parameter of FIG. 3A.

[0023] FIG. 3C shows a plot of testing error as a function of
the regularization parameter of FIG. 3A.

[0024] FIG. 4A shows a plot of model complexity as a
function of the regularnization parameter of FIG. 3A.

[0025] FIG. 4B shows a plot of test error as a function of
complexity for models obtained through the exemplary flow

of FIG. 2.

[0026] FIG. 5A shows the circuit diagram of an operational
amplifier used 1n an example of the present disclosure.
[0027] FIG. 5B shows a plot of test error as a function of a
number of bases present 1n a phase margin model of the
operational amplifier of FIG. SA.

[0028] FIG. 6 shows an example of a flow for generating
unmivariate basis functions 1n accordance with the present dis-
closure.
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[0029] FIG. 7 shows an example of a flow for generating
bivariate basis functions in accordance with the present dis-
closure.

[0030] FIG. 8 shows another an embodiment of a flow for a
method of the present disclosure.

DETAILED DESCRIPTION

[0031] Pathwise regularized learming 1s a known technique
that can be used 1n the present disclosure. The following
presents concepts used in pathwise regularized learning.
[0032] A known class of functions 1s that of generalized
linear models (J. A. Nelder and R. W. M. Wedderburn, “Gen-
eralized linear models”, Journal of the Royal Statistical Soci-
ety, Vol. 135, 1972, pp. 370-384). A generalized linear model
¥(x)is a linear combination of N, basis functions B *, i={1, 2,
N }. The generalized linear model ¥(x) can be written as:

Plx)=w_+Z w,*B.(x) (equation 1)

where the summation X 1s carried out on all the values of the
summation index 1. The generalized linear model y(x) is to
model data (simulated or measured) represented as y(x), both
y(x) and y(x) are functions of data points x, which can have
any dimensionality.

[0033] Least-squares learning, which 1s also known, aims
to find the values for each coetlicient w, (which can also be
referred to as weights or weight coellicients) 1n equation 1,
such that that |ly—X*w|[* is minimized (where the X are the N
training input points, each with dimension n, and y are the
target training output values). Stated otherwise, least squares
fitting aims to find the values of each coelficient w, such that
the sum

N
> i) = $;(x)°

=1

1s minimized. Therefore, least-squares learning aims to mini-
mize training error; it does not acknowledge testing error
(future model prediction error). Because it 1s singularly
focused on training error, least-squares learning may return
model coefficients w={w,, w,, ... } where a few coefficients
are extremely large, making the model overly sensitive to
those coetlicients. This scenario can be referred to as an
over-fitting scenario.

[0034] Regularized learning 1s known 1n the art and aims to
mimmize the model’s sensitivity to over-fitted coetlicient
values, by addmg minimization terms that are dependent
solely on the coefficients: ||w|[* or ||w||,==Iw,|. This has the
implicit effect of minimizing expected future model predic-
tion error (testing error). The overall problem formulation 1s:

wh=minimize [|[y=X7w|[*+h,|w|*+h, W] (equation 2).

[0035] Equation 2 can be written as

(equation 3)

"N N N T
w' = Minimize Z (yi(x) — jfi(xjjz + Agz Wf + MZ |w;|
= i=1 i=1 |

[0036] A, andA, areregularization terms (also referred to as
regularization parameter or regularization coetlicient). It 1s
not required that they both be present. For example, 1n some
embodiments, only A, or A, are used. However, including
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both regularization terms A, and A, 1s known as an elastic net
formulation of regularized learning (H. Zou and 'T. Hastie,
“Regularization and variable selection via the elastic net,”
Journal Of The Royal Statistical Society Series B, Vol. 67,
Number 2, 2005, pp. 301-320). The middle term (A, ||w|*—
the quadratic term, like ndge regression), encourages corre-
lated variables to group together rather than letting a single
variable dominate, and makes convergence more stable. The
last term (A,||w||, term, like Lasso), drives towards a sparse
model with few coelficients, but discourages any coetficient
from being too large. To make the balance between A, and A,
explicit, 1t 1s possible to set A=A and A,=(1-p)*A, where A 15
now the regularization weight, and p 1s a “mixing parameter.”
[0037] Looking at equation 3, we see that it A=0, then the
solution reduces to a least-squares solution. Conversely, as
h—>c0, then the least-squares term of equation 3 has no effect
and only the regularization term matters; and the optimal
value of each w, 15 0.0.

