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Classification of Audio Radar Signals Using Radial
Basis Function Neural Networks
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Abstract—Radial basis function (RBF) neural networks are
used to classify real-life audio radar signals that are collected
by a ground surveillance radar mounted on a tank. Currently, a
human operator is required to operate the radar system to discern
among signals bouncing off tanks, vehicles, planes, and so on. The
objective of this project is to investigate the possibility of using
a neural network to perform this target recognition task, with
the aim of reducing the number of personnel required in a tank.
Different signal classification methods in the neural net literature
are considered. The first method employs a linear autoregressive
(AR) model to extract linear features of the audio data, and then
perform classification on these features, i.e, the AR coefficients.
AR coefficient estimations based on least squares and higher order
statistics are considered in this study. The second approach uses
nonlinear predictors to model the audio data and then classifies
the signals according to the prediction errors. The real-life audio
radar data set used here was collected by an AN/PPS-15 ground
surveillance radar and consists of 13 different target classes,
which include men marching, a man walking, airplanes, a man
crawling, and boats, etc. It is found that each classification method
has some classes which are difficult to classify. Overall, the AR
feature extraction approach is most effective and has a correct
classification rate of 88% for the training data and 67% for data
not used for training.

Index Terms—Audio signal, classification, neural net, radar,
radial basis function.

I. INTRODUCTION

THIS PAPER reports the result of a project supported by
the Department of National Defence of Canada to inves-

tigate the possibility of replacing a trained human operator by
an artificial neural network in performing radar target recogni-
tion. Radar is still an important sensor in current defence sys-
tems for sensor surveillance, since radar is the only sensor which
can effectively detect targets at long distances, in the dark and
almost any weather conditions [1]. Currently, the identification
function in a radar system is usually carried out by human op-
erators who have had special training. However, the amount of
incoming data is already far more than humans can handle, and
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the amount of available manpower is shrinking. As well, the re-
duction of crew size in operating a surveillance system with no
reduction in the surveillance performance is beneficial. Devel-
opment of an automated system to carry out radar identification
function is therefore highly desirable [2]–[4].

In this project, we consider radar signals collected by bat-
tlefield radar systems that are installed in a tank. These signals
are at audio frequencies, and a trained human operator is usu-
ally required to stay inside the tank to recognize these audio
radar signals. The data set that we use was collected by an
AN/PPS-15 ground surveillance radar. In this type of radar,
a microwave continuous wave signal of constant frequency
is transmitted and is used to form a local oscillator for the
received signal. The output signal can then be reduced to audio
frequencies and represents the Doppler shift incurred because
of target motion along the radar line of sight [5]. There are
totally 13 classes of signals from various moving targets in
this experiment, including trucks, tanks, men marching, a man
walking, a man crawling, boats, small airplanes, and birds.

Neural networks are investigated here for classifying the
audio radar signals automatically due to its efficiency in
processing audio signals [6], [7]. In particular, the radial
basis function (RBF) neural network is used as the neural net
classifier in this study [8]. The main reason is that a linear
adaptive algorithm can be used in training the coefficients of the
network. This makes the RBF net implementable for real-time
application. For other neural networks such as recurrent neural
networks [9]–[11], the training process may not be carried
out in a real-time on-line fashion using current technologies
[12]. Because audio signals are usually nonstationary, this
on-line learning ability is preferred to allow the classifier being
adaptive to the environment. In addition, an RBF is a universal
approximator which has the capability of approximating a
decision boundary of any shape.

Based on our survey, we find three popular approaches for
time series classification using neural networks. The main
difference is the feature extraction process. The first approach
applies a neural network classifier to the raw data directly
without any separate feature extraction procedure. The input
is basically the delayed values of the time series

, i.e.,
for a network with input units. However, the raw

data approach usually has a poor performance and we have the
same observation for this audio radar classification problem.
The detailed analysis of this approach is therefore omitted
due to space limit. The second approach uses a model to
represent the data, and applies a neural network classifier on
the model parameters. Fig. 1 illustrates this approach. Here,
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Fig. 1. Feature vector approach to classification.

