
High-Dimensional Statistical Modeling and
Analysis of Custom Integrated Circuits

(Invited Paper)

Trent McConaghy
Solido Design Automation Inc.

Abstract—Custom circuit designers have long favored manual
equation-based approaches in early design stages, because it
gives excellent insight and control over the design. However, this
flow is threatened: as modern process nodes advance, process
variation affects circuit performance more strongly, hurting the
accuracy of existing equations. Because designers are typically
not statistical modeling experts, it is difficult to adapt the equa-
tions to incorporate statistical variations. This paper presents a
fast, deterministic technique to help designers revise equations
to account for statistical variation. Specifically, the technique
extracts compact equations of performance as a function of
process variables, even for cases when there are thousands of
possible variables and the equations are highly nonlinear. In fact,
it provides a whole set of equations that trade off simplicity versus
accuracy compared to SPICE. The technique is validated on a
broad range of custom integrated circuit modeling problems.

I. I NTRODUCTION

With Moore’s Law driving the continual shrinking of
semiconductor devices [1], small random imperfections in
manufacturing are having an increasing effect on circuit per-
formance and therefore yield. As variation issues worsen,
variation-aware design is becoming increasingly important
in custom integrated circuit design (analog, mixed-signal,
memory, and radio frequency circuits).

Fig. 1. Status quo design flow.

Figure 1 illustrates a typical custom design flow. It has
an early-stage design step, where the designer is developing
a or selecting a topology, and performing manual sizing
from first-principles equations [2], [3]. Unfortunately, this

early equation-based design phase typically ignores variation.
Traditionally, this has not been an issue: if variation affected
performance up to 10-15%, for most circuits early-stage design
could defer variation worries to a follow-up step of variation-
aware tuning and verification1.

But in modern processes, variation can cause performance
to vary not just by 10-15%, but by orders of magnitude [4].
Commercial tools cannot help directly: they are designed for
follow-up tuning, not making a topology more fundamen-
tally variation-aware. Thus, the initial-stage design maybe
extremely prone to variation.

To handle massive variation without compromising design
performance or yield, early stage designs need to be created
with variation-awareness. One may consider manually devel-
oping equations that account for process variation. This is
a great challenge, because there are so many variables, the
designer “rules of thumb” about what matters can change with
each new process node, and finally, designers are experts at
circuits, not statistical modeling.

Fig. 2. Proposed design flow.

This paper explores an approach to help designers develop
equations in early-stage design that account for process vari-
ation. Figure 2 illustrates the flow. Specifically, this paper
proposes a fast, scalable, deterministic algorithm calledFFX
(Fast Function Extraction) to extract interpretable nonlinear

1These days, this follow-up step is well supported by commercial variation-
aware tools that reconcile corner-based design with verification, with scaling
to tens of thousands of devices and millions of simulations.

equations that map process variables to performance. In fact,
it provides a whole set of equations: some simple but less
accurate, then more equations with increasing accuracy (rel-
ative to SPICE) but also increasing complexity. The designer
can then pick one of these equations, and merge it with his
or her existing design equations. Merging can be as simple
as summing the design equation’s components and the vari-
ation equation’s components. With variation-aware equations
in hand, the designer can proceed withvariation-aware early-
stage design.

The CAFFEINE equation-extraction tool [5] had similar
aims. But it was limited by scalability (≈100 variables),
runtime (10 minutes or more), and consistency (stochastic
algorithm). In contrast, we will show FFX solve problems with
>1000 variables, deterministically in<20 s. A key enabler
is a recently-developed technique from the machine learning
literature: pathwise regularized learning [7].

This paper verifies the FFX approach on a variety of custom
circuits: an opamp, a voltage reference, a bitcell, a sense amp,
a GMC filter, and a comparator.

The rest of this paper is organized as follows. Section II
mathematically describes the problem. Section III introduces
pathwise regularized learning, a key component of FFX.
Section IV describes the FFX algorithm in detail. Sections V
and VI present the experimental setup and results, respectively.
Section VII concludes.

II. PROBLEM DEFINITION

The problem of extracting equations is known as template-
free symbolic modeling [5], with inputs and outputs as follows.
Given:

• X andy: A set of{xj , yj}, j = 1..N data samples where
xj is aNd-dimensional pointj andyj is a corresponding
output value. In our application,X will be process variable
values from Monte Carlo sampling, andy will be the
output values from SPICE-simulating the samples.