[0038] In pathwise regularnized learming, the algorithm
sweeps across a set of possible A values, from A—co (huge A)
to A=0 (tiny K) At each A, equation 3 1s solved, to return a w
(a set of coellicients w,) at that A. In doing so, 1t follows the
“path” of solutions going from a regularization-only solution,
through combined regularization/least-squares solutions, and
finally ends at a least-squares solution. As the pathwise regu-
larized learming progress (as A decreases), the number of basis
functions (number of nonzero coelficients w,) tends to
increase, because with smaller A there 1s more pressure to
explain the training data better, therefore requiring the usage
of more nonzero coetficients. The starting w,’s are simply set

to 0.0.

[0039] FIGS. 1A-1F demonstrate pathwise regularized
regression of equation 3 where A,=0 and A, 1s labeled simply
as A. That 1s, FIGS. 1A-1F rely on:

(equation 4)

- .
W' = Minimizd ) (7;(x) = ;)" +2)  Iwi
| i=1 i=1 i

[0040] FIGS. 1A-1F show examples of plots of w* as a

function of the regularization term A. FIG. 1A shows an
example of a first step of pathwise regularized regression.
FIG. 1A show the resulting w* values for A=1x10*" (i.e.,
h—>0c0). In this case, all values of w* are zero. FIG. 1B shows
that for A=1x10"", w* has changed such that w,=1.8. FIG. 1C
shows that for A=1x10°", w* has again changed and that w,
now has a value of 2.8. FIG. 1D shows that for A=1x10"°, w*
has changed such that w,=-0.5 and w,=1.8. FIG. 1E shows
that for A=1x10" (i.e., A=1), w* has changed such that w,=-
1.0 and w,=2.85. Finally, FIG. 1F shows that for A=1x107>",
w* has changed such that w,=-3.5, w,=2.9, w,=0.6, and
w_,=—1.4. In the graphs of FIGS. 1A-1F, A decreases in the

direction indicated by the arrow of the abscissa.

[0041] For each decreasing value of A, the starting value of
w* 15 set to the value obtained with the previous larger value

of A. For example, for A=1x10°", the starting value of w* was
set to the value obtained at A=1x10°, i.e., w*=[0, 1.8, 0, 0].

[0042] FEach set of w* defines a model for the performance
metric for which the pathwise regularized regression 1s per-
formed. That 1s, with respect to any of the FIGS. 1A-1F, each
set of vertically aligned w values constitutes a model of the
performance metric in question. For example, for A=1x10°°,
w*=[0, 1.8, 0, O] which means that the performance metric
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model 15 y(X)=wy+1.8*B,(x). Note that offset coefficient, w
1s computed as simply the average value of all training y
samples. As another example, for A=1x107"", w*=[-3.5, 2.9,
0.6, —1.4] which means that the performance metric model 1s
V(X)=w,=3.5*B,(x)+2.9"B,(x)+0.6*B,(x)-1.4*B,(x). In
the example represented at FIGS. 1A-1F, the maximum num-
ber of bases was limited to four; however, this need not be the
case.

[0043] An extremely fast variant of pathwise regulanzed
learning was recently developed/rediscovered: coordinate
descent (J. H. Friedman and T. Hastie and R. Tibshiram,
“Regularization Paths for Generalized Linear Models via
Coordinate Descent”, Journal of Statistical Software, Vol. 33,
No. 1, February 2010, pp. 1-22). At each point on the path,
coordinate descent solves for coellicient vector w by: looping
through each w, one at atime, updating the w, through a trivial
formula while holding the rest of the parameters fixed, and
repeating until w stabilizes. For speed, 1t uses “hot starts™: at
cach new point on the path, coordinate descent starts with the
previous point’s w.

[0044] Pathwise regularized learning has many desirable
properties. First, thanks to modern advances, solving a path-
wise regularized learming problem is approximately as fast (or
faster) than solving a least-squares linear learning problem.
Second, because of the regularization term in equation 3,
pathwise learning can have more coetficients w, than 1input
variables (or basis functions), unlike least-squares learning.
Third, we can remember the information 1n the path, and use
it later; namely, we can consider each step in the path as a
different model trading off traiming error versus complexity
(=number of nonzero w’s=number of basis functions).

[0045] Generally, the present disclosure provides a method
to automatically generate functions (models) that map a setof
input variables to an output variable (performance metric), for
use 1n scientific/engineering analysis and design. For
example, in the field of electrical circuit design, the present
disclosure allows to generate models that represent a pertor-
mance metric of an electrical circuit design as a function of
variables of the electrical circuit design. The problem
addressed is formulated as follows: Given a set of {x(t),y(t)},
t=1 ... N data samples where x(t) 1s a d-dimensional design
point t and y(t) 1s a corresponding circuit performance value
(circuit performance metric value) measured from simulation
of that electrical circuit design (without any model template),
determine a set of symbolic models y(x). that together pro-
vide the optimal tradeoil between error and some measure of
complexity of the models.