Fig. 2. Prediction approach to classification.

we use the popular autoregressive model (AR) to extract the
features of these audio signals [13], [14]. The AR parameters
are estimated in two ways: i) using the least square (LS) and
ii) using the cumulant method [13], [15]. The third approach
models the audio radar time series using a predictor, the predictor
could be either linear [16] or nonlinear [17], [18]. Instead of
performing classification on the model parameters, this third
approach performs classification on the prediction errors [19].
As shown in Fig. 2, this predictive classification approach
requires predictors to classify different classes of signals.
A signal that has a minimum prediction error from the th
predictor is expected to belong to class if the predictor is a
good model for the data. It is noted that these two approaches
are considered here since they cover the two main categories
of signal representations: linear and nonlinear. While the AR
feature approach is still the most standard method for audio
and speech signal modeling, the nonlinear method represents
another major approach for processing audio signals [17], [18].

Our classifier’s “training and testing” procedure is similar to
the way human operators learn to classify this audio radar data.
In a classroom setting, humans “train” their ears on training
data so that they recognize certain sounds as belonging to
certain classes. Afterward, the humans are tested on separate
recordings. The performance of these classifiers is then evalu-
ated based on both training and testing data.

Section II of this paper describes the radar data in more de-
tail. Section III presents the classification methods based on AR
coefficients and prediction. Section IV describes the RBF classi-
fier along with its associated training techniques (to find optimal
connection weights and the number of parameters). Section V
presents the performance and analyzes of the neural network
approaches on classifying the audio radar signals. Concluding
remarks are given in Section VI.

II. DESCRIPTION OF THE RADAR DATA

The audio radar data used here are collected by an
AN/PPS-15 ground surveillance radar. The parameters of this
radar system are given as follows.
Radar power 100 mW.
Antenna gain 29.2 dB.

Fig. 3. Typical waveforms of the 13 classes of radar signals. Each segment
contains 500 points.

Frequency 10.3 GHz.
Bandwidth 1 kHz.
Antenna area 0.06 .
Signal-to-noise ratio 10 dB.
Target radar cross section 10.0 dBsm.

There are classes of targets for classification. The
time-series samples of these signals are shown in Fig. 3 for il-
lustration. The details of these target signals are described as
follows.
Class
number

Description of signal

1 vehicle at 45 mph, moving away from radar;
2 vehicle at 20 mph, moving toward radar;
3 vehicle at 10 mph, moving away from radar;
4 vehicle at 5 mph, moving away from radar;
5 tracked vehicle moving at right angles, stopping

often;
6 several men marching;
7 man running toward radar;
8 man walking toward radar;
9 man crawling toward radar;
10 boat with outboard motor;
11 heavy clutter;
12 propeller-type plane;
13 large birds, coming and going; noise.

These 13 classes of targets are of particular interest to the
military people who provide the data. Since the radar uses the
Doppler to obtain the audio signals, slight variation in target
characteristic within a class such as two men walking instead of
one will not cause serious changes in the classification perfor-
mance. Each of these classes had an associated audio recording,
captured to disk at a sampling frequency of 8 kHz. Upon ex-
amination of the spectra of each of the signals, we found that
we could resample all the data to 4 kHz without loss of infor-
mation. Each class had 12 000 data points (i.e., 3 s). The first
9000 points were used for training data, and the remaining 3000
points were designated for testing. We use 9000 training points
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as the training set as that would mean using close to 66% of the
available data for training and would still leave around 33% of
the recorded data for testing. Increasing the training data size
any further would mean a reduction in the available testing data
sample, thus reducing our ability to generalize the performance
of the classifiers used. From the training data, 300 training vec-
tors from each class were created according to the various ap-
proaches. There were 100 vectors from each class for testing.

III. EXTRACTING FEATURES OF THE AUDIO SIGNALS

A. Autoregressive (AR) Coefficients

Two well-known methods of AR estimation techniques are
considered: i) the least square (LS) technique, which is optimal
for signals with Gaussian distribution, and ii) the cumulant tech-
nique [13], which works better for non-Gaussian signals. For
each AR technique, the model orders calculated ranged from
size 2 to 15.

We calculated the AR coefficients as follows. If the past
points of a discrete time series are represented by

and have a mean of zero, and if the
AR coefficients are , then the next value can
be approximated by

(1)

If the data sequence has points, we can express the system in
the following matrix:

...
...

...
. . .

...

...
(2)

We assign the names , , and to the above matrices, such that
. The LS-AR coefficients may be obtained by solving

the normal equation directly

(3)

This estimate of the AR coefficients for a normal model has been
shown to have zero estimation bias as well as minimum estima-
tion variance. Thus, in the case of the normal model assumption,
this estimator is optimal in not only a least squares (LS) sense
but also in a minimum mean square error (MSE) sense [20].