• No model template

Determine:

• A set of symbolic models (equations)M that provide a
tradeoff between minimizing model complexityf1 and
minimizing future model prediction errorf2.

Each modelm maps anNd-dimensional inputx to a scalar
output valueŷ, i.e. ŷ = m(x). Future model prediction error
f2 = Ex,yL(m) whereL(m) is the squared-error loss function
y −m(x))2.

We restrict ourselves to the class of generalized linear
models (GLMs) [6]. A GLM is a linear combination ofNB

basis functionsBi; i = 1, 2, ..., NB :

ŷ = m(x) = a0 +

NB∑

i=1

ai ∗Bi(x) (1)

We measure complexity simply as the number of basis func-
tions (bases) in modelm; that is,complexity(m) = NB(m).

III. B ACKGROUND: PATHWISE REGULARIZED LEARNING

Least-squares (LS) learning aims to find the values for each
coefficientai in equation (1) that minimize||y − X ∗ a||2,
where theX andy are training data. Therefore LS learning
aims to minimize training error; it does not acknowledge
testing error (future model prediction error). Because it is
singularly focused on training error, LS learning may return
model coefficientsa where a few coefficients are extremely
large, making the model overly sensitive to those coefficients.
This is overfitting.

Regularized learning aims to minimize the model’s sensitiv-
ity to overfit coefficient values, by adding minimization terms
that are dependent solely on the coefficients:||a||2 or ||a||1.
This has the implicit effect of minimizing expected future
model prediction error. The overall problem formulation is:

a∗ = minimize ||y −X ∗ a||2 + λ2||a||
2 + λ1||a||1 (2)

Including both regularization terms is anelastic net formula-
tion of regularized learning [8]1. To make the balance between
λ1 andλ2 explicit, we can setλ1 = λ andλ2 = (1− ρ) ∗ λ,
whereλ is now the regularization weight, andρ is a “mixing
parameter.”

A path of solutions sweeps across a set of possibleλ values;
returning ana for eachλ. Interestingly, we can start at ahuge
value ofλ, where allai are zero; then work towards smallerλ,
uniformly on a log scale. Figure 3 illustrates: the path starts on
the far left, and the withλ decreasing (going right), coefficients
ai take nonzero values one at a time.

Fig. 3. A path of regularized regression solutions: each vertical slice of
the plot gives a vector of coefficient valuesa for each of the respective
basis functions. Going left to right (decreasingλ), each coefficientai follows
its own path, starting at zero then increasing in magnitude (and sometimes
decreasing).

An extremely fast variant of pathwise regularized learning
was recently developed / rediscovered: coordinate descent[7].

1The middle term (quadratic term, like ridge regression), encourages
correlated variables to group together rather than lettinga single variable
dominate, and makes convergence more stable. The last term (l1 term, like
lasso), drives towards a sparse model with few coefficients, but discourages
any coefficient from being too large.||a||1 =

∑
i
|ai|.

At each point on the path, coordinate descent solves for
coefficient vectora by: looping through eachai one at a time,
updating theai through a trivial formula while holding the
rest of the parameters fixed, and repeating untila stabilizes.
For speed, it uses “hot starts”: at each new point on the path,
coordinate descent starts with the previous point’sa.

Some highly useful properties of pathwise regularized learn-
ing are:

• Learning speed is comparable or better than LS.

• Unlike LS, can learn when there are fewer samples than
coefficientsN < n.

• Can learn thousands or more coefficients.

• It returns a wholefamily of coefficient vectors, with
different tradeoffs between number of nonzero coefficients
and training accuracy.

For further details, we refer the reader to [7][8].

IV. FFX A LGORITHM

A. FFX Introduction

The FFX algorithm has these steps:

• First, from a smaller set of input variables, it generates a
massive set of basis functions, where each basis function
combines one or more interacting nonlinear subfunctions.

• Then, it uses regularized learning to rapidly identify the
important basis functions from the set of bases and their
corresponding coefficients. In fact, it exploits the special
“path-following” property of regularized learning, to iden-
tify the best coefficients and bases when there are 0 bases,
1 base, 2 bases, and so on.