[0046] Wenow summarize two embodiments of the present
disclosure, and describe how 1t takes advantage of the unique
properties of pathwise regularized learning.

[0047] Inoneembodiment, a massive set of nonlinear basis
functions 1s generated based on the iput variables; then
pathwise regularized learning 1s applied to generate a set of
candidate models (of a performance metric) that trade off
training error versus complexity; subsequently, the error of
the candidate models 1s measured (calculated) on a separate
test dataset. Following this, any models that are not on the
optimal tradeoil between testing error and complexity are
removed from consideration; and finally, the models that are
on the optimal tradeoil between testing error and complexity
are stored and/or displayed to the user (designer). Because the
present embodiment filters models based on testing error, it
overcomes “‘overfitting” 1ssues commonly encountered in
modeling. Regularized learning enables the present disclo-
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sure to handle a very large number of input variables, and an
even larger number of basis functions. Pathwise learning
enables 1t to generate a whole set of models of different
complexities, at the cost of a single linear learning run.
[0048] In another embodiment, the present disclosure first
identifies the highest-impact univariate basis functions, then
applies pathwise learning on combinations of these basis
functions. This two-phase approach gives the overall algo-
rithm excellent computational complexity, yet still handles a
broad set of bivaniate basis functions.

[0049] In the following description, for purposes of expla-
nation, numerous details are set forth in order to provide a
thorough understanding of the present disclosure. However, 1t
will be apparent to one skilled 1n the art that these specific
details are not required 1n order to practice the present disclo-
sure. In other instances, well-known electrical structures and
circuits are shown 1n block diagram form in order not to
obscure the present disclosure. For example, specific details
are not provided as to whether the embodiments of the dis-
closure described herein are implemented as a software rou-
tine, hardware circuit, firmware, or a combination thereof.

[0050] The embodiments described herein relate to electri-
cal circuit designs that have associated thereto design vari-
ables (device dimensions, resistance, etc.), process variables
(statistical vanations 1n gate oxide thickness, substrate dop-
ing concentration, etc.), or environmental variables (tempera-
ture, load, etc.). The design variables define a design variables
space, the process variables define process variables space,
and the environmental variables define an environmental
variables space. Each point in the design variables space
represents a set ol values ol the design variables for the design
in question. Each point 1n the process variables space repre-
sents a set of values of the process variables for the design 1n
question. Each point 1n the environmental variables space
represents a set of values of the environmental variables.

[0051] FIG. 2 shows a flow diagram of an embodiment of
the present disclosure. At action 20, the training imput points
X and corresponding outputs y are generated. For example,
cach training point 1s a process point (a point 1n the process
variables space), generated via, for example, a Design-oi-
Experiments (DOE) sampling such as fractional-factonial (D.
M. Montgomery, Design of Experiments, 2008); and the out-
put corresponding to that training point 1s computed as a
performance metric value via, for example, a SPICE-like
circuit simulation on the process point.

[0052] At action 22, a set of univariate and multivariate
basis functions 1s generated. Specifically, each basis function
1s a function of one input variable x, such as, for example,
log(x,) or X<°, or more than one input variable, such as, for
example, log(x,)*x.”.

[0053] At action 24, a pathwise regularized regression 1s
performed 1n accordance with the sample paints and in accor-
dance with the performance data (training data). The path-
wise regularized regression 1s performed on a set of basis
functions denoted as B={B, (x), B,(x), B;(X), . .. }. Examples
ol basis functions B,(x) are provided elsewhere 1n the present
disclosure.

[0054] Ataction 26, the test error of each model obtained as
a result of action 24 1s calculated. This can be done by sam-
pling the process variables space to obtain test points at which
the performance metric of interest 1s calculate through simu-
lation to obtain a simulated values. The test points are fed to
the models obtained as a result of action 24 to obtain modeled
values of the performance metric 1n question. The modeled
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values are compared to the simulated values for each model,
which results 1n the determination of the testing error.

[0055] FIG. 3A 1s a repeat of FIG. 1F. FIG. 3B 1s aligned
below FIG. 3 A and shows the training error as a function of A.
The training error 1s calculated based on the sample points
obtained at action 20 of FIG. 2. FIG. 3C 1s aligned below
FIGS. 3A and 3B and shows the test error as a function of A.
The test error 1s calculated based on the sample points (test
points) different than those obtained at action 20 o FIG. 2. In

the graphs of FIGS. 3A-3C, A decreases 1n the direction
indicated by the arrow of the abscissa.

