Thursday
Feb122015

The Ultimate Bootstrap: AI & Moore's Law

People talk about a Moore's Law for gene sequencing, a Moore's Law for software, etc. But what about the Moore's Law? Transistors keep getting exponentially smaller. It's the bull that the other "Laws" ride, a "Silicon Midas Touch": once a technology gets touched by the silicon Moore's Law, that technology goes exponential. Moore's Law is a technology backbone that is driving humanity. I love that! It's a driving reason why I've spent 15+ years of my life in semiconductors, to help drive Moore's Law. I've co-created software enabling chip design on bleeding-edge process nodes. 

What's cool: it's AI-based software, which runs on the most advanced microprocessors. To design the next generation of microprocessors. For that smartphone in your pocket, for the servers powering Google, and for the companies designing the next gen of chips. Put another way: the computation drives new chip designs, and those new chip designs are used for new computations, ... ad infinitum. It's the ultimate bootstrap of silicon brains. The only thing it's clocked only by is manufacturing speed.

I've given a couple talks about this. Here's one from 2013 I gave at a singularity meetup. And here's one I gave as an invited talk to the PyData Berlin conference (and the video too).

Thursday
Feb122015

Predicting Black Swans for Fun and Profit

I've always been a big fan of Nassim Nicholas Taleb's writing. Though not always his conclusions. In "The Black Swan: The Impact of the Highly Improbable" he describes "black swan" events, which have extremely low probability but huge impact when they do happen. Partway through, he makes an assumption that they're so hard to predict, that you should just not bother, and instead protect yourself against the downside (if a negative event) or make sure you're exposed to the upside (if a positive event). I disagree: just because something's hard doesn't mean it's impossible. It's just a challenge! And it's worth going for if the upside to prediction is high.

Case in point: designing memory chips where the chance of failure is 1 in a billion or so. The Sonys and TSMCs of the world have huge motivation to estimate that value quite precisely. What's cool: they can now estimate these "black swans" with good confidence (using tech I helped develop), and they're very happy about it. It was hard, but not impossible!

I gave a talk on this at the Berlin Algorithms group in Feb 2014. The slides are here.

 

Thursday
Feb122015

Artificial Intelligence and the Future of Cognitive Enhancement

I was invited to keynote Berlin's "Data Science Day" for 2014. They asked me to give something visionary. So I talked about cognitive enhancement (CogE), a longtime pet interest of mine and related to my work at Solido. Whereas the first machine age was augmenting muscles, our second machine age is about augmenting brains, ie CogE. Today's CogE has examples like search and recommendation, and also more extreme versions that we see in designing advanced computer chips.  Future CogE will continue to be catalyzed by the positive feedback cycle of AI & the "Silicon Midas Touch", and my favorite singularity scenario (BW++).

The slides are here.

Thursday
Feb122015

Welcome!

Welcome! This is my first post. I've had a buildup of things I've been meaning to blog about, so the next several posts will be a flurry of activity while I get those off my chest. Many will be based on talks I've given in the last year. PS in Saskatchewan, flurry = mild wind + medium sized snowflakes. Bigger flakes than you'd see in a tweetstorm.

Page 1 ... 1 2 3 4