• Finally, it filters the candidate functions to a nondominated
set that trades off number of bases and error.

For maximum coverage of possible functions, FFX lever-
ages a special technique to include rationals, with negligible
extra computational cost.

The rest of this section elaborates upon each the three FFX
steps, and the rational functions trick.

B. FFX Step One

Here, FFX generates a massive set of basis functions,
where each basis function combines one or more interacting
nonlinear subfunctions.

Table I gives the pseudocode. Steps 1-10 generate univariate
bases, and steps 11-20 generate bivariate bases (and higher
orders of univariate bases). The algorithm simply has nested
loops to generate all the bases. Theeval function (line 5,
9, and 18) evaluates a baseb given input dataX. The ok()
function returnsFalse if any evaluated value isinf, - inf,
or NaN , e.g. as caused by divide-by-zero, log on negative
values, or negative exponents on negative values. Therefore,
ok filters away all poorly-behaving expressions. Line 16 means
that expressions of the formop()∗op() are not allowed; these
are deemed too complex.

TABLE I
STEP ONE: GENERATEBASES()

Inputs: X #input training data
Outputs: B #list of bases

Generate univariate bases
1. B1 = {}
2. for each input variablev = {x1, x2, . . .}
3. for each exponentexp = {0.5, 1.0, 2.0}
4. let expressionbexp = vexp

5. if ok(eval(bexp, X))
6. addbexp to B1

7. for each operatorop = {abs(), log10, . . .}
8. let expressionbop = op(bexp)
9. if ok(eval(bop, X))
10. addbop to B1

Generate interacting-variable bases
11. B2 = {}
12. for i = 1 to length(B1)
13. let expressionbi = B1[i]
14. for j = 1 to i− 1
15. let expressionbj = B1[j]
16. if bj is not an operator # disallowop() ∗ op()
17. let expressionbinter = bi ∗ bj
18. if ok(eval(binter , X))
19. addbinter to B2

20. returnB = B1 ∪B2

The operators used are:abs(x), log10(x), max(0, x− thr),
andmax(0, thr − x). The latter two operators arehinge op-
erators [9], famously used in multivariate adaptive regression
splines (MARS) [10]. Hinge operators add model flexibility,
allowing it to “turn off” some regions of input space and
focus on remaining regions. For each hinge operator at each
variable xj , we allowed 5 different threshold valuesthr,
uniformly distributed fromminxj+0.2∗(maxxj−minxj) to
minxj+0.8∗(maxxj−minxj); whereminxj andmaxxj are
the minimum and maximum values seen forxj in all training
samples.

To scale to hundreds or thousands of input variables, we
made a small change to the procedure in Table I: after step
10, do a pilot run of linear learning on the univariate bases
and remember the magnitude of the coefficients; then generate
interacting-variable bases with priority to the univariate bases
having highest-magnitude coefficients; and stop adding bases
once a maximum number of bases (e.g. 10000) is exceeded.

C. FFX Step Two

Table II gives the pseudocode. Steps 1-2 create a large
matrix XB which has evaluated input matrixX on each of
the basis functions inB. Steps 3-4 determine a log-spaced
set ofNlambda values; see [8] for motivations here. Steps 5-
16 are the main work, doing path-following. At each iteration
of the loop it performs an pathwise linear fit (line 11) from
XB 7→ y to find the linear coefficientsa. A key to the speed
of this linear fit is reusing the previous iteration’s valuesfor
a. There are several options to implement the actual fitting;
we use coordinate descent [7].

FFX step two is like standard regularized-linear path-
following, except that whereas the standard approach covers a

whole range ofλ such that all coefficients eventually get in-
cluded, FFX stops as soon as there are more thanNmax−bases

(e.g. 250) nonzero coefficients (line 9).

TABLE II
STEP TWO: PATHWISELEARN()

Inputs: X, y, B #input data, output data, bases
Outputs: A #list of coefficent-vectors

ComputeXB

1. for i = 1 to length(B)
2. XB[i] = eval(B[i], X)

Generateλvec = range ofλ values
3. λmax = max(|XTy|)/(N ∗ ρ)
4. λvec = logspace(log10(λmax ∗ eps), log10(λmax), Nλ)

Main path-following
5. A = {}
6. Nbases = 0
7. i = 0
8. a = {0, 0, . . .}
9. while Nbases < Nmax−bases and i ¡ length(λvec)
10. λ = λvec[i]
11. a = pathwiseLinearFit(XB , y, λ, ρ, a)
12. Nbases = number of nonzero values ina (not counting offset)
13. if Nbases < Nmax−bases

14. adda to A
15. i = i + 1
16. returnA

D. FFX Step Three

Here, FFX filters the candidate functions to a nondominated
set that trades off number of bases and error.