[0056] The training error and the testing error plotted 1n

FIGS. 3B and 3C respectively 1s calculated for each value of
A as:

Zi[j}i(w)_yi]z

[0057] This corresponds to the training error when calcu-
lated based on the sample points obtained at action 20, and
corresponds to the testing error when calculated based on the
test points, which are different than those obtained at action
20 of FIG. 2. As will be understood by the skilled worker, the
values obtained through equation 5 can be normalized in
accordance with the number points over which the summa-
tion takes place.

[0058] The vertically-extending dash-lined boxes 32 1n
FIGS. 3A-3B show weights, testing error and training error
for one of the models obtained as a result of the pathwise
regularized regression pertormed at action 24 of FIG. 2. The
vertical line 34 1n FIG. 3B indicates the value of A below
which over-fitting occurs. That 1s, the vertical line 34 indi-
cates the value of A below which the testing error starts
increasing with respect to the testing error calculated for
immediately preceding larger value of A.

[0059] Referring again to FIG. 2, the complexity of each
model obtained as a result of action 24 1s also calculated at
action 26. In a simple case, complexity can be equal to the
number of non-zero weight values for each model.

[0060] The mput to action 28 of FIG. 2 1s a set of models
(obtained as a result of action 24), each with a different
measure of complexity and error. Some models will be
“dominated” by other models: a model “A” 1s dominated by
model “B” 11 either (a) model A’s error 1s the same or worse
than model B’s error, and model A’s complexity 1s worse than
model B’s complexity, or (b) model A’s error 1s worse than
model B’s error, and model A’s complexity 1s the same or
worse than model B’s complexity. Action 28 performs “non-
domuinated filtering”’: that 1s, it removes all the models that are
dominated by other models, leaving just the “non-dominated™
models. Non-dominated filtering 1s known 1n the art, espe-
cially 1n the multi-objective optimization literature, and can
be performed, 1n the present disclosure, 1n any suitable way.
An example algorithm that uses non-dominated filtering 1s
(K. Deb et al, A fast and elitist multiobjective genetic algo-
rithm: NSGA-II, IEEE Transactions on Evolutionary Com-
putation 6(2), Aprll 2002, pp. 182-197).

[0061] At FIG. 2, action 30, the testing error for each
remaining non-dominated model can be plotted (displayed)
as a function of the complexity calculated (determined) at
action 28. Also, the non-dominated models, and their test
error values, can be stored 1n a tangible, non-transitory coms-
puter-readable memory for later use by a designer. FI1G. 4A
shows complexity as a function of A for the sets of weights w,
(sets of models) shown at FIG. 3A. FIG. 4B shows a plot of

test error as a function of complexity for a plurality of models

(equation 5).
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(each point 1n FIG. 4B represents a model). The points (mod-
¢ls) joined by the solid line are non-dominated points (mod-

els).

[0062] TableI below shows (displays) results relating to an
opamp (operational amplifier) whose phase margin (PM) has
been modeled 1n accordance to the tlow of FIG. 2. Table 1 has
a first column labeled “# of bases”, which 1s an example
measure of complexity; and a second column labeled test
error. FIG. 5A shows a circuit diagram of the opamp 1n
question. FI1G. 5B shows (displays) a plot of the test error as
a function of the number of bases (complexity) for the data of

Table 1.

TABLE I

# Test
bases error
0 15.5%

1 6.8

2 6.6

3 5.4

4 4.2

5 4.1

46 1.0

[0063] Table II below shows an example relating to the
same opamp PM data presented at Table I and at FIG. 5B.
Table 1II has a first column showing test error values, and a
second column showing the models (PM models i this
example) to which the test error values correspond. The mnput

variables are dxl, cgop, dvthn, and dvthp, which refer to
different process variations that atfect the circuait.

TABLE Il
Test
eIror Extracted Equation
15.5% 59.6
6.8 59.6 — 0.303 - dxl
6.6 59.6 — 0.308 - dxl - 0.00460 - cgop
5.4 59.6 - 0.332 - dxl - 0.0268 - cgop + 0.0215 -
dvthn
4.2 59.6 — 0.353 - dxl - 0.0457 - cgop + 0.0211 -
dvthn — 0.0211 - dvthp
4.1 59.6 — 0.354 - dxl - 0.0460 - cgop + 0.0198 -
dvthn — 0.0217 - dvthp + 0.0135 - abs(dvthn) -
dvthn
1.0 58.9 - 0.136 - dxl + 0.0299 - dvthn - 0.0194 . ..
[0064] FIG. 6 shows an example of a flow for generating