As shown in [13], the cumulant-based AR coefficients can be
obtained by solving the following equations [21]:

(4)

Fig. 4. Display of the AR-LS feature vectors. The order of the AR model is 2
and each class contains 300 vectors.

Fig. 5. Display of the AR-cumulant feature vectors. The model order is 2 and
each class contains 300 points.

where . The second-order cumulant, , and third-
order cumulant, , are defined as

(5)

Note: is the expectation operator. The LS solution is given
by the first equation in (4) with (the normal equa-
tion) and the third-order cumulant solution can be obtained by
(4) for and .

Figs. 4 and 5 show the feature vectors extracted using a
second order AR model. A sample size of 300 was used in the
calculation of AR coefficients. We can see that class 1, a vehicle
at 45 mph, overlaps somewhat with class 2, a slower vehicle.
Examining further, we see that many classes overlap each
other. This sort of overlap is apt to confuse the network when
training. However, there are classes that should be easy for the
automatic classifier to distinguish from the rest. For example,
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we see that class 12, a propeller-type plane, is well separable
from other classes. Class 13 is composed of many birds coming
and going with a lot of background noise. We see that the
feature vectors for this class move about the two-dimensional
(2-D) space quite a bit. Accordingly, we expect the classifier to
confuse this class often.

Figs. 4 and 5 differ by the method of calculation for linear
models. Fig. 4 displays feature vectors that are calculated by the
LS method. Fig. 5 has feature vectors that are calculated with a
cumulant-based approach. We see that there is very little visible
difference in the feature vector diagrams; from this we expect
that there may be little difference in the final classification re-
sults based on these two feature vector extraction approaches.

We have seen that classes overlap when represented as
2-D linear models. We hope that higher model orders will
increase the separability of these classes. Hence, we will be
trying a variety of model orders, ranging from dimension 2
to dimension 15. In addition, we have seen that some classes
should be easier to correctly classify than others. Accordingly,
the neural network training will require more effort to learn to
divide “trouble” classes. We keep this in mind when choosing
an algorithm to train the neural network.

B. Prediction Error

The basic idea behind classification based on time series pre-
diction is that if we can accurately predict future values of a
signal using a predictive model from a known class, then that
signal is likely to be from that class as well. That is, in a set
of predictors (for classes 1, 2, , and respectively),
if predictor has the lowest prediction error on a given input
signal, then it is very possible that the input signal is from class
. This predictive approach for neural network classification has

recently been found to be quite effective in signal classification,
especially for signals with strong nonlinearities [19].

The time series prediction approach can be broken into three
segments: a) finding optimal linear or nonlinear predictors for
each class, b) creating feature vectors from an input class based
on the prediction error of each predictor, and c) classifying the
feature vectors.

To find the optimal linear predictors, we broke the
training data into two halves. For each possible model order

, we trained a predictor on the first half of
the data, then measured prediction error on the second. Linear
coefficients were calculated using the LS method. From the
prediction error, we calculated the final prediction error
value as follows:

(6)

where is the estimated variance of the linear predictor’s
errors, is the length of the sequence from which the AR
model was estimated (in our case 300), and was the model
order that we are trying to find, that gives us the lowest .
Once we found the optimal , we calculated the best linear
representation over all the training data. We have used this
definition of to determine the model order as it does
not assume any a priori distribution of the underlying data in

contrast to the minimal description length (MDL) and Akaike
information criterion (AIC) [20], [21] where one needs to assume
a probabilistic distribution of the data. Thus, our approach to
finding the optimal is based on the mean square prediction
error performance of the model, which is more general than
the MDL or AIC criteria.

To find the best nonlinear predictor for each class where an
RBF is used for this purpose here, we tried different numbers of
RBF centers, from {10, 20, , 100}. We set the embedding di-
mension to 24. The number of RBF centers for each class turned
out to be quite different for different targets, and it depends on
the complexity of the signal. The predictors were given the same
training data as for the linear approach; the optimal predictor
was chosen as the one that had lowest mean square prediction
error on the cross validation training data. Keeping the same
number of RBF centers, it was trained across all the training
data. Here too, we used the minimum MSE on the cross valida-
tion training data as that is a very general criterion for prediction
performance without making any assumption of the distribution
of the underlying data.