Table II gives the pseudocode. Steps 1-8 take the coefficients
and bases determined in previous FFX steps, and simply
combine them to create a set of candidate modelsMcand. Steps
9-13 apply standard nondominated filtering to the models, with
objectives to minimize complexity and test error.

TABLE III
STEP THREE: NONDOMINATEDFILTER()

Inputs: A, B # coefficient vectors, bases
Outputs: M # Pareto-optimal tradeoff of equations

Construct candidate models
1. Mcand = {}
2. for i = 1 to length(||A||)
3. a = A[i]
4. a0 = a[0] # offset
5. anz = nonzero values ina (ignoring offset)
6. Bnz = expressions inB corr. to nonzero values ina
7. m = model(a0, anz , Bnz), following eqn. (1)
8. addm to Mcand

Nondominated filtering
9. f1 = complexity(m) for eachm in Mcand

10. f2 = testError(m) or trainError(m) for eachm in Mcand

11. J = nondominatedIndices(f1,f2)
12. M = Mcand[j] for eachj in J
13. returnM

E. Rational Functions Trick

For maximum coverage of possible functions, FFX lever-
ages a special technique inspired by [11] to include rational

functions, with negligible extra computational cost. The gen-
eral idea is: learning the coefficients of a rational function can
be cast into a linear regression problem, solved with linear
regression, then back-transformed into rational functionform.
Let us elaborate:

A rational function has the form:

ŷ = m(x) =
a0 +

∑NBN

i=1
ai ∗Bi(x)

1.0 +
∑N ′

B

i=NBN+1
ai ∗Bi(x)

(3)

whereN ′

B is the number of numerator bases (NBN) plus the
number of denominator bases (NBD).

Let us perform simple algebraic manipulations to transform
this problem. First, we multiply both sides by the denominator:

y ∗
(
1.0 +

N ′

B∑

i=NBN+1

ai ∗Bi(x)
)
= a0 +

NBN∑

i=1

ai ∗Bi(x) (4)

Then we expand the left-hand side:

y +

N ′

B∑

i=NBN+1

ai ∗Bi(x) ∗ y = a0 +

NBN∑

i=1

ai ∗Bi(x) (5)

whereBi(x) ∗ y is element-wise multiplication, i.e.Bi(Xj) ∗
yj for each data pointj. Now, subtract to isolatey on the
left-hand side:

y = a0 +

NBN∑

i=1

ai ∗Bi(x)−

N ′

B∑

i=NBN+1

ai ∗Bi(x) ∗ y (6)

Finally, let us define a new set of basis functions.

B′

i =

{
Bi i ≤ NBN

Bi ∗ y otherwise

}
(7)

At the end of FFX step one, we hadNB basis functions.
Before we start step 2, we insert allNB functions into both the
numerator and denominator; thereforeNBN = NBD = NB ,
andN ′

B = 2 ∗NB . We redefine the basis functions according
to eqn. (7). Then, all the subsequent FFX steps are performed
with these new basis functions. Once the coefficients are
found, the final model is extracted by applying the algebraic
manipulations in reverse: eqn. (6), then eqn. (5), then eqn.(4).

V. EXPERIMENTAL SETUP

A. Problem Setup

We tested on the circuits and outputs shown in table IV.
For space reasons, we show just a few schematics. The

opamp is shown in Figure 4, on TSMC 0.18µm CMOS. Figure
5 gives schematics for the bitcell and sense amp memory cir-
cuits. The bitcell’s temp=25◦C, power supply voltageVdd=1.0
V, andVcn=0.0 V. The sense amp’s environmental conditions
were: load capacitanceCl=1e-15 F, temp=25◦C, andVdd=1.0
V. The technology for the bitcell was TSMC 45nm CMOS,
and for the sense amp 28nm CMOS.