unmivariate basis functions that can be used 1n various embodi-
ments of the present disclosure. Ataction 101, B, 1s defined as
a set of unmivariate basis functions; at action 101, B, 1s an
empty set to which basis univariate functions will be added
through the iterative actions performed from action 102
through 110. At action 102, a set v 1s defined and includes all
the design variables or environmental variables that can be
used to model a performance metric of an electrical circuit
design (or any other suitable system). The variables are noted
as X,, X,, .. ..Ataction 103, a set of exponents exp 1s defined.
In the present example, the exponent values are 0.5, 1.0, and
2.0. Any other suitable exponent values can be used Without
departing from the scope of the present disclosure. At action
104, the expression b, , 1s defined as b, =v=*. At action 105,
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b, 1s evaluated at all values of the input training data. If the
evaluation of b___ returns a valid result, then, at action 106,

exp

b_. 1s added to the set B,.

[00p65] Subsequently, at action 107, a set of operators op 1s
defined. Examples of operators that can be part of the set op
include an absolute value operator abs(x;), a base-10 loga-
rithm log,,(x;), and “hinge” functions max(0, x,—thr) and
max(0, thr—x ) for different x, and thr values. Hinge functions
“turn off” some regions of input space, allowing the model to
focus on remaining regions (J. H. Friedman, “Multivariate
adaptive regression splines,” Annals of Statistics, vol. 19, no.
1, pp. 1-141, 1991).

[0066] At action 108, the expression b,, 1s defined as
b,,=op(b,,,). Following this, at action 109, b, , 1s evaluated at
all values of the input training data. If the evaluation ot' b,
returns a valid result, then, ataction 110, b, , 1s added to the set
B,.

[0067] In accordance with the present disclosure, FIG. 7
shows a flow diagram for generating multivariate basis func-
tions that can be combined with a set of univariate functions.
To start off, the flow of FIG. 7 uses a set of univariate basis
functions, for example, the set B, determined as per the flow
of FIG. 6. Referring again to FIG. 7, at action 111, B, 1s
defined as a set of multivariate basis functions; B, 1s an empty
set to which basis functions will be added through the 1tera-
tive actions performed from action 112 through 119.

[0068] At action 112, the number of basis functions 1n the
set B, 1s determined; that 1s, the operation length(B, ) 1s per-
formed, and an 1index 1 range from 1 to length(B,) 1s set. At
actions 113 to 117, bivanate basis functions are defined as the
product of univariate basis functions of the set B, . The bivari-
ate operators are noted as B, . at action 117.

[0069] Following this, ataction118,b, . 1sevaluated at all
values of the mput training data represented by X. If the

evaluation of b, . returns a valid result, then, at action 110,
b

... 18 added to the set B,.

[0070] Finally, a union operation of the set B, with the set
B, 1s performed to generate the set of basis function B, which
includes the basis function of B, and of B..

[0071] FIG. 8 shows a flow diagram of another embodi-
ment of the present disclosure. At action 64, the training input
points X and corresponding outputs y are generated. For
example, each training point 1s a process point, generated via
Design-of-Experiments sampling, and the output value 1s
computed via a SPICE or SPICE-like circuit simulation.
[0072] At action 66, a set of umivariate basis functions 1s

generated. The univarniate basis functions can be generated as
per the flow of FIG. 6.

[0073] At action 70, a pathwise regularized regression 1s
performed in accordance with the sample points X and in
accordance with the performance data y. The pathwise regu-
larized regression 1s performed on the set of univariate basis
functions generated at action 66. Alternatively, other types of
regularized learning can be performed, such as the lasso or
ridge regression.

[0074] Ataction 72, the test error of each model obtained as
a result of action 70 1s calculated. This can be done by sam-
pling the process variables space to obtain test points at which
the performance metric of interest 1s calculated, through
simulation, to obtain stmulated values. The test points are fed
to the models obtained as a result of action 70 to obtain
modeled values of the performance metric in question. The
modeled values are compared to the simulated values for each
model, which results in the determination of the testing error.
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[0075] Subsequently, at action 74, the model having the
lowest test error 1s determined by comparing the test error of
the models obtained as a result of action 70. Then at action 76,
from the lowest-error model, the basis functions (univariate
basis functions 1n the present example) having the highest
impact are 1dentified. Some or all of the basis functions with
nonzero coellicients may be selected. The motivation to
select fewer basis functions 1s reduce the number of bivariate
basis functions generated in the next step, which in turn
reduces the overall computational complexity of the algo-
rithm. The impact of each basis function may be computed
simply using the absolute value of the basis function’s coel-
ficient, or by a more advanced method such as “global non-
linear sensitivity analysis™ (1. McConaghy et al, Automated
Extraction of Expert Knowledge 1n Analog Topology Selec-
tion and S1zing, Proc. International Conierence on Computer-

Aided Design, 2008, section 3.1).