Once we found the 13 optimal predictors (one for each
class), we used them to create feature vectors of length 13.
Given an input signal, each of the predictors would try to
predict the signal’s next value, and there would be an associated
prediction error. However, because the signals had noise, the
examination of just one prediction error is not enough to classify
with. Predictors trained to classify a signal may fare poorly,
or other predictors may get a lucky prediction. This problem
becomes alleviated if we average prediction error over more
than one sample. Since we had 9000 samples, a maximum
predictor order of 24 and wanted to use 300 training vectors,
we calculated that we could use floor
prediction errors from each predictor to create a training vector.
So, from each predictor , we squared 29 prediction errors,
then took the average, to create the entry for location in
the current vector being created.

Due to space limit, we only show the feature vectors created
by the nonlinear predictors for one class of signals in Fig. 6.
Note that the brightness is proportional to magnitude of squared
error. Since the signal was taken from class 1, it can be seen
that the prediction error of the class one predictor is always
lower compared to the other predictors. It can, however, be seen
that the prediction error by other class predictors such as class
10 and class 2 predictors is also low. These sorts of predictors
could cause confusion in the decision module. We should, how-
ever, stress that this problem can be alleviated through the use
of a neural network classifier trained to handle such ill-posed
problems.

Once we created the prediction-based feature vectors for both
training and testing data, we could apply the classifier. The sim-
plest classification decision scheme was to simply choose the
class corresponding to the predictor that had the lowest pre-
diction error, i.e., the that produces the minimal. This classifi-
cation scheme has the merit that a new classifier does not need to
be trained with the addition of new classes. This scheme is also
the most scalable to larger numbers of classes. We also consid-
ered the possibility that predictors of the correct class may not
always have the lowest prediction error. Certain patterns may
exist in the feature vectors that distinguish classes from each
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Fig. 6. Feature vectors generated by the nonlinear predictor in predicting the
class 1 signal.

other in a more complicated way than simply choosing the min-
imum. We wanted to create a classifier that is trained to classify
based on more complete patterns. So, we trained and tested a
neural network classifier in a manner identical to the AR fea-
ture vector extraction approach, except we used the prediction
error feature vector instead of the AR feature vectors.

IV. CLASSIFICATION USING A RBF NEURAL NETWORK

This section describes how we used an RBF network to
classify the audio radar signals. The RBF NN used here has
an input layer, a hidden layer consisting of Gaussian node
functions, an output layer, and a set of weights, , to connect
the hidden layer and the output layer. We denote to be the
input vector to the network, where ,
and is the embedding dimension. We call the ANN output
vector, where is the number of output
nodes. We have training patterns. The RBF classification
problem is to approximate the mapping from the set of in-
puts, , to the set of outputs,

.
For an input vector , the output of the th output node

produced by an RBF is given by

(7)

where is the center of the th hidden node, is the width
of the th center, and is the total number of hidden nodes.
Using vector notation, let

(8)

and

(9)

the RBF output can be written as

(10)

The RBF classifier contains four sets of parameters that have
to be learned from the examples. They are the centers, ,
number of centers , variances , and weights . We de-
note all the RBF NN’s centers by . Each class has an
associated set of RBF centers, . In our imple-
mentation of RBF classifier, classes do not share centers. Each
of these sets of centers is trained with a separate -mean clus-
tering run. In each -mean run (corresponding to a different
class), only the training vectors for that class would be used for
clustering.

The -mean approach for one set of centers is now
described. In this approach, the centers are initially defined
as the first training inputs that correspond to class ;
that is, , where

and is the number of
training patterns for class . At each iteration following, a
new training input, , is presented. The distances for each of
the centers are denoted by , . That is

(11)

The th center is then updated according to these distances via
the following:

(12)

where “ ” is chosen as the that minimizes , that is

(13)

and is the learning rate. Here we set .
The width associated with the th center is adjusted according

to the centers adjacent to . In our implementation, we set

(14)

With the estimated centers and variances, the weights of the
RBF classifier can be trained using the linear recursive least
squares (RLS) algorithm. The RLS is employed here since it
has been shown to have a much faster convergence rate than the
gradient search type algorithm such as the least mean squares
(LMS) algorithm [22]

(15)

where is a real number between 0 and 1, and
is a small positive number, and .

There are several reasons for using an RBF net in our audio
radar signal classification problem. First, many neural networks
require nonlinear optimization for training. Although many
researches have been conducted to improve the efficiency of
nonlinear optimization, their computational complexity is still
relatively high. For the real-time radar application considered
in this study, a fast learning neural network is a necessity.
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Since the weights of an RBF can be obtained by using a linear
adaptive filtering algorithm, it is an appropriate candidate to
process the radar audio signals. This adaptive learning ability is
essential for real-time radar signal processing and for tracking
the nonstationarity of these audio signals.