TABLE IV
SUMMARY OF TEST PROBLEMS

Circuit # Devices # Process variables Outputs Modeled

opamp 30 215 AV (gain),BW (bandwidth),PM (phase margin),SR (slew rate)

bitcell 6 30 celli (read current)

sense amp 12 125 delay, pwr (power)

voltage reference 11 105 DV REF (difference in voltage),PWR (power)

GMC filter 140 1468 ATTEN (attenuation), IL

comparator 62 639 BW (bandwidth)

Fig. 4. Opamp schematic

Fig. 5. Left: bitcell schematic. Right: sense amp schematic

Process variation is modeled as a joint probability density
function. We use the back-propagation of variance (BPV)
model of process variation [12], where random variables
are “process variables” which model quantities likeNsub

(substrate doping concentration). In this model, there areabout
10 normal independent identically-distributed (NIID) random
variables per transistor, for local variation; along with about
10 NIID global process variables.

To generate data for use by FFX, we apply Monte Carlo
sampling and simulation. Specifically: for input points, we
draw samples (process points) from this distribution. To gener-
ate corresponding outputs, we simulate the process points and
apply measure statements. We use HSPICETM . Each circuit’s
device sizes were set to have “reasonable” first-cut values by a
custom circuit designer, leading to “reasonable” performance
values. The opamp and voltage reference had 800 Monte Carlo
sample points, the comparator and GMC filter 2000, and bitcell
and sense amp 5000.

We calculate normalized mean-squared error on the train-
ing data and on the separate testing data:nmse =√∑

i((ŷi − yi)/(max(y)−min(y))2). The testing error is
ultimately the more important measure, because it measures
the model’s ability to generalize to unseen data. The separate
testing data is chosen as follows: sort the data according tothe

y-values, then take every 4th point for testing. This is faster
than cross-validation, yet gives consistent, reliable answers.

B. FFX Setup

Up to Nmax−bases=250 bases are allowed. Exponents on
variables arex1/2 (=

√
(x)), x1 (=x), and x2. The pathwise

learning settings followed good defaults:ρ = 0.5, λmax =
max|XTy|/(N ∗ ρ), eps = 10−70, andNλ=1000.

VI. EXPERIMENTAL RESULTS

This section validates the flow by investigating the model
fit versus complexity, and actual equations output by FFX.

Each FFX run took 5-20 s on a single-core 1-GHz CPU.
Notably, this is orders of magnitude faster than the previous
symbolic modeling approach CAFFEINE [5].

A. Test Error

Table V shows the lowest test error found by FFX, compared
to standard least-squares linear or quadratic approaches.FFX
performed the best, though it did find some outputs challeng-
ing.

B. Error Vs. Complexity

Rather than pre-determining what the ideal balance is, FFX
extracts a whole set of equations, ranging from the very simple
(but higher error) to the very complex (with lower error). Then,
the user can examine the tradeoff, and determine which model
is most appropriate for his particular design challenge. Figures
6 to 8 show error vs. complexity tradeoffs for representative
problems. Each square represents a different model with an
associated test error and complexity. For a given subplot, the
simplest model is a constant, at the far left. It also has the
highest error. As new bases are added (higher complexity)
moving to the right, error drops.

The curves have different signatures; we give a represen-
tative plot for each. Figure 6 left shows the curve for opamp
BW . It has a marked “knee”: above the knee at 2%, even small
reductions in complexity lead to large increments in error;
below the knee, reductions in error add substantial complexity.
OpampAV and opampSR have similar “knee”-style curves.

Figure 6 right shows the curve for opampPM . It has no
discernable knee, but instead has a smooth tradeoff, a steady
reduction in error as complexity increases (until about 20
bases).

TABLE V
TEST ERROR(%) ON THE TEST PROBLEMS. “QUAD (LS)” FAILED WHEN IT HAD TOO FEW SAMPLES FOR THE NUMBER OF COEFFICIENTS.