[0076] Ataction78, a setof bivariate basis functions can be
generated as per actions 111 to 119 of the flow diagram of
FIG. 7 but with the univariate basis functions set B,{} con-
taining only the basis functions identified at action 76. At
action 80, a union set of the univariate basis functions, iden-
tified at action 76, and of the bivariate basis functions, gen-
erated at action 78, 1s formed.

[0077] At action 82, a pathwise regularized regression 1s
performed 1n accordance with the sample points and 1n accor-
dance with the performance data. The pathwise regularized
regression 1s performed on the union set of univariate basis
functions and multivariate basis functions formed at action

30.

[0078] Subsequently, at action 84, the testing error of the
models obtained as a result of action 82 1s calculated. At
action 86, the model having the lowest test error 1s 1dentified,
and at action 88 it 1s stored for later user and/or displayed. As
an alternative to actions 84 and 86, the models are non-
dominated filtered according to test error and complexity,
then stored for future use and/or displayed with their associ-
ated testing error values or complexity values.

[0079] Aswill be understood by the skilled worker, the flow
of FIG. 8 greatly reduces the computational complexity, by
applying learning to just a subset of all possible bivariate basis
functions. Let us set n as the number of input variables, and N
as the number of sample training points. As used in FIG. 8,
and as per the tlow ol FIG. 6, there are “order n”” O(n) univari-
ate basis functions. If all two-variable combinations of
univariate basis functions were made, that would lead to
O(n”) bivariate bases. As is known in the art, pathwise learn-
ing has O(N*p?) computational complexity on p basis func-
tions; since there are p=O(n") bases, then pathwise learning
would have O(N*n™) computational complexity if all two-
variable combinations were used. In contrast, the flow of FIG.
8. 1n the case where the number of basis functions determined
at action 76 is O(Vn), has a computational complexity
O(N*n”) scaling because O(Vn) basis functions combine to
make O(n) bivariate basis functions rather than O(n*) bivari-
ate basis functions. This improved computational complexity
1s what allows the flow of FIG. 8 to scale to higher mput
dimensions.

[0080] As will be understood by the skilled worker, the
various pathwise regularized regression actions of the
embodiments presented herein can have associated thereto a
stop criteria which causes the pathwise regularized regression
action to stop once a pre-determined number of non-zero
coellicients w, are determined. The predetermined number
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can be governed by the maximum number of bases that a
human wishes to mterpret; this number can between 3 and
250).

[0081] As shown above, the present disclosure provides a
tool for performing symbolic modeling that 1s more open-
ended than the prior art posynomial approach, and has the
flexibility of SPICE simulations therefore allowing modeling
of any nonlinear circuits.

[0082] Further, the present disclosure provides a tool that
has reduced computational effort compared to genetic pro-
gramming approaches, because it does not need to repeatedly
evaluate a population of evaluate candidate functions over
several generations.

[0083] Furthermore, the present disclosure enables the gen-
eration of performance metric models that have a good pre-
diction performance, even when the input dimensionality 1s
high or the number of samples 1s low. This 1s unlike genetic
programming approaches.

[0084] Additionally, the flows of the present disclosure are
deterministic 1n nature, so that results are the same run to run,
and behavior 1s easier to predict.

[0085] Moreover, the tools of the present disclosure offers
a combination of fast runtime and deterministic behavior,
which makes them much easier users to adopt.

[0086] Finally, the present disclosure provides a means to
provide a set of models, which trade between accuracy and
complexity.

[0087] The presentdisclosure applies to fields that have use
for high-dimensional regression, or fields that have use for
symbolic modeling. In high-dimensional regression, the user
has a set of high-dimensional input vectors X, a correspond-
ing set output values y, and one wishes to build a regression
model that approximates the mapping from X to y, and sub-
sequently use that model. In symbolic modeling, the task 1s
like regression, except the user would also like to be able to
ispect the model(s) that are output, and 1deally there 1s a
tradeoll between model complexity and prediction error.

[0088] Specific fields that have use for high-dimensional
regression, or symbolic modeling, include but are not limited
to: electronic circuit design to build models that map design,
environmental, and process variables to circuit performances
such as gain; behavioral modeling of electronic circuits where
one aims to approximate the state-transition dynamics with
models (current state mapping to next state); design and
behavioral modeling 1n other engineering disciplines; chemi-
cal processing, where one replaces expensive sensors with
cheap sensors and a model mapping the cheap sensor inputs to
a merged sensor value, for an overall system that gives the
same fidelity as expensive sensors but at a lower overall cost;
scientific exploration and discovery; web search where a
regressionmodel 1s used to give an overall rating to each page,
so that pages can be subsequently ranked and presented 1n
rank order; model-building optimization where the model 1s
used as a surrogate for the true objective function; and more.