The second reason for employing a RBF classifier is that the
internal representation of training data of an RBF is intuitive.
Each RBF center approximates a cluster of training data vectors
that are close to each other in Euclidean space. When a vector
is input to the RBF NN, the centers near to that vector become
strongly activated, in turn activating certain output nodes.

Because of this last property of RBF, we propose controlling
the number of centers assigned to each class in our classifier.
When we have “trouble” classes, we will assign more centers to
the regions of input space that the trouble classes occupy. The
network then refines the boundaries between trouble classes,
thereby making the RBF NN a more accurate classifier. This
idea can also be thought of as “growing new subspaces” in the
network’s internal representation [23].

Let be the number of centers assigned to class ; then
stores the number of centers as-

signed to each of the classes. We used the following algorithm
to automatically find the optimal number of centers needed for
each class, for each classification approach, and each embed-
ding dimension of inputs.

1) For each , , assign an initial number of
centers to each class: .

2) Train the RBF NN using the current set of centers as-
signed to each class, , to get cross validation misclassi-
fication error, for each class , .

3) Let . If or has not
decreased by more than 0.2% over the last iterations,
goto 5.

4) Add centers to the classes with the highest
error, to get a new . Goto 2.

5) The RBF NN to use is the one with the current .
Step 1) initializes the algorithm. Step 2) requires the training

of an RBF NN in the usual way, except that clustering occurs
times. Step 3) is a convergence test and a stagnation test. If

the NN’s classification error rate is lower than the pre-specified
target rate, convergence will halt. Also, if the error rate is no
longer dropping, convergence will halt. Step 4) guides the NN’s
complexity growth, based on the “trouble” classes. Reaching
step 5) indicates completion. It is the NN returned by this step
that is used in the test data.

In our work, we set the parameters as follows. For all clas-
sification approaches, we set , the target misclassifi-
cation rate, to 5% and to 5. For the AR feature approach,
since the size of the AR feature vector is relatively smaller, we
set , , and . For the prediction
approach, each neural network was a model of just one class.
Therefore, for this approach, there was no need to assign cen-
ters corresponding to each class. To find the optimal predictor,
we used the above approach, but only contained one , to
represent the total number of centers for the RBF NN. Also,
prediction error replaced classification error. We set ,

, and . This basically means that we started
testing predictors with , and kept adding new
centers and re-testing until stagnation occurred.

Fig. 7. Confusion matrix for the best performing feature vector classification
approach based on AR-LS.

Fig. 8. Confusion matrix for the best performing feature vector classification
approach based on AR-cumulant.

V. PERFORMANCE ANALYSIS

For the AR coefficient approach, we applied the neural
network training strategy to both LS and cumulant approaches
for each of the possible AR model orders. As expected, we
found the two approaches to have similar performance. The
best-performing AR-LS classifier used an AR model of order
2, getting a training cross-validation classification accuracy of
86.4%. Testing classification accuracy dropped to 65.1%. The
best-performing AR-cumulant classifiers had 87.9% training
accuracy, and 67.1% testing accuracy (model order 3). Figs. 7
and 8 shows the corresponding confusion matrices [24] on the
testing data. If is the row, and is the column, then the
brightness of location ( , ) indicates how often the RFB NN
guessed that class (the true class) was class (the guessed
class). If a classifier correctly identified everything, all the
squares on the diagonal would be completely white, and the
rest would be black.

The neural network performed the best with the low model or-
ders; this is likely because it was able to generalize better over
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Fig. 9. Classification accuracy versus feature vector model order for both
AR-LS and AR-cumulant approaches.

these smaller subspaces. Unfortunately, it means that “overlap”
of classes occurred in higher dimensions as well. The higher
model orders did have comparable performance to the lower
model orders. Fig. 9 shows the neural network classification per-
formance over all the model orders tested. Apparently, a higher
model order cannot increase the separability of these audio radar
signals.

We tracked the adaptation of the best-performing AR-LS
classifier toward lower misclassification rates. Fig. 10 shows
the growth of the neural network for each iteration, and Fig. 11
shows the corresponding decrease in cross-validation training
error. We can see that centers get allocated to the trouble
classes, until they are no longer trouble classes. For example,
the number of centers allocated to class 7 grows after the first
two iterations; after that, class 1 is given higher priority. On the
other side, we observe from Fig. 11 that after the third iteration,
the misclassification error caused by class 7 has lowered
significantly. It is worth pointing out that misclassification rates
of nontrouble classes drop as the iterations pass. This is usually
the case because those nontrouble classes are misclassified
as trouble classes. So, when there is better representation for
the trouble classes, all-round misclassification drops. We also
note that it took 15 iterations before stagnation occurred; this is
good because the training error dropped fast enough. Over the
iterations, the training error dropped from 27.5% to 13.6%.