Approach opampAV opampBW opampPM opampSR bitcell celli sense ampdelay

Lin (LS) 1.7 1.3 1.3 3.2 12.7 3.4

Quad (LS) FAIL FAIL FAIL FAIL 12.5 3.5

FFX 1.0 0.9 1.0 2.0 12.4 3.0

Approach sense amp
pwr

voltage reference
DV REF

voltage refer-
encePWR

GMC filter
ATTEN

GMC filter
IL

comparatorBW

Lin (LS) 3.5 2.4 22.8 16.4 17.3 27.2

Quad (LS) 2.9 2.8 40.4 FAIL FAIL FAIL

FFX 2.7 1.0 2.0 7.0 8.5 17.0

Fig. 6. Error vs. Complexity: opampBW (left), opampPM (right).

The curve in Figure 7 left is for bitcellcelli (read current).
It has a soft knee between 2 and 5 bases. Then, error virtually
flattens as complexity is increased further. The outputs for
comparatorBW and voltage referencePWR have similar
profiles.

Figure 7 right is for sense ampdelay. It has a soft knee (at
about 20 bases), with decent tradeoffs smoothly extending in
both directions. Sense amppwr has a similar profile.

Fig. 7. Error vs. Complexity: bitcellcelli (left), sense ampdelay (right).

Figure 8 left is the profile for voltage referenceDFREF .
Its most remarkable feature is that more than 8 bases did not
help; which also means it had a small number of models in
the tradeoff.

In contrast, Figure 8 right, for GMC filterATTEN , has
up to 250 bases with an equally large number of models, and
a very smooth tradeoff between error and complexity. GMC
filter IL has a similar profile.

Fig. 8. Error vs. Complexity: voltage referenceDV REF (left), GMC filter
ATTEN (right).

C. Analysis of Extracted Equations

The core value of FFX comes from inspecting and using the
equations extracted by FFX, to make the early-stage custom
design flow more variation-aware.

Table VI shows some functions that FFX extracted for
opampPM . At 0 bases is a constant, of course. From 1 to
4 bases, FFX adds one more linear base at a time, gradually
adding resolution to the model. At 5 bases, it adds a base
that has both anabs() operator, and an interaction term:
abs(dvthn) ∗ dvthn. It keeps adding bases up to a maximum
of 46 bases. By the time it gets to 46 bases, it has actually
started using a rational model, as indicated by the/(1 + . . .)
term.

There are two ways for designers to identify the most useful
variables and bases:

• First, simply seeing which terms get added first. For opamp
PM , the variables came in orderdxl, cgop, dvthn, and
dvthp. Because they are not subscripted by a device,
these indicate global process variables, which modify their
respective values in the SPICE model.

• Second, in printing a given function, we order the bases
from highest-magnitude coefficient to lowest. In the case
of opampPM , it tends to have the highest coefficients on
the variables it adds first (dxl, cgop, etc.); though this is
not always the case.

We saw the key variables in the equations for opampPM
are global process variables. This means that variation on

TABLE VI
EQUATIONS FOR OPAMPPM , EXTRACTED BY FFX.

Bases Test error Extracted Function

0 15.5 59.6

1 6.8 59.6− 0.303 ∗ dxl

2 6.6 59.6− 0.308 ∗ dxl− 0.00460 ∗ cgop

3 5.4 59.6− 0.332 ∗ dxl− 0.0268 ∗ cgop+ 0.0215 ∗ dvthn

4 4.2 59.6− 0.353 ∗ dxl− 0.0457 ∗ cgop+ 0.0403 ∗ dvthn− 0.0211 ∗ dvthp

5 4.1 59.6− 0.354 ∗ dxl− 0.0460 ∗ cgop− 0.0217 ∗ dvthp+ 0.0198 ∗ dvthn+ 0.0134 ∗ abs(dvthn) ∗ dvthn

6 4.07 59.6−0.354∗dxl−0.0466∗cgop−0.0224∗dvthp+0.0202∗dvthn+0.0135∗abs(dvthn)∗dvthn+0.000550∗DXL

...
...

...

46 1.0 (58.9− 0.136 ∗ dxl+ 0.0299 ∗ dvthn− 0.0194 ∗max(0, 0.784− dvthn) + . . .)/(1.0 + . . .)

opamp PM is dominated by global variation, rather than
local mismatch variation. In contrast, let us look at Table
VII, which is the equations for comparatorBW . In this case,
we see that the variables contributing to the model are local
variables (indicated by the subscript pointing to the transistor).
Therefore the comparatorBW ’s variation is dominated by
local mismatch. Looking deeper, we see that the prominent
variables all come from transistorm1 or m2 in current mirror
1 (cm1), and that the particular type of variation islint.
Variablesdxlvar0 andvthpvar0 get added next. However, after
5 bases, the model still does a poor job of explaining the
mapping (with error at 17.9%); and even adding significantly
more bases it still gets to just 17%.