[0089] Embodiments of the disclosure can be represented
as a computer program product stored in a machine-readable
medium (also referred to as a computer-readable medium, a
processor-readable medium, or a computer usable medium
having a computer-readable program code embodied
therein). The machine-readable medium can be any suitable
tangible, non-transitory medium, including magnetic, opti-
cal, or electrical storage medium including a diskette, com-
pact disk read only memory (CD-ROM), memory device
(volatile or non-volatile), or similar storage mechanism. The
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machine-readable medium can contain various sets of
instructions, code sequences, configuration information, or
other data, which, when executed, cause a processor to per-
form actions 1n a method according to an embodiment of the
disclosure. Those of ordinary skill in the art will appreciate
that other instructions and operations necessary to implement
the described implementations can also be stored on the
machine-readable medium. The instructions stored on the
machine-readable medium can be executed by a processor or
other suitable processing device, and can mtertace with cir-
cuitry to perform the described tasks.

[0090] The above-described embodiments are intended to

be examples only. Alterations, modifications and variations
can be effected to the particular embodiments by those of skill
in the art without departing from the scope.

1. A tangible, non-transitory computer-readable medium
having stored thereon instructions to be carried out by a
computer to perform a method to model a performance metric
of a system as a function of varniables of the system, the
method comprising:

in accordance with a set of sample points of a space defined

by the varniables of the system, calculating a value of the
performance metric for each point of the set of sample
points, the values of the performance metric defiming
performance data;

in accordance with the set of sample points and 1n accor-
dance with the performance data, performing, on a set of
basis functions, each basis function having associated
thereto a weight factor, a pathwise regularized linear
regression algorithm having associated thereto a regu-
larization term, to obtain multiple models of the perfor-
mance metric of the system at respective multiple values
of the regularization term, each model having a set of
welght factors values, each value of the regularization
term having associated thereto a single model of the
performance metric;

for a plurality of regularization term values, calculating an
error value and a complexity value of a corresponding
model of the performance metric; and

tfor the plurality of regularization term values, performing
a non-dominated filtering of the models corresponding
to the plurality of regularnization term values, the non-
dominated filtering being performed 1n accordance with
the error value and the complexity value of each model,
the non-dominated filtering to obtain non-dominated
models of the performance metric.

2. The tangible, non-transitory computer-readable medium
of claim 1 further comprising a step of storing, on a tangible
non-transitory computer-readable memory, the non-domi-
nated models.

3. The tangible, non-transitory computer-readable medium
of claim 1 further comprising a step of displaying the non-
dominated models and their respective error values.

4. The tangible, non-transitory computer-readable medium
of claim 1 wherein the set of sampling points 1s extracted from
the space defined by the system variables.

5. The tangible, non-transitory computer-readable medium
of claim 1 wherein the set of sampling points 1s generated
from the space defined by the system variables.

6. The tangible, non-transitory computer-readable medium
of claim 5 wherein the set of sampling points 1s generated
through a design-of-experiments technique.
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7. The tangible, non-transitory computer-readable medium
of claim 1 wherein the system variables are design variables
and the space defined by the vaniables of the system 1s a design
variables space.

8. The tangible, non-transitory computer-readable medium
of claim 1 wherein the system variables are process variables
and the space defined by the variables of the system 1s a
process variables space.

9. The tangible, non-transitory computer-readable medium
of claim 1 wherein the system variables are environmental
variables and the space defined by the variables of the system
1s an environmental variables space.

10. The tangible, non-transitory computer-readable
medium of claim 1 wherein the complexity of a model of the
performance metric 1s equal to the number of basis functions
of the model of the performance metric.

11. The tangible, non-transitory computer-readable
medium of claim 1 further comprising:

extracting sample points from the space defined by the
variables, to obtain test sample points, wherein calculat-
ing the error value 1s carried out at the test sample points.