For the prediction approach, we had a total of four different
combinations of results: predictors were linear or nonlinear, and
classification decisions were based on or a neural
network. It turned out that all four combinations had very similar
performance to each other. The confusion matrices for each of
the combinations are shown in Figs. 12 to 15 respectively.

The linear predictors with decisions gets a
training classification accuracy of 68.3%, and testing classi-
fication accuracy of 61.1%. These numbers have significant
implications. It means that even with error being averaged over
29 predictions, predictors trained on some classes outperform
predictors trained for the true class a large proportion of the
time. This is due to the similarity between the classes. For
example, an incoming class 1 signal is always classified as a

Fig. 10. Number of RBF centers for each class versus iteration for the AR-LS
feature vector classification approach.

Fig. 11. Cross validation training error for each class versus iteration using the
AR-LS feature vector classification approach.

Fig. 12. Confusion matrix for linear predictor with classification decision
based on predictor with lowest prediction error.
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Fig. 13. Confusion matrix for linear predictor with classification decision
based on a RBF network.

Fig. 14. Confusion matrix for neural network predictor with classification
decision based on predictor with lowest prediction error.

class 2 signal (see Fig. 12, row 1, column 2), because the class
2 signal is quite similar to the class 1 signal (see the prediction
errors of predictors 1 and 2 in Fig. 6).

With neural network decisions, the linear predictors achieved
a training accuracy of 62.8%, and testing accuracy of 51.5%. It
is surprising that the neural network decision module performed
more poorly than the module. Upon comparison
of Figs. 12 and 13, we see that they are quite similar. However,
there are some differences. For example, when the true class is
7, it is misclassified as a variety of different classes. When the
true class is 10, it is misclassified as class 1. These problems do
not happen with the module.

The nonlinear predictors with decisions get a
training classification accuracy of 62.3%, and testing classifi-
cation accuracy of 55.5%. This combination actually performs
worse than the linear predictors with the same classification
decision module. Upon re-examining the feature vectors gen-
erated by the nonlinear predictors, we realize that there are
more occurrences of low prediction errors compared to the

Fig. 15. Confusion matrix for neural network predictor with classification
decision based on a neural network.

linear predictor feature vectors. Therefore, a simple classifica-
tion decision scheme such as will more readily
make misclassifications.

With neural network decisions, the nonlinear predictors get
a training accuracy of 69.5%, and testing accuracy of 57.2%.
This was the highest training classification accuracy, and second
highest testing accuracy, in the prediction approach. It appears
that the feature vectors created by the neural network predictors
may be better distinguished with a decision trained to recognize
the differences in features, rather than to just simply choose the
location of the minimum error.

VI. CONCLUSION

In this paper, we have applied RBF neural networks to
perform automatic classification of audio radar signals. We
have investigated different classification approaches based on
linear autoregressive (AR) feature extraction and time series
prediction. The classification results of these approaches on the
real audio radar signals are summarized in Table I. We have
also evaluated the raw data classification approach, but it only
has a classification accuracy of 59% and a testing accuracy of
56.8%. We found that the cumulant-based AR feature vectors
performed the best, with a cross-validated training classifica-
tion accuracy of 87.9%, and a testing accuracy of 67.1%. The
misclassifications were largely due to the data itself. Many of
the classes were quite similar, and the classifier would easily
confuse between these. Examination of the low-order linear
feature vectors revealed that classes actually overlapped. This
indicates that a more effective feature extraction should be
developed for these signals so that the distances between the
feature classes can be increased. It should also be noted that
although a successful classification rate of 67% may not be
accurate enough for military application, the performance of
the neural network classifier on this data set is quite impressive
compared to that of human beings. We performed an experi-
ment on classification of these signals using 40 human beings.
The same training and testing sets were used, and we found
that the human classification performance was only about 27%
in classification accuracy. We expect that with a larger training
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TABLE I
SUMMARY OF CLASSIFICATION RESULTS BASED ON

THE AR FEATURE AND PREDICTION APPROACHES

data base, the accuracy of the neural network classifier can be
improved, just like a more experienced human operator can
carry out this target recognition function more successfully
than a less experienced one.
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