In many modeling problems, FFX determined that just linear
and quadratic terms were appropriate for the best equations.
Besides the functions above, these include the GMC filterIL,
GMC filter ATTEN , opampSR (for errors> 2.5%), and
bitcell celli1.

But in some problems, FFX used more strongly nonlinear
functions, which of course would be much more challenging
for the custom IC designer to develop without the aid of
automation. These include the voltage referenceDV REF ,
sense ampdelay, and sense amppwr. Let us explore some
of these.

Table VIII shows some functions that FFX extracted for
voltage referenceDV REF . It always determines that a ratio-
nal with a constant numerator is the best option. It uses the
hinge-style basis functions, including interactions when3 or
more bases are used. It only needs 8 bases (in the denominator)
to capture error of 0.9%. Of the 105 possible variables, FFX
determined that variabledvthn was highly useful, by reusing
it in many ways.dvthp anddxw also had prominence. Once
again, the use of global variables indicates that global variation
is causing the main variation issues forDV REF .

1A warning on the bitcell: just 5000 Monte Carlo samples were taken,
therefore not stressing the bitcell into its nonlinear high-sigma failure regions.

D. Automated Sensitivity Analysis

As described above, the user can learn about variable
sensitivities (impacts) via manual inspection of coefficients
and tradeoffs. Another approach is suited to automation: set
the contribution of each variable as the sum of the absolute
coefficients of bases that use that variable; then normalize. Ta-
ble IX illustrates impacts for the lowest-error model of opamp
PM . Like we found from inspecting the equations, the top-
impacting variables are global process variablesdxl andcgop.
Local process variables such asCM1 M1 nsmm LINT
are much farther down the list.

TABLE IX
HIGHEST-IMPACT VARIABLES FOR OPAMPPM .

% Impact Variable Name

46.5% dxl

10.2% cgop

9.7% dvthn

7.4% dvthp

3.9% RCN nsmm DXL

3.8% RCP nsmm DXL

3.6% dxw

3.1% cgon

2.3% RCP nsmm DXW

2.1% RCN nsmm DXW

1.1% cjswn

0.8% cjn

0.7% dxlr

0.5% dtoxn

0.3% CM1 M1 nsmm LINT

0.3% dtoxc

0.3% CMB2 M1 nsmm NSUB

0.3% cjswp

0.2% drshrpo

0.2% CMB2 M1 nsmm V FB
...

...

TABLE VII
EQUATIONS FOR COMPARATORBW , EXTRACTED BY FFX.

Bases Test error Extracted Function

0 18.6 1.72e7

1 18.3 1.72e7− 3.71e5 ∗ xcm1,m1,lint ∗ xcm1,m2,lint

2 18.3 1.72e7− 3.81e5 ∗ xcm1,m1,lint ∗ xcm1,m2,lint + 2327 ∗ x2

cm1,m1,lint

3 18.1 1.71e7− 4.57e5 ∗ xcm1,m1,lint ∗ xcm1,m2,lint + 5.23e4 ∗ x2

cm1,m1,lint
+ 4.80e4 ∗ x2

cm1,m2,lint

4 18.0 1.71e7−4.86e5∗xcm1,m1,lint∗xcm1,m2,lint+7.24e4∗x2

cm1,m1,lint
+6.82e4∗x2

cm1,m2,lint
−2.24e4∗dxlvar0

5 17.9 1.70e7 − 5.22e5 ∗ xcm1,m1,lint ∗ xcm1,m2,lint + 9.80e4 ∗ x2

cm1,m1,lint
+ 9.26e4 ∗ x2

cm1,m2,lint
− 5.40e4 ∗

dxlvar0 + 2.54e4 ∗ dvthpvar0

TABLE VIII
EQUATIONS FOR VOLTAGE REFERENCEDV REF , EXTRACTED BY FFX.