12. A tangible, non-transitory computer-readable medium
having stored thereon instructions to be carried out by a
computer to perform a method to model a performance metric
of a system as a function of varnables of the system, the
method comprising:

in accordance with a set of sample points of a space defined

by the variables of the system, calculating a value of the
performance metric for each point of the set of sample
points, the values of the performance metric defiming
performance data;

generating a first set of basis functions consisting of
univariate basis functions:

in accordance with the set of sample points and 1n accor-
dance with the performance data, performing, on the set
of univariate basis functions, each univariate basis func-
tion having associated thereto a weight factor, a path-
wise regularized linear regression algorithm having
associated thereto a first regularization term, to obtain
multiple models of the performance metric of the system
at multiple values of the first regularization term, each
model having a respective set of weight factors values,
cach value of the first regularization term having asso-
ciated thereto a single model of the performance metric;

identifying a model having a lowest test error to obtain an
identified model:;

identifying the univariate basis functions of the identified
model that have the highest impacts, to obtain identified
univariate basis functions;

in accordance with the identified umivariate basis func-
tions, generating a set of bivariate basis functions;

generating a union set of basis functions comprising the
identified univanate basis functions and the set of bivari-
ate basis functions;

in accordance with the first set of sample points and in
accordance with the performance data, performing, on
the union set of basis functions, each basis function
having associated thereto a weight factor, a pathwise
regularized linear regression algorithm having associ-
ated thereto a second regularization term, to obtain mul-
tiple models of the performance metric of the system at
multiple values of the second regularization term, each
model having a respective set of weight factors values,
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cach value of the second regularization term having
associated thereto a single model of the performance
metric; and

for a plurality of second regularization term values, calcu-

lating an error value of a corresponding model of the
performance metric.

13. The tangible, non-transitory computer-readable
medium of claim 12 further comprising:

identifying the model of the performance metric having a

lowest error value to obtain a lowest error model of the
performance metric; and

storing the lowest error model of the performance metric

on a tangible, computer-readable memory.

14. The tangible, non-transitory computer-readable
medium of claim 12 further comprising:

identitying the model of the performance metric having a

lowest error value to obtain a lowest error model of the
performance metric; and

displaying the lowest error model of the performance met-

ric and the error value of the lowest error model of the
performance metric.

15. A tangible, non-transitory computer-readable medium
having stored thereon instructions to be carried out by a
computer to perform a method to model a performance metric
of a system as a function of varniables of the system, the
method comprising:

in accordance with a set of sample points of a space defined

by the variables of the system, calculating a value of the
performance metric for each point of the set of sample
points, the values of the performance metric defiming
performance data;

generating a first set of basis functions consisting of

univariate basis functions;
in accordance with the set of sample points and in accor-
dance with the performance data, performing, on the set
of univariate basis functions, each univariate basis func-
tion having associated thereto a weight factor, a path-
wise regularized linear regression algorithm having
associated thereto a first regularization term, to obtain
multiple models of the performance metric of the system
at multiple values of the first regularization term, each
model having a respective set of weight factors values,
cach value of the first regularization term having asso-
ciated thereto a single model of the performance metric;

identifying a model having a lowest test error to obtain an
identified model;

identifying the univariate basis functions of the identified

model that have the highest impacts to obtain 1dentified
univariate basis functions;
in accordance with the identified univariate basis func-
tions, generating a set of bivariate basis functions;

generating a union set of basis functions comprising the
identified univariate basis functions and the set of bivari-
ate basis functions;

in accordance with the first set of sample points and 1n

accordance with the performance data, performing, on
the union set of basis functions, each basis function
having associated thereto a weight factor, a pathwise
regularized linear regression algorithm having associ-
ated thereto a second regularization term, to obtain mul-
tiple models of the performance metric of the system at
multiple values of the second regularization term, each
model having a respective set of weight factors values,
cach value of the second regularization term having
associated thereto a single model of the performance

metric;
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for a plurality of second regularization term values, calcu-
lating an error value and a complexity value of a corre-
sponding model of the performance metric; and

for the plurality of second regularization term values, per-

forming a non-dominated filtering of the models corre-
sponding to the plurality of second regularization term
values, the non-dominated filtering being performed in
accordance with the error value and the complexity
value of each model, the non-dominated filtering to
obtain non-dominated models of the performance met-
I1c.

16. The tangible, non-transitory computer-readable
medium of claim 15 further comprising a step of storing, on a
tangible non-transitory computer-readable memory, the non-
dominated models.
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17. The tangible, non-transitory computer-readable
medium of claim 15 further comprising a step of displaying
the non-dominated models and their respective error values.

18. The tangible, non-transitory computer-readable
medium of claim 15 wherein the set of sampling points 1s
extracted from the space defined by the system vaniables.

19. The tangible, non-transitory computer-readable
medium of claim 1 wherein the set of sampling points 1s
generated from the space defined by the system variables.

20. The tangible, non-transitory computer-readable
medium of claim 5 wherein the set of sampling points 1s
generated through a design-of-experiments technique.
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