Bases Test error Extracted Function

0 2.6 512.7

1 2.1 504/(1.0 + 0.121 ∗max(0, dvthn+ 0.875))

2 1.8 503− 199 ∗max(0, dvthn+ 1.61)− 52.1 ∗max(0, dvthn+ 0.875)

3 1.6 496/(1.0 − 0.0447 ∗ max(0,−1.64 − dvthp) ∗ max(0, dvthn + 0.875) − 0.0282 ∗ max(0,−1.90 − dxw) ∗
max(0, dvthn+ 0.875)− 0.0175 ∗max(0,−1.64− dvthp) ∗max(0, dvthn+ 0.142))

...
...

...

8 0.9 476/(1.0+0.105∗max(0, dvthn+1.61)−0.0397∗max(0,−1.64−dvthp)∗max(0, dvthn+0.875)−0.0371∗
max(0,−1.90−dxw)∗max(0, dvthn+0.875)−0.0151∗max(0,−1.64−dvthp)∗max(0, dvthn+0.142) . . .)

VII. C ONCLUSION

This paper proposed a flow for custom IC designers to
address process variation earlier in the design flow. The aim
is to augment the early-stage design equations with variation-
awareness. To meet that aim, this paper proposed an algorithm
called FFX, that automatically extracts a set of nonlinear
equations that trade off complexity versus error. The equations
can include interactions, and strongly nonlinear functions such
as rationals andmax(0, x−thr). FFX extracts these equations
quickly and deterministically. With chosen equations to draw
from, the designer can then augment his or her existing
equations with variation awareness, enabling a more variation-
aware early-stage design flow.

The FFX algorithm was enabled by a recent machine
learning technique, coordinate-descent to solve pathwisereg-
ularized linear regression [7]. FFX exploits the structureof
regularization path-following for early stopping.

FFX was verified on a variety of custom circuits: an opamp,
a voltage reference, a bitcell, a sense amp, a GMC filter, and
a comparator, having up to 1468 input variables.

Compared to the state-of-the-art symbolic modeling method
CAFFEINE [5], FFX was shown to scale to 10x more input
variables, run 30x faster, and has reliable deterministic (vs.
stochastic) convergence.

ACKNOWLEDGMENT

Funding for the reported research results is acknowledged
from Solido Design Automation Inc.

REFERENCES

[1] ITRS authors, “International technology roadmap for semi-
conductors,” ITRS, Tech. Rep., 2010. [Online]. Available:
http://www.itrs.net/Links/2010ITRS/Home2010.htm

[2] W. Sansen,Analog Design Essentials. Springer, 2006.
[3] B. Razavi,Design of Analog CMOS Integrated Circuits, 1st ed. New

York, NY, USA: McGraw-Hill, Inc., 2001.
[4] S. Nassif, “Overcoming cmos reliability challenges: Fromdevices to

circuits and systems,” inWorkshop, Design Automation and Test Europe
(DATE), March 2011.

[5] T. McConaghy and G. G. E. Gielen, “Template-free symbolic
performance modeling of analog circuits via canonical-form functions
and genetic programming,”Trans. Comp.-Aided Des. Integ. Cir.
Sys., vol. 28, pp. 1162–1175, August 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1669822.1669827

[6] J. A. Nelder and R. W. M. Wedderburn, “Generalized linearmodels,”
Journal of the Royal Statistical Society, Series A, General, vol. 135, pp.
370–384, 1972.

[7] J. H. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,”Journal of Statistical
Software, vol. 33, no. 1, pp. 1–22, 2 2010. [Online]. Available:
http://www.jstatsoft.org/v33/i01

[8] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” Journal Of The Royal Statistical Society
Series B, vol. 67, no. 2, pp. 301–320, 2005. [Online]. Available:
http://ideas.repec.org/a/bla/jorssb/v67y2005i2p301-320.html

[9] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of Statistical
Learning. Springer, 2001.

[10] J. H. Friedman, “Multivariate adaptive regression splines,” Annals of
Statistics, vol. 19, no. 1, pp. 1–141, 1991.

[11] H. Leung and S. Haykin, “Rational function neural network,” Neural
Comput., vol. 5, pp. 928–938, November 1993. [Online]. Available:
http://portal.acm.org/citation.cfm?id=188045.188060

[12] P. Drennan and C. McAndrew, “A comprehensive mosfet mismatch
model,” in Proc. International Electron Devices Meeting, 1